Sandia's HPC Hardware Architecture Strategy

Development of our foundation for Exascale

August 30, 2011

James A. Ang, Ph.D.
Scalable Computer Architectures Department
Computing Research Center
Sandia National Laboratories
Albuquerque, NM
HPC Paradigm: Custom versus Commodity

• The last paradigm shift in HPC was the move from Cray vector supercomputers to massively parallel processor (MPP) supercomputers

• This revolutionary change was known as: "The Attack of the Killer Micros" - Eugene Brooks, LLNL
 – Founded on a philosophy of leveraging the rapid advances that were available from commodity microprocessors that rode the wave of both Moore's Law and Dennard Scaling
 – MPPs based on commodity microprocessors killed Cray Research's custom vector supercomputer business

• The ASCI Program established critical mass for this paradigm shift by investing heavily and equally in:
 – MPP application development
 – Computer science and enabling technologies
 – Large scale platforms
The HPC Paradigm is Primed for the next Major Change

• Five years ago commodity microprocessors began to change
 – Dual core processors appeared due to power and cooling limits, and commodity processors began to fall short of performance needs for HPC
 – Multi/many core exacerbate the memory wall/data movement problem
 – The result is a growing performance gap between theoretical and realized performance for our real applications

• Co-design is an implicit statement that multi-core commodity processors need to be redesigned with an eye towards the needs of HPC

• The assumption is improvements in these new processor designs will still be mainstream so the HPC community can benefit from re-designed commodity processor volumes
 – Sandia can play a critical role in Crossing the Chasm . . .
The Unfair Advantage

• Early in the development of the 917, Mark Donohue proved to Porsche that the Penske team he drove for was not like the other race teams

• The *Unfair Advantage* he enjoyed was based on his ability to communicate with Porsche engineers on their terms
 – More than a race car driver, Donohue was also a Mechanical Engineer
 – Donohue was directly involved in the development of the Porsche 917: suspension design, turbocharger sizing, fuel injection tuning, etc.

• In 1975, Donohue drove the Can-Am Porsche 917/30 to a lap speed of 221.16 MPH at *Talladega* – a closed course record that stood for over 10 years

• Donahue was a *Lead User*
The Issue / Our Challenge:
Commodity processor adoption of capabilities for HPC

- How are HPC co-design innovations integrated into commodity processor designs?
- The MPP HPC paradigm, while based on commodity processor designs, has never influenced those designs
- HPC may now have an opportunity because Industry has more transistors than they know what to do with
 - Stamping out more cores that will be even more starved for data is an indication that Industry may be receptive to good ideas
 - Perhaps especially good ideas from Lead Users who have an Unfair Advantage
Key Focus Areas

Help Develop and Exploit Sandia’s Unfair Advantage: Leverage our capabilities as a **collaborator** with Industry – not just a **customer**

• Develop Strategic Capabilities for Co-Design
 – SST: Open Framework for HPC Architectural Simulators
 – Mantevo: Proxy Apps to drive SST and use on existing platforms
 – Objective Function Design: Not just minimizing *Time to Solution*, must also balance with minimizing *Energy to Solution*

• Data Movement Research and Development
 – Interconnection Networks: Smart NICs, Portals, Si Photonics, etc.
 – Advanced Memory: Stacked DRAM, integrated NVRAM, etc
 – *Anyone can build a fast CPU. The trick is to build a fast system.*
 – Seymour Cray

• Help develop and support ASC Platform Strategy
 – Cielo, ACES 2015 Platform

• Help develop and support DOE Exascale Initiative
Key Focus Areas - Continued

• Cultivate Sandia’s Unfair Advantage
 – Micron Cooperative Agreement
 – PM support for X-caliber, Mgmt support for XGC
 – Procure Experimental Architecture Testbeds
 • Intel MIC
 • AMD Fusion
 • Convey HC-1ex
 • Tilera TILE Gx-36
 – Support NNSA/ASC Program Office (Starting Sept’11 @ 50% time)
 • New ASC Platform Strategy – CD0 for ACES 2015 Platform
 • Re-establish PathForward Program
 • Help Thuc Hoang draft new Computing Plan / CSSE Tech. Roadmap
 – Support DOE El: E7 Exec, SPEC Exec, ACES Arch Office

• Develop HW Prototypes w/ Sandia’s μelectronics Center
 – Exascale Grand Challenge LDRD
 – Leverage X-caliber proposal, collaboration on Quilt Packaging
Co-design for HPC

• Lessons from the embedded computing community
 – Working with Prof. Sharon Hu, University of Notre Dame, one of the pioneers of co-design for embedded computing design
 – Optimization is based on partitioning the work among different elements of the embedded system to minimize energy consumption

• Ongoing and New Co-design efforts
 – DARPA/UHPC X-caliber project
 – Sandia Exascale Grand Challenge LDRD project
 – DOE/ASCR Data Movement Dominates project
 – ACES – Cray Advanced Interconnection Network project
 – Participant in two of the recently announced DOE/ASCR Exascale Co-design Centers:
 • Combustion ECDC
 • ExMatEx CDC
Industry Collaborations

Cultivate strategic partnerships

- Intel – Umbrella CRADA
- IBM – Trusted Foundry Work, informatics
- Cray – CRADA for informatics & ACES D&E project
- Oracle (Sun) – Red Sky
- Micron Technology – CRADA for ECC development

How do we encourage industry to pursue the revolutionary approaches needed to address Exascale?

• Growing expertise in computer engineering and architecture – important to collaborate with industry as partners
• This expertise compliments our application, algorithm, and system software developers to be able to co-design and develop prototypes to implement and experiment with revolutionary models of computation
• We are also making a sustained investment in the open development of the SST simulation framework, and Mantevo mini-application proxies
• With our Microsystems design and fabrication capability, Sandia is also able to create proof of concept prototypes and hardware artifacts
Summary of Micron-Sandia Interactions

<table>
<thead>
<tr>
<th>Activity</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kickoff Meeting</td>
<td>Micron-Sandia Collaboration Begins (July’06)</td>
</tr>
<tr>
<td>Foundation for Discussions</td>
<td>2-way NDA (Nov’07)</td>
</tr>
<tr>
<td>Advanced Memory for DOE Architectures</td>
<td>Simulations, Papers, PIM LDRD Effort, ASC/CSSE L2 Milestone: Evaluate Advanced Memory Subsystems – 4Q-FY10</td>
</tr>
</tbody>
</table>
| IAA Activities | Dean Klein is a member of the IAA Advisory Board
IAA Workshop on Memory Opportunities for HPC (Jan’08)
IAA Workshop on HPC Architectural Simulation (Sept’09) |
| Collaborations with other agencies | Alignment of ASC/CSSE, DoD/ACS, & IAA support to Integrate U-MD’s Memory Simulator (DRAMsim & eBOBsim) with Sandia’s SST |
| Proposal Partnerships | DARPA/UHPC X-caliber, DOE/ASCR Data Movement Dominates |
| CRADA – established July’10 | Micron-Sandia collaboration to analyze advanced concepts for error correction in advanced memory designs – Patent Application filed, May ’11, *Automated discovery of optimal, symbol-based SECDED codes* |

• Technical Exchanges from July 2006 - Present
 – Approximately 30 face-to-face technical meetings
 – Catalyst for Collaboration with other DOE/NNSA labs, DoD, and Universities
New Micron Technology Inc. Cooperative Agreement with NNSA/ASC

• Based on our 5+ year collaboration, Sandia is helping HQ establish a D&E project & Cooperative Agreement with Micron

• On behalf of NNSA/ASC and DOE/ASCR, Sandia is responsible for technical oversight of and collaboration with Micron

• Sandia working with Micron to define the technical scope:
 – Construction of the simulation infrastructure
 – Design explorations, focused on sets of in-memory operations to be evaluated, simulated, and analyzed
 – FPGA prototyping work of ideas that are identified as candidates for inclusion in future Hybrid Memory Cube (HMC) parts
 – Research into improved low energy signaling and topologies

Functioning prototypes in silicon TODAY
Microsystems and Engineering Sciences Applications (MESA) Fabrication Facilities

Silicon Fabrication Facility

• Total clean room area 33,000 ft2 (12,500 ft2 Class 1)
• 5V Bulk and 3.3V SOI Rad Hard CMOS in production
• In-house microelectronics technology & facility to deliver specialized IC products
• Primary supplier of custom Rad-Hard ICs for weapon life extension programs and Satellite Systems
• Supports silicon bulk and silicon surface micromachining
• DOD Defense Microelectronics Activity (DMEA) accredited Microelectronics Trusted Supplier (design and foundry services)

Microfabrication Facility

• 89,000 ft2 (16,640 ft2 Class 10/100)
• Reconfigurable tools from wafer pieces to 6” wafers
• 6” silicon post-processing facility to support hybrid substrates and 3D integration (8” compatible)
• Compound Semicond. Epitaxial Growth
• Compound Semicond. Discretes, IC's and MEMs
• Si MEMS / photonics / optoelectronics / VCSELs
• Mixed-Technology Integration and Processing
• 3D Integration; Packaging
• Materials Characterization
• Failure Analysis
Leverage MESA Capabilities for Exascale

• Key areas of collaboration:
 – Processor/Memory design
 – 3D Integration and Quilt Packaging
 – Optical Interconnects:
 • VCSELs
 • Si Photonics

• Sandia’s Microsystems Center is one of the heaviest users of IBM’s trusted foundry

• Recent trusted foundry usage
 – FY06-08: 14 Design Submissions (130nm, 90nm nodes)
 – FY09-10: 16 Design Submissions (130nm, 90nm, 65nm, 45nm nodes)
Some Keys to Realizing Exascale Computing

• Improving data movement performance / efficiency
 – Both intra-node and inter-node

• Developing a Co-design methodology for HPC
 – Including the development of the objective function that balances minimizing time to solution with minimizing energy to solution

• Providing processor, memory, and interconnection network designers with insights from application users/developers, system software developers on the best ways to use the additional transistors that Moore’s Law will continue to provide

• Significant investment in new application development
 – Both funding and time