

Author preprint of an article to appear in the proceedings of the 2nd International Conference on Rebooting Computing (ICRC); ©IEEE 2017.

Asynchronous Ballistic Reversible Computing

Michael P. Frank

Center for Computing Research

Sandia National Laboratories

Albuquerque, New Mexico USA

mpfrank@sandia.gov

Abstract— Most existing concepts for hardware implementa-

tion of reversible computing invoke an adiabatic computing para-

digm, in which individual degrees of freedom (e.g., node voltages)

are synchronously transformed under the influence of externally-

supplied driving signals. But distributing these “power/clock” sig-

nals to all gates within a design while efficiently recovering their

energy is difficult. Can we reduce clocking overhead using a bal-

listic approach, wherein data signals self-propagating between de-

vices drive most state transitions? Traditional concepts of ballistic

computing, such as the classic Billiard-Ball Model, typically rely

on a precise synchronization of interacting signals, which can fail

due to exponential amplification of timing differences when signals

interact. In this paper, we develop a general model of Asynchro-

nous Ballistic Reversible Computing (ABRC) that aims to address

these problems by eliminating the requirement for precise syn-

chronization between signals. Asynchronous reversible devices in

this model are isomorphic to a restricted set of Mealy finite-state

machines. We explore ABRC devices having up to 3 bidirectional

I/O terminals and up to 2 internal states, identifying a simple pair

of such devices that comprises a computationally universal set of

primitives. We also briefly discuss how ABRC might be implemen-

ted using single flux quanta in superconducting circuits.

Keywords—Thermodynamics of computation, energy-efficient

computing, reversible computing, ballistic transport, asynchronous

computing, clockless logic, superconducting circuits.

I. INTRODUCTION

The overall economic impact of computing technology has
increased by many orders of magnitude over the last 70 years.
For this trend to continue, the energy efficiency of computation
must continue increasing commensurately, so more computation
can be carried out within any given energy budget.

How energy-efficient can computers possibly become? We
have known since the seminal work of Landauer in 1961 [1] that
there is an absolute thermodynamic upper limit to the energy ef-
ficiency of conventional irreversible computing processes, ones
that continually discard unwanted information in the course of
their operation. In brief, this limit arises because a loss of infor-
mation implies increased uncertainty regarding the detailed phy-
sical state of the system—i.e., increased entropy—which is ex-
actly the difference between useful energy and waste heat. The
less information we have about the detailed structure of any
given piece of energy in a system at any given temperature, the
less useful that energy becomes. We would have to move the
entropy to an even lower-temperature heat sink to extract

additional useful work out of its associated energy. But in
practice, the temperature of terrestrial heat sinks is no less than
roughly on the order of room temperature (300 K).

Whatever temperature T the coolest available heat sink has,
Landauer’s limit implies that, for each bit’s worth of information
discarded in a computer, at least an amount kT ln 2 of useful
energy, where k ≈ 1.38 × 10–23 J/K is Boltzmann’s constant, must
end up degraded to the form of waste heat at temperature T. In
conventional computer designs, 1 bit’s worth of computational
information is discarded (destructively overwritten) by every ac-
tive logic gate on each clock cycle, so that, given a clock fre-
quency of (say) 3.5 GHz, even operating at Landauer’s limit, we
could operate at most 100 billion active conventional logic gates
per Watt of system power consumption.

Moreover, in practice, our devices today, and even at the far
reaches of the semiconductor roadmap (circa 2030), are far less
energy-efficient than this, since the total information they erase
on each clock cycle consists of not just the logical bits being
erased, but rather, the much larger number of associated physi-
cal bits (e.g., the occupancy numbers, 0 or 1, of numerous dis-
tinct electron states between logic high and low Fermi levels)
that redundantly encode each digital bit. The International Tech-
nology Roadmap for Semiconductors [2] projects that typical
logic gate operations in the year 2030 will dissipate 0.25 fJ >
60,000 kT of energy (Fig. 1), implying that >10 KB worth of
such raw physical information must be lost (ejected as random-
ized entropy) per gate operation. At this level of inefficiency, a
billion-gate, 3.5 GHz processor chip would use about 875 W of
power. Conventional chips in 2030 (let alone today) can only
require much less power than this by actively cycling fewer logic
gates. We can build billion-gate chips today, but we can’t cool
single chips at kW power levels. Thus, most of the potential pro-
cessing capacity of modern chips ends up as wasted dark silicon
[3], sitting idle most of the time.

But, if we can reduce the physical information lost (and en-
ergy dissipated) in each computational operation to ever-smaller
amounts, asymptotically approaching zero, then the energy effi-
ciency and power-limited performance of computing technology
can grow indefinitely large, and this can potentially enable cor-
respondingly enormous economic benefits.

This idea motivates the study of reversible computing, which
aims to minimize the information lost and energy dissipated by
computational processes. We have known since Bennett [4] that
the logical concept of computation does not inherently require
information loss—i.e., we can always restructure a computation
to avoid discarding digital information. For any intermediate
result that is no longer needed, we can always decompute it

Sandia National Laboratories is a multi-mission laboratory managed and

operated by National Technology and Engineering Solutions of Sandia, LLC.,

a wholly owned subsidiary of Honeywell International, Inc., for the U.S. De-
partment of Energy’s National Nuclear Security Administration under contract

DE-NA0003525. Approved for public release SAND2017-8730 C

instead of discarding it, via a time-reversed version of a process
that could have computed it in the first place. If we ensure that
all the physical information that redundantly encodes our digital
bits is similarly transformed using a nearly thermodynamically-
reversible physical process, then we can approach (as closely as
desired, perhaps) the ideal of adiabatic operation (from Greek
ἀδιάβατος, “impassable”)—i.e., operating in a way that holds
back the useful energy invested in the system from passing out
of the computing mechanism, as dissipated heat.

A variety of concepts for the asymptotically adiabatic imple-
mentation of reversible computing have been explored since the
late 1970s. Device technologies that have been considered for
this purpose so far include superconducting Josephson junctions
[5], nanomechanical interlocks [6][7], MOS transistors [8], and
quantum dots [9], among others.

However, those devices require the adiabatic transforma-
tions of their digital states to be controlled by externally-sup-
plied driving signals. This poses significant challenges for the
design of practical systems, since to simply distribute these
driving “power-clock” signals throughout the system adds
significant overhead (in terms of circuit complexity) to the
design. Also, efficiently recovering and reusing almost all the
energy contained in these large, widely-distributed signals itself
poses a difficult engineering problem. We require a resonant
clock distribution circuit with a high quality factor (Q), careful
load balancing, and custom wave shapes (typically trapezoidal)
to ensure adiabatic device operation [10]. Concepts for reson-
antly driving adiabatic logic designs have not yet been devel-
oped to the point of being practical enough to motivate large-
scale adoption of adiabatic technology for computing. Another
problem is that the currently most well-developed technology

base for adiabatic logic (namely CMOS) is slower than we wish
when we operate it in the adiabatic regime.

Can we find a methodology for reversible computing that
avoids the overheads associated with power-clock distribution,
while also facilitating fast operation? An alternative to the usual
externally-controlled adiabatic approach would be a ballistic
computing scheme, in which information is conveyed by spa-
tially- and temporally-localized signals (e.g., pulses, particles, or
quasiparticles) that propagate ballistically (that is, freely, under
their own inertia) through the system, carrying with them a sig-
nal energy that is reused repeatedly to carry out multiple trans-
formations of the logical state of the machine.

The first specific ballistic computing concept was the Bil-
liard Ball Model of Fredkin and Toffoli [11], which envisioned
idealized, perfectly-elastic spheres traveling on precise trajecto-
ries; these could perform reversible logic operations via their
collisions. But this model was unrealistic in the sense that, even
if we obtained perfectly elastic “balls” (e.g., individual subatom-
ic particles), it also required them to travel along perfectly-pre-
cise trajectories. But realistically, the balls’ positions and timing
could not be prepared to infinite precision, due to the uncertainty
principle. Worse, any initial uncertainties, however small, would
tend to become exponentially amplified over the course of sub-
sequent collisions.

Can we devise a new concept for ballistic computing that
avoids the chaotic instabilities of the Billard-Ball Model? The
attainment of stability in positioning is facilitated if the “balls”
(or more generally, localized, ballistically-propagating signals)
are confined to traveling along constrained pathways (e.g., pot-
ential energy troughs, or high-quality transmission lines, in the
case of electrical pulses), and the need for temporal precision
can be avoided if the devices are asynchronous by design, that
is, if we arrange, by construction, that their functional behavior
is not significantly affected by the exact time of arrival of differ-
ent input pulses, relative to each other.

In this paper, we start systematically exploring, at an abstract
level, what the resulting concept of Asynchronous Ballistic Re-
versible Computing (ABRC) must look like. The requirements
of asynchrony, logical reversibility, and ballistic propagation of
localized, digitally-classifiable signals along wires, along with a
few others, fully determine the overall structure of the theoreti-
cal model. Both classical and quantum variants of the model can
be described, although in this paper, we restrict our attention to
exploring the classical version of the model. We prove that the
model is computation-universal, and we briefly discuss a poten-
tial implementation strategy using single flux quanta in super-
conducting circuits. We conclude with an outline of some direc-
tions for future work.

II. BASIC PROPERTIES OF THE MODEL

To clarify, the initial set of requirements that will guide our
development of the ABRC model will be as follows:

1) Universality: The model should be capable of universal
computation (including reversible, and embedded irreversible).

2) Network model: The hardware model (Fig. 2a) consists
of a fixed (albeit arbitrarily large) number of discrete, finite-
sized primitive elements called devices, each with at most some
small constant number of terminals which convey information

Fig. 1. Targets from the 2015 ITRS roadmap [2] for typical logic node energies
(red curve, top) and minimum-size transistor gate energies (blue curve, center),
the latter estimated from figures for device width, gate capacitance Cgate per unit
width, and logic swing voltage Vdd. Note that although the total ½CV2 energy
per logic node is still ~60,000 kT (in room-temperature environments) at road-
map’s end in 2030, the ½CV2 energy of a minimum-width segment of a trans-
istor’s gate terminal is estimated to reach the 100 kT level, below which thermal
noise begins to become a limiting factor on scaling. Beyond this point, signifi-
cantly improving energy efficiency will require recovering and reusing increa-
singly-large fractions of the logic signal energy, but, achieving thorough energy
recovery is only possible in a reversible computing paradigm.

into and out of devices; information flows along one-dimen-
sional signal paths (“wires”) interconnecting device terminals.
We generally assume that any given terminal is bidirectional—
i.e., may convey information both in and out of the device. Sim-
ilarly, wires are assumed to be able to convey information in
either direction along their length. Wires may neither branch
nor merge, and there is a one-to-one correspondence between
wire ends and device terminals.

3) Localization: Information is conveyed between device
terminals via localized signals (Fig. 2b), which we will generi-
cally refer to as pulses, regardless of whether they are signal
pulses, discrete objects, quantum wavepackets for individual
particles or quasiparticles, or soliton-like disturbances.

a) Spatial confinement: When traveling between device
terminals, pulses are spatially restricted in two dimensions by
being confined to propagate along the wires connecting the ter-
minals; we will generically still call these paths “wires” regard-
less of whether they are composed of condensed material or are
hollow conduits, or have some more complex structure, such as
in a coaxial transmission line. We also assume that pulses are
spatially localized in the third dimension (along the wire length)
in the sense that the pulse width is limited by the system speci-
fications. We assume that distinct pulses traveling on the same
wire (or neighboring wires) do not overlap, in terms of their
region of influence, and do not affect each other at all.

b) Temporal localization: Pulses are assumed to be tem-
porally localized, that is, with a time-distribution of pulse ener-
gy at any given location that is characterized by a time-limited
function that decays exponentially outside of some relatively
narrow timespan. There may be some dispersion that lengthens
pulse duration as the pulse propagates, but it should be gradual.

4) Ballistic propagation: Pulses are assumed to propagate
along wires in an approximately ballistic fashion, coasting for-
wards in one direction while substantially conserving their own
(generalized) kinetic energy and inertia in a localized form.
There may be some dissipation of pulse energy and momentum
as the pulse travels, but it should be gradual.

5) Digital interpretation: We assume that pulses traveling
on any given wire (in either direction) can be classified into a
finite number m ≥ 1 of distinguishable categories (Fig. 2c). We
call m the multiplicity or arity of the pulses on that wire, and we
distinguish the cases m = 1 (which we refer to as unary, single-
valued, unipolar) and m > 1 (m-ary, multivalued, polarized).
For example, in a superconducting implementation based on

quantized current pulses, discussed further in Sec. V, there
would naturally be m = 2 distinct pulse polarizations, depending
on the sign of the current. Each device terminal also has an
associated multiplicity, which must match that of the wire to
which it is connected. In this paper, we focus on networks in
which all pulses are unary, but this turns out not to reduce the
asymptotic power of the model, compared to the case with a
constant maximum m > 1, since an m-ary wire can always be
represented, with constant overhead, by m parallel unary wires.

6) Asynchrony: The functional behavior of devices should
not depend on the exact absolute or relative time of arrival of
pulses arriving at the device, but (at most) on their relative order
of arrival. If we want the model to exhibit time-reversal sym-
metry, this requirement should also hold when considering de-
vice behavior in the reverse time direction as well; we can call
this property reverse asynchrony.

7) Determinism: The logical behavior of devices should be
deterministic (non-random). This particular constraint could be
relaxed in future stochastic or quantum versions of the model.

8) Reversibility: The functional behavior of devices should
be both logically reversible, and almost physically reversible;
i.e., the model should impose no fixed lower bound greater than
zero on the entropy increase resulting from device operations.
Thus, it must obey the principles of Generalized Reversible
Computing (GRC), as described in [12].

9) Quiescence: In between subsequent pulse arrivals, devi-
ces should remain quiescent (that is, in a stationary state, with
a negligible rate of background energy leakage and entropy in-
crease). Any internal state information retained by the device
must be preserved in a substantially nonvolatile way.

Starting from the above fundamental requirements, we can
infer additional properties emergently required of our model:

10) Non-overlap of pulse arrivals. Due to the assumptions
of asynchrony and determinism, we require that pulses arriving
at a device must not overlap each other, in terms of their time
of arrival, since otherwise their relative order of arrival might
not be reliably determinable. We can state this requirement as a
minimum relative time of arrival ∆t > ∆tmin between pulse cen-
ters that is large enough to ensure that pulses are non-overlap-
ping, i.e., with some positive “gap” g > 0 between their tempo-
ral extents, given a specified maximum pulse duration that can
be tolerated in a given design (Fig. 3a). Also, if pulses do not
overlap, and devices are quiescent between pulses, then pulses
do not interact with each other directly in ways that are affected
by their relative time of arrival, and therefore, uncertainties in
the relative time of arrival of pulses cannot be directly amplif-
ied, which reduces entropy increase, and improves the physical
reversibility of the devices.

11) One-to-one correspondence between input and output
pulses. Pulses necessarily carry with them a certain amount of
physical entropy, due to inevitable uncertainties in their time of
arrival and other detailed physical properties (e.g., pulse width,
energy, exact shape). This entropy cannot disappear, and cannot
build up indefinitely within the device, so it must be carried out
of the device shortly after each pulse arrives. How can be it car-
ried out? Since the devices are required to be reversible, we
can’t allow the entropy to be emitted thermally; so, it can only
be carried out in other, similar pulses—and there must be ex-

Fig. 2. (a) A network of 6 devices D1, D2, …, D6, interconnected by wires.
Devices D1, D2, D5 each have 3 terminals; D3 has 2 terminals; D4, 4 terminals;
and D6, 1 terminal. (b) Graphic notation representing a spatially- and tempor-
ally-localized pulse on a wire; the pulse is propagating along to the right. (c)
This device terminal labeled M, and the wire to which it is connected, have
multiplicity (arity) m = 3, meaning they can handle pulses of 3 different types,
here labeled t1, t2, t3, and distinguished by color. However, this paper focuses
primarily on the case of unary pulses, i.e., m = 1, with unlabeled pulse type.

D1 (b) D2

D5

D4

D6

D3

(a)

m
M

t1 t2 t3
(c)

actly one such pulse (Fig. 3b), since two or more pulses emer-
ging simultaneously (i.e., in an overlapping way) would violate
the assumption of determinism, since the relative order of pulse
emergence would be ambiguous, and for multiple pulses to em-
erge with a delay between them would violate the assumption
of device quiescence between pulse arrivals (since the device
would have to be counting down time internally until emission
of the second pulse). Also, looking in the reverse time direction,
multiple output pulses would violate the asynchrony assump-
tion, since the reverse behavior of the device would depend on
the relative timing of the output pulses.

12) Statefulness. In order to perform universal computa-
tion, there must be some way that different pieces of informa-
tion (different pulses) can interact. Since pulses arrive at devi-
ces one at a time, with a gap between them, and since devices
are quiescent in between pulse arrivals, the only way that there
can be an interaction between pulses is for devices to carry int-
ernal state information (S in Fig. 3a, right), which (by quie-
scence) must be maintained stably in between pulse arrivals.
Since each device is finite, it can only have some finite number
K of reliably distinguishable internal states.

13) The set of possible ABRC devices is isomorphic to a
restricted set of finite-state Mealy machines. To explain:

A finite-state Mealy machine can be thought of as a discrete
device with a finite set S = {s1, …, sK} of internal states that
takes as input an unbounded-length stream of symbols σ taken

from some input alphabet , which is a finite set of distinct sym-
bols, and produces as output a corresponding stream of symbols
taken from some output alphabet, which, for our present purpo-

ses, we will assume is just the same set . We assume that there
is exactly one output symbol produced for each input symbol
that is consumed. The function of the Mealy machine is then

described by a transition function f:×S → S× which maps any

given ordered pair (σI, sI) of an input symbol σI   and an initial

state sI  S (which together we may call the input syndrome) to

a resulting pair (sF, σO) of a final state sF  S and an output

symbol σO   (together, the output syndrome). Mealy machines
are convenient, familiar abstractions for defining the functional

behavior of standard synchronous digital circuits. The corresp-
ondence, now, between that conventional state-machine frame-
work and our ABRC model goes as follows:

Let a given ABRC device D have n terminals, which we la-
bel T1, …, Tn. Each terminal Ti is connected to a wire that sup-
ports propagation of pulses with some multiplicity mi. The total
number of computationally-distinct cases for the next incoming
pulse to device D, and similarly for the next outgoing pulse from
device D, is therefore N = m1 + m2 + … + mn, so we can consi-
der D to be operating on a stream of I/O “symbols” σ chosen

from an alphabet of N distinct signal characters Σ = {c𝑖
𝑗
}, where

1 ≤ i ≤ n and 1 ≤ j ≤ mi; each signal character consists of an
identification of the specific I/O terminal Ti that the pulse is

entering/leaving, and the specific type of pulse tj  {t1, …, tm}
that is arriving/departing, where m = mi:

 c𝑖
𝑗
= (

t𝑗
T𝑖
), (1)

where the stacked variables here denote a compound signal cha-
racter meaning “a pulse of type tj traveling over the wire con-
nected to terminal Ti”. So, for example, a device with n = 3
terminals A, B, C, each having m = 2 pulse types labeled {0, 1},

would operate on the N = n∙m = 6-symbol alphabet

 Σ = {(
𝟎
A
) , (

𝟏
A
) , (

𝟎
B
) , (

𝟏
B
) , (

𝟎
C
) , (

𝟏
C
)}, (2)

where each of these compound characters designates which of
the two types of pulse is arriving (or leaving) next, and on which
of the three I/O terminals.

The only difference, then, between an ABRC device, and a
standard Mealy machine whose input and output alphabets are
identical, is that an ABRC device must be logically reversible;
meaning that the transition function f must be an injective (one-

to-one) function over its entire domain ×S; or, using the theory
of Generalized Reversible Computing (GRC) [12] it is actually
a sufficient condition for reversibility if f is only injective over

some assumed subset a  ×S of its domain, if we arrange, in
the context of a given overall system design, that the precondi-

tion that the initial syndrome (σI, sI)  a is always satisfied for
that device D. In such a case, we can say that D is conditionally
reversible, and more specifically that it implements a certain
conditioned reversible transition function fa whose assumed pre-
condition for reversibility, a, is satisfied.

The general picture, then, is that the set of all possible ABRC
devices is isomorphic to the set of Mealy machines with identi-
cal input and output alphabets and conditioned reversible trans-
ition functions. The functional behavior of any such device is to
reversibly transform indefinitely-long streams of non-overlap-
ping incoming pulses, each of which has one of N different char-
acters (specifying its terminal and type), one-to-one (for cases
where the device’s precondition for reversibility is satisfied at
each step) into streams of non-overlapping outgoing pulses, each
of which also has one of N different characters.

A complete ABRC system design then simply consists of an
assemblage of such devices, wired together into a network. We
can inject input pulses into the network, one at a time, at some

Fig. 3. (a) Left: In a synchronous ballistic device, an unphysical exact synchro-
nization between the times of arrival of different inputs would be required; in
reality, each pulse interaction would chaotically amplify timing uncertainties.
Right: To ensure deterministic behavior, and avoid amplifying timing uncer-
tainties, the asynchronous model requires that pulses arrive at a device in dis-
tinct, non-overlapping time periods, separated by a gap that is sufficient to en-
sure that there is no direct interaction between pulses. To enable indirect inter-
action between pulses to do computation, devices must have a variable internal
state S. (b) To conserve the energy and timing information present in pulses
coming into a device, while respecting reverse asynchrony and the finite nature
of the devices, each incoming pulse must result in exactly one outgoing pulse
that emerges from the device “immediately” (i.e., after some limited delay).

(b)

A

B

gap >0

A

B

exact
alignment

Synchronous ballistic: Asynchronous ballistic:

(a)

S

entry terminal(s); the pulses then shuttle through the network,
updating its state as they go, and eventually emerge at some exit
terminal(s)—the network’s reversibility and finiteness prevents
pulses from getting trapped. Note that multiple pulses can be in-
flight in the network at the same time, as long as the wire delays
are adjusted as needed to avoid race conditions—possible over-
lapping pulse arrivals at a device.

Of course, real ABRC devices would not be perfectly rever-
sible, and pulse transport on real wires would not be perfectly
ballistic, and so pulses would tend to increase in width and to
decrease in energy as they pass through the network. So, a prac-
tical system design would alternate blocks of ABRC logic with
regularization stages, which would re-synchronize signal tim-
ings, and restore pulse energy and sharpness. However, this does
not prevent ABRC from still obtaining a substantial energy effi-
ciency boost compared to conventional logic, and reduced
clocking overhead compared to staged adiabatic logic. As the
reversibility of the device technology and the ballistic character
of the pulse conduits are improved, the frequency of signal reg-
ularization can be reduced, and the overall advantages of this
design methodology will increase.

For practicality, we would like to be able to construct ABRC
networks from a finite variety of simple primitive devices, with
few terminals and states, operating on signals of low arities; such
simple devices could potentially admit simple technological im-
plementations. If we can identify a computationally universal set
of such primitives, we could then implement arbitrary computa-
tional structures, such as assemblages of useful processing elem-
ents, including general-purpose CPUs.

However, the reader may wonder if regular networks of fin-
ite ABRC primitives, as described above, are computation-uni-
versal, given ABRC’s restriction to reversible transition func-
tions. In the next two sections, we show that they are. We begin
by exploring some simple ABRC primitives, and then show that
a certain pair of primitives comprises a universal set for Boolean
logic, and thus can be used to construct arbitrary digital systems,
including arrays of general-purpose processors.

III. PRIMITIVE DEVICES

In this section, we explore the possible ABRC device types
with up to two internal states, up to three I/O terminals, and
unary pulse arities. With all pulses unary, the I/O symbols σi
reduce to terminal labels Ti. We will ignore device-type differ-
ences that do not affect behavior (such as internal states that are
ignored, or state relabelings). For simplicity, we also restrict our
attention here to devices whose transition functions are uncon-
ditionally reversible, i.e., injective over all input syndromes.

A. One-Terminal Primitives

The only one-terminal unary ABRC device is a pulse reflec-
tor (PR) (Fig. 4a). A pulse entering its single terminal A imme-
diately re-emerges. Since there is only one place that the pulse
can go anyway, any internal state that the device may or may not
have has no effect, and can be ignored.

B. Two-Terminal Primitives

We will separately consider the “stateless” (one-state) two-
terminal primitives, and the two-state two-terminal primitives
that use their state in some nontrivial way.

1) One-state, two-terminal primitives.

a) Wire (W). This trivial “device” is really just function-
ally identical to a section of wire. Any pulse that enters one ter-
minal immediately emerges from the other terminal. This
element finds schematic use as a symbol renamer.

b) Barrier (B). This device can be implemented internal-
ly as two reflectors, one attached to each terminal (Fig. 4b). Any
input pulse immediately reflects right back out of the same
terminal that it went into.

2) Two-state, two-terminal primitives.
We can classify these devices according to the set of basic

symmetries that they respect, which can be denoted as follows:

• T – Time-reversal symmetry. The transition function from
input to output syndromes is self-inverse; f = f –1 (ignoring
pair order). The device behaves identically in both time
directions with no other changes.

• D – Data-terminal reversal symmetry. The transition func-
tion stays the same if the I/O terminals are exchanged.

• TS – Time/state reversal symmetry. The inverse of the tran-
sition function is the same as the forward function if the
roles of the two states are also exchanged.

The nontrivial 2-state, 2-terminal devices (Table I) can be
categorized into the following 3 symmetry-based classes:

a) Devices with both T and D symmetries. It turns out
that the only such device is the flipping diode (FD). It conducts
pulses passing in its (state-dependent) forward direction, and
reflects pulses coming from the other direction, It reverses its
directional state when a pulse passes through it, but not when a
pulse bounces off of it. It may be used as a memory cell.

b) Devices with both D and TS symmetries. There are
only two of these devices: The anti-flipping diode (AFD), and
the toggling barrier (TB). (Discussion omitted to save space.)

c) Other devices. There are just two: The directional flip-
ping diode (DFD) and the flipping comparator (FC); they are
each other’s time-reversals. (Discussion omitted to save space.)

Fig. 4. (a) The only one-terminal unary device is the pulse reflector (PR). Here,
color is being used to distinguish incoming and outgoing unary pulses. (b) The
barrier (B) is a trivial two-terminal device that is simply an assemblage of two
reflectors, one connected to each terminal.

Ain Aout A A

Simplified icon:

L R

(a)

(b)

TABLE I. TWO-STATE, TWO-TERMINAL UNARY ABRC DEVICES

Input

Syndrome

Output Syndrome (by device type)

FD AFD TB DFD FC

L(S0)
 a

 (S1)R (S0)R (S1)L (S1)R (S1)L

L(S1) (S1)L (S0)L (S0)R (S0)L (S1)R

R(S0) (S0)R (S1)R (S1)R (S0)R (S0)R

R(S1) (S0)L (S1)L (S0)L (S1)L (S0)L

a. In this table, σ(s) denotes an input syndrome (σ, s), and an output syndrome (s, σ) is written (s)σ.

The above categorization theorem was proven by hand via
detailed inspection of all 4! = 24 of the possible bijective trans-
formations (permutations) of the 4 different (Ti, sk) syndromes.

C. Three-Terminal Primitives

1) One-state, three-terminal primitives.
There is only one type of nontrivial, stateless, three-terminal

unary device: the rotary (R) (Fig. 5a), which routes each termi-
nal to the next in a cyclic fashion. It comes in two dual varieties,
which circulate signals in opposite directions; each of them is
the time-reverse of the other. Among other purposes, the rotary
is useful for converting device interfaces between a single bidi-
rectional I/O terminal and two unidirectional terminals.

2) Two-state, three-terminal primitives.
We will not attempt here to categorize all 3-terminal, 2-state

ABRC devices; there are 2 × 3 = 6 syndromes in this case, thus
6! = 720 different possible unconditionally-reversible transition
functions (syndrome permutations) to consider.

However, there is only one 2-state, 3-terminal device that
both exhibits T symmetry and treats all 3 data terminals symme-
trically with each other (call this D3 symmetry): the flipping ro-
tary (FR) (Fig. 5b). It is like the ordinary rotary R, except that
each pulse passing through it reverses its orientation.

Also, only two 2-state, 3-terminal devices both have T sym-
metry and treat 2 of their 3 data terminals symmetrically (D2
symmetry), while not exhibiting full D3 symmetry: The control-
led flipping diode (CFD) and the toggling controlled barrier
(TCB). The CFD is an FD with a state-toggling control terminal.
The TCB (Fig. 6) alternates between wire and barrier behavior
in the path between its two data terminals whenever a pulse re-
flects off its control terminal.

At this point, we can conclude our exploration of primitives,
because those above are already sufficient to achieve our goal:
In particular, we can now prove that the set of device types {R,
TCB}, at least, comprises a computationally-universal set.

IV. HIGHER-LEVEL CONSTRUCTIONS AND UNIVERSALITY

Here, we give examples of higher-level ABRC components,
composed from the primitive devices already discussed, that are
sufficient to demonstrate ABRC’s computation-universality.

A. Toggling Switch Gate from Toggling Controlled Barrier

The first construct we will examine is the Toggling Switch
Gate (TSG) (Fig. 7). This routes an incoming data signal I to
either the upwards (U) or downwards (D) output terminal, de-
pending on the state, which is toggled by the control. Ordinary
(non-toggling) switch gates were previously studied by Feyn-
man in [13], where he develops a simple quantum-mechanical
model of reversible computing, and they were shown by him to
be universal. Later we will see how to make one.

B. Asynchronous Multiplexer/Demultiplexer

Given a time-series of constant control pulses that are deli-
berately ordered with respect to the data pulses, a toggling
switch gate can implement an asynchronous signal multiplexer/
demultiplexer, as shown in Fig. 8. The source of constant control
pulses may seem like a clock of sorts; however, since the exact
time of arrival of pulses does not matter as long as the order is
right, the constraints on the “clock” distribution are looser than

Fig. 5. (a) The only nontrivial stateless three-terminal unary device is the rotary
(R), which routes pulses circularly between terminals in a fixed rotational dir-
ection (clockwise or counter-clockwise). (b) The only nontrivial two-state,
three-terminal, T- and D3-symmetric unary device is the flipping rotary (FR),
which reverses its orientation each time a pulse passes through it.

Fig. 6. (a) The toggling controlled barrier (TCB) is one of the two types of 2-
state, 3-terminal devices that have T and D2 symmetry but not D3 symmetry.
It toggles between having wire and barrier behavior in effect between its left
(L) and right (R) terminals whenever a pulse reflects off its control (C) terminal.
(b) Simplified icon for TCB. (c) A four-terminal variant of the TCB in which
the control pulse passes over the channel instead of reflecting back may be sim-
pler to implement physically in some technologies.

(b)
A

B

C

A

B
C

A

B
C

(a)

L R

C

(a) (b)

(c)

Fig. 7. Toggling Switch Gate (TSG) built from a TCB and two rotaries. In the
“up state” SU, inputs on I are routed to the output U, and in the “down state” SD
they are routed to output D. Pulses on the control input Cin toggle the state.

Cout Cin

I
U

D SD

SU

Ci Co

I

U

D

SU

SD

Block symbol

Fig. 8. Asynchronous multiplexer/demultiplexer from a switch gate. Here, we
label pulses, and the subscripts denote the order of arrival/departure. Gray dots
denote optional (data-dependent) pulses. First, control pulse D1 toggles the
switch from up to down. Then the (optional) data pulse X2 arrives and takes the
downwards path. Then control pulse U3 arrives and toggles the switch back up.
Then data pulse Y4 arrives and takes the upwards path. In reverse, this demux
acts as a mux. When we draw branching or merging wires (bottom), really this
represents a switch gate with the associated control pulses.

D1

X2

U3

Y4

D1

X2

U3

Y4

X

Y (control
& state
implicit)

Simplified icon:

they would be in a synchronous design, so, we still benefit from
the asynchronous approach.

C. Asynchronous Pulse Duplicator

See Fig. 9. Using a switch gate and a pulse multiplexer
(whose control is left implicit in this diagram) and an additional
constant input pulse that is ordered with respect with the data,
we can produce an asynchronous pulse duplicator—given a sin-
gle pulse on its X input, it produces two pulses on its output,
with a delay between them. If the pulse X is not present, it pro-
duces an incidental output pulse ¬X. As is usual in reversible
computing, we can decompute any unneeded incidental signals
(a.k.a. garbage) at a later time using a mirror circuit.

D. Non-Toggling Switch Gate

Using a pulse duplicator and a toggling switch gate, we can
build a non-toggling switch gate (Fig. 10). We simply duplicate

the control pulse in such a way that one copy of it arrives before
the data pulse, and the other one arrives after the data pulse. In
this way, the data pulse is routed along one branch if the control
pulse was present in a certain time window, and along the other
branch otherwise.

Switch gates are already known to be computation-universal
[13], so the preceding material already establishes that ABRC is
computation-universal. However, for clarity, we will now show
a couple of additional constructions that illustrate why switch
gates (in particular) are computation-universal.

E. Single-Rail/Dual-Rail Converter

Using a (non-toggling) switch gate, we can convert single-
rail signals to dual-rail (Fig. 11a). In a single-rail signal, the pre-
sence or absence of a pulse during a certain time window en-
codes a bit. In a dual-rail signal, a pulse is always present on
exactly one of two wires; which one it is present on encodes the
bit’s value. One advantage of dual-rail signaling is that an in-
place Boolean NOT operation on a dual-rail encoded signal can
be “performed” trivially, by just relabeling the wires. However,
single-rail encodings are more compact, so it is helpful to be able
to convert between representations if needed.

F. AND Gate & Computation Universality

Using a (non-toggling) switch gate, we can implement a
Boolean AND operation on single-rail inputs A,B (Fig. 11b). An

incidental output of 𝐴𝐵 (not-A and B) is also produced. Mean-
while, using the complemented output from Fig. 11a yields a
NOT operation. We can combine AND and NOT operations as
needed, and thereby (via standard logic constructions) produce
OR operations, and more generally any Boolean function. Stan-
dard Bennett reversals [4] can be used to decompute “garbage”
data (undesired incidental outputs) as needed, to obtain the de-
sired output and (at most) an incidental copy of the input.

V. POSSIBLE TECHNOLOGICAL REALIZATIONS

How can we implement the above model physically? A pos-
sible implementation technology may exist in superconducting
circuits using Josephson junctions. Magnetic flux threading a su-
perconducting loop is naturally quantized to multiples of the
magnetic flux quantum Φ0 = h/(2e) ≈ 2.07 × 10–15 Wb. Due to

Fig. 11. (a) Single-rail to dual-rail converter using a switch gate. The input A
comes in at time 1, and then a constant pulse (logic 1) comes in at time 2. If A
was present, the constant pulse is routed down, producing a copy of A; else the
constant pulse is routed up, producing ¬A, the logical complement of A (this
gives us a NOT operation). The pair of outputs can be used as a dual-rail
encoding of A. (b) AND operation using a switch gate. If pulse A is present at
time 1, then when the optional data pulse B comes in at time 2, it is routed
down, producing the logical AND of A and B, denoted AB. If A was not present,
then B gets routed up, thus producing an output pulse there if the expression
NOT(A) AND B (denoted (¬A)B) is true. Since we can implement NOT and
AND functions, it follows that ABRC is computation-universal.

Fig. 10. Ordinary (non-toggling) Switch Gate (SG) from a pulse duplicator and
a toggling switch gate. First the control pulse C optionally comes in at time 1,
and (if it is present) it is duplicated by the pulse duplicator, to produce one copy
immediately and, another delayed one at time 3; both are fed into the control of
the toggle switch, temporarily toggling it down if the control was present. In
between these events, the data pulse D comes in at time 2, and is routed down
if the control pulse was present, and up otherwise. The delayed control pulse at
time 3 restores the toggle switch back to the default “up” state.

Fig. 9. Asynchronous pulse duplicator from a toggle switch and a mux. Sub-
scripts show event order. First, if the data pulse X1 at time 1 is present, the mux
routes it into the control of the toggle switch, and it toggles the switch gate to
the down state. The the constant pulse 12 comes in at time 2, and is switched
down to produce X2 (which is present if X1 was present, so is logically equal to
a delayed copy of X1). Then X2 is circulated around back through the mux and
the switch control, restoring the switch to the up state, and emerges (after some
delay for the loopback) at time 3 as X3. If X1 was not present, all that happens
is that the constant pulse 12 emerges immediately on the upper path as ¬X2,
since it is logically equal to ¬X1, but delayed until time 2.

X1

12

X′2

X1 X3

¬X2

×2
X1 X1 X3

¬X2

Simplified
icon:

×2
C1 C1 C3

D2

D2
C

D2
¬C

C1

D2
C

D2
¬C

Simplified Icon
D2

12

A1

A2

 ¬A2

(a)

B2

A1

(AB)2

[(¬A)B]2

(b)

Meissner-effect trapping, these flux quanta are naturally con-
served in a circuit, and they can propagate in the form of soliton-
like current pulses near-ballistically over reasonable distances
along certain one-dimensional structures, such as long Joseph-
son junction (LJJ) transmission lines. These mobile fluxons (also
known as single flux quanta, or SFQ), propagate at a substantial
fraction of the speed of light, and typical initial pulse profiles in
SFQ-based designs are ~2 mV pulse height and ~1 ps pulse du-
ration (albeit with subsequent dispersion as the pulse travels).
Pulse frequencies can thus attain many GHz even with reasona-
bly wide spacing between pulses. Individual flux quanta can also
be stored quiescently and controllably in SQUID-like structures
(superconducting loops incorporating Josephson junctions), and
pulse interactions can carry out logic, as is done in RSFQ [14]
and related superconducting logic families.

Thus, it is reasonably plausible that appropriately designed,
sufficiently finely-tuned superconducting circuit structures may
support a sufficiently wide variety of basic ABRC primitives,
interconnected by passive transmission lines, to allow ABRC lo-
gic blocks of useful sizes to be efficiently constructed. Since
fluxons are naturally polarized by the direction of field winding,
the most appropriate primitive devices for this case will likely
operate on binary pulse type multiplicities (m = 2).

Of course, numerous details of this potential implementation
concept still remain to be worked out. Could ABRC be the basis
for designing superconducting circuits that operate near-reversi-
bly, and thus dissipate much less than the typical fluxon energy
per operation, while still operating at multi-GHz frequencies? If
so, then it could potentially greatly increase the energy-efficien-
cy and overall competitiveness of superconducting electronics
as a technology for high-performance computing.

VI. CONCLUSION

In this paper, we presented and explored a new circuit-based
theoretical model of reversible computing that, in contrast to
almost all previous reversible computing models, is substantial-
ly asynchronous, rather than being fully synchronous. The ex-
isting literature addressing asynchronous reversible computing
(e.g., [15], [16]) focuses on cellular automata, and covers only a
few specific kinds of asynchronous primitives. It does not at-
tempt to develop a broad, general circuit-based model of asyn-
chronous reversible computing, as we do here.

In the present paper, we have not yet begun exploring how
to further generalize ABRC to stochastic or quantum versions,
but it is likely that these kinds of generalizations would be fairly
straightforward. For example, for a quantum version of ABRC,
we could simply replace the injective Mealy-machine transition
function with a unitary transformation over a basis set of possi-
ble symbol-state syndromes. The machine would then in general
enter a superposition of configurations in which pulses are pro-
pagating along different sets of paths. This new model of quan-
tum computation might inspire new ideas for the design of quan-
tum algorithms, or new concepts for the physical implementa-
tion of quantum computing.

In the meantime, the ABRC model, as it stands, appears wor-
thy of further development. Some useful next steps for this line
of research include: (1) Classify the possible ABRC devices
with somewhat larger numbers of states, terminals, and pulse

polarities, looking for useful primitives, and also include devices
whose transition functions are only conditionally reversible; (2)
develop a wider variety of circuit constructions, including more
efficient constructions of Boolean logic gates, as well as useful
higher-level functions such as adders, etc.; (3) flesh out the ideas
for a superconducting implementation of ABRC discussed in the
previous section, and assess their feasibility as a possible path
towards high-performance computing beyond the energy-effi-
ciency limits of CMOS; (4) conduct a search for other possible
implementation technologies that might lead to efficient realiz-
ations of the ABRC concept.

We hope this paper has illustrated that the range of possible
ways in which to approach the goal of reversible computing is
broader than previously realized. Holding in our mind’s eye the
clear vision, supported by the most fundamental laws of physics,
that we can find ways to keep computer efficiency increasing
indefinitely, a vast field of promising new directions to explore
in pursuit of that goal opens up ahead of us. Let’s get to work.

REFERENCES

[1] R. Landauer, “Irreversibility and heat generation in the computing pro-
cess,” IBM J. Res. Dev., vol. 5, no. 3, pp. 183–191, July 1961.

[2] Semiconductor Industry Association, “International Technology Road-

map for Semiconductors 2.0,” 2015, https://www.semiconductors.org/ma

in/2015_international_technology_roadmap_for_semiconductors_itrs.

[3] H. Esmaeilzadeh, E. Blem, R.S. Amant, K. Sankaralingam and D. Burger,

“Dark silicon and the end of multicore scaling,” IEEE Micro, vol. 32,

no. 3, pp. 122–134, April 2012.

[4] C. Bennett, “Logical reversibility of computation,” IBM J. Res. Dev.

vol. 17, no. 6, pp. 525–532, November 1973.

[5] K. Likharev, “Dynamics of some single flux quantum devices: I. Parame-

tric quantron,” IEEE Trans. Magnetics, vol. 13, no. 1, pp. 242–244, Jan-

uary 1977.

[6] K.E. Drexler, Nanosystems, John Wiley & Sons, Inc., November 1992.

[7] T. Hogg, M.S. Moses, and D.G. Allis, “Evaluating the friction of rotary

joints in molecular machines,” Mol. Syst. Des. Eng., vol. 2, pp. 235–252,

May 2017.

[8] S.G. Younis and T.F. Knight, Jr., “Practical implementation of charge re-

covering asymptotically zero power CMOS,” in Proc. 1993 Symp. on Re-

search in Integrated Systems, MIT Press, 1993, pp. 234–250.

[9] C.S. Lent, P.D. Tougaw, W. Porod, G.H. Bernstein, “Quantum cellular

automata,” Nanotechnology, vol. 4, no. 1, p. 49–57, January 1993.

[10] V. Anantharam, M. He, K. Natarajan, H. Xie and M.P. Frank, “Driving

fully-adiabatic logic circuits using custom high-Q MEMS resonators,” in

ESA/VLSI, pp. 5-11, 2004.

[11] E. Fredkin and T. Toffoli, “Conservative logic,” Int. J. Theor. Phys.,

vol. 21, no. 3, pp. 219–253, April 1982.

[12] M.P. Frank, “Foundations of generalized reversible computing,” in Rev-

ersible Computation, I. Phillips and H. Rahaman, Eds., Lecture Notes in

Computer Science, vol. 10301. Cham: Springer, 2017, pp. 19-34.

[13] R.P. Feynman, “Quantum mechanical computers,” Found. Phys., vol. 16,

no. 6, pp. 507–531, June 1986.

[14] K.K. Likharev, “Rapid single-flux-quantum logic,” in The New Super-

conducting Electronics, Netherlands: Springer, 1993, pp. 423–452.

[15] T. Toffoli and N. Margolus, Cellular Automata Machines: A New Envi-

ronment for Modeling, MIT Press, 1987.

[16] J. Lee, F. Peper, S. Adachi, K. Morita and S. Mashiko, “Reversible com-

putation in asynchronous cellular automata,” in Unconventional Models

of Computation. Berlin, Heidelberg: Springer, 2002, pp. 220–229.

https://www.semiconductors.org/‌m‌a‌i‌n/2015_international_technology_roadmap_for_semiconductors_itrs
https://www.semiconductors.org/‌m‌a‌i‌n/2015_international_technology_roadmap_for_semiconductors_itrs

	I. Introduction
	II. Basic Properties of the Model
	1) Universality: The model should be capable of universal computation (including reversible, and embedded irreversible).
	2) Network model: The hardware model (Fig. 2a) consists of a fixed (albeit arbitrarily large) number of discrete, finite-sized primitive elements called devices, each with at most some small constant number of terminals which convey informat...
	3) Localization: Information is conveyed between device terminals via localized signals (Fig. 2b), which we will generically refer to as pulses, regardless of whether they are signal pulses, discrete objects, quantum wavepackets for individual ...
	a) Spatial confinement: When traveling between device terminals, pulses are spatially restricted in two dimensions by being confined to propagate along the wires connecting the terminals; we will generically still call these paths “wires” re...
	b) Temporal localization: Pulses are assumed to be temporally localized, that is, with a time-distribution of pulse energy at any given location that is characterized by a time-limited function that decays exponentially outside of some relatively...

	4) Ballistic propagation: Pulses are assumed to propagate along wires in an approximately ballistic fashion, coasting forwards in one direction while substantially conserving their own (generalized) kinetic energy and inertia in a localized form. The...
	5) Digital interpretation: We assume that pulses traveling on any given wire (in either direction) can be classified into a finite number m ≥ 1 of distinguishable categories (Fig. 2c). We call m the multiplicity or arity of the pulses on that wire,...
	6) Asynchrony: The functional behavior of devices should not depend on the exact absolute or relative time of arrival of pulses arriving at the device, but (at most) on their relative order of arrival. If we want the model to exhibit time-reversal sy...
	7) Determinism: The logical behavior of devices should be deterministic (non-random). This particular constraint could be relaxed in future stochastic or quantum versions of the model.
	8) Reversibility: The functional behavior of devices should be both logically reversible, and almost physically reversible; i.e., the model should impose no fixed lower bound greater than zero on the entropy increase resulting from device operation...
	9) Quiescence: In between subsequent pulse arrivals, devices should remain quiescent (that is, in a stationary state, with a negligible rate of background energy leakage and entropy increase). Any internal state information retained by the dev...
	10) Non-overlap of pulse arrivals. Due to the assumptions of asynchrony and determinism, we require that pulses arriving at a device must not overlap each other, in terms of their time of arrival, since otherwise their relative order of arrival might ...
	11) One-to-one correspondence between input and output pulses. Pulses necessarily carry with them a certain amount of physical entropy, due to inevitable uncertainties in their time of arrival and other detailed physical properties (e.g., pulse width,...
	12) Statefulness. In order to perform universal computation, there must be some way that different pieces of information (different pulses) can interact. Since pulses arrive at devices one at a time, with a gap between them, and since devic...
	13) The set of possible ABRC devices is isomorphic to a restricted set of finite-state Mealy machines. To explain:

	III. Primitive Devices
	A. One-Terminal Primitives
	B. Two-Terminal Primitives
	1) One-state, two-terminal primitives.
	a) Wire (W). This trivial “device” is really just functionally identical to a section of wire. Any pulse that enters one terminal immediately emerges from the other terminal. This element finds schematic use as a symbol renamer.
	b) Barrier (B). This device can be implemented internally as two reflectors, one attached to each terminal (Fig. 4b). Any input pulse immediately reflects right back out of the same terminal that it went into.

	2) Two-state, two-terminal primitives.
	a) Devices with both T and D symmetries. It turns out that the only such device is the flipping diode (FD). It conducts pulses passing in its (state-dependent) forward direction, and reflects pulses coming from the other direction, It reverses its...
	b) Devices with both D and TS symmetries. There are only two of these devices: The anti-flipping diode (AFD), and the toggling barrier (TB). (Discussion omitted to save space.)
	c) Other devices. There are just two: The directional flipping diode (DFD) and the flipping comparator (FC); they are each other’s time-reversals. (Discussion omitted to save space.)

	C. Three-Terminal Primitives
	1) One-state, three-terminal primitives.
	2) Two-state, three-terminal primitives.

	IV. Higher-Level Constructions and Universality
	A. Toggling Switch Gate from Toggling Controlled Barrier
	B. Asynchronous Multiplexer/Demultiplexer
	C. Asynchronous Pulse Duplicator
	D. Non-Toggling Switch Gate
	E. Single-Rail/Dual-Rail Converter
	F. AND Gate & Computation Universality

	V. Possible Technological Realizations
	VI. Conclusion
	References

