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ABSTRACT 
 
The peridynamic model was introduced by Silling in 1998. In this paper, we demonstrate the application of the 
quasistatic peridynamic model to two-dimensional, linear elastic, plane stress and plane strain problems, with special 
attention to the modeling of plain and reinforced concrete structures. We consider just one deviation from linearity - 
that which arises due to the irreversible sudden breaking of bonds between particles. 

The peridynamic model starts with the assumption that Newton’s second law holds true on every infinitesimally 
small free body (or particle) within the domain of analysis. A specified force density function, called the pairwise 
force function, (with units of force per unit volume per unit volume) between each pair of infinitesimally small 
particles is postulated to act if the particles are closer together than some finite distance, called the material horizon. 
The pairwise force function may be assumed to be a function of the relative position and the relative displacement 
between the two particles. In this paper, we assume that for two particles closer together than the specified “material 
horizon” the pairwise force function increases linearly with respect to the stretch, but at some specified stretch, the 
pairwise force function is irreversibly reduced to zero. 
 
Keywords: Reinforced Concrete, Peridynamic, Damage, Fracture, Computational Mechanics 
 
1. INTRODUCTION 

The peridynamic model has been described in (Silling 1998; 2000; 2002; Silling, Zimmermann and 
Abeyaratne 2003; Silling and Askari 2003, Silling, Zimmermann and Abeyaratne 2003, Silling and Bobaru 2004, 
Gerstle and Sau 2004). In this paper, we demonstrate the application of the quasistatic peridynamic model to two-
dimensional, linear elastic, plane stress and plane strain problems, with special attention to the modeling of plain and 
reinforced concrete structures. We consider a model for concrete with just one basic deviation from linearity - that 
which arises due to the irreversible sudden breaking of bonds between particles: a zeroth-order micro elastic damage 
model. 
 We limit our attention to zeroth-order micro elastic damage, quasistatic, rate-independent 2D modeling for 
three reasons. Firstly, we would like to demonstrate the behavior of the peridynamic model in its simplest nontrivial 
incarnations for clarity of presentation. Secondly, we demonstrate that 2D zeroth-order micro elastic quasistatic 
damage models represent an important class of behavior of concrete structures. Thirdly, our experience has shown 
that this class of models is the about as complex as can be successfully solved, given the computational limitations 
of contemporary single-processor computers. 
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Figure 1. Terminology for peridynamic model. 

 
The peridynamic model starts with the assumption that Newton’s second law holds true on every infinitesimally 

small free body (or particle) within the domain of analysis. A specified internal force density function, called the 
pairwise force function, (with units of force per unit volume per unit volume) between each pair of infinitesimally 
small particles is postulated to act if the particles are closer together than some finite distance, called the material 
horizon. Within this material horizon, the pairwise force function may be assumed to be a function of the relative 
position and the relative displacement between the two particles. In the zeroth-order micro elastic damage model, we 
assume that for two particles closer together than the specified “material horizon” the pairwise force function 
increases linearly with respect to the stretch, but at some specified stretch, the pairwise force function is suddenly 
and irreversibly reduced to zero. Particles further apart than the material horizon do not interact with each other. (On 
the other hand, in the “first-order micro elastic damage model”, not investigated further in this paper, the pairwise 
force function first increases linearly with respect to tensile stretch, and then beyond a particular stretch s0, decreases 
linearly with increasing stretch, until at tensile stretch s1 and beyond, the pairwise force is zero.) 

Refer to Figure 1 for terminology. We assume that Newton’s second law holds true on an infinitesimally small 
particle i, with volume dVi, mass dmi, undeformed position ixr , and displacement, ui

r
, located within domain, R: 

 
( ) ( )∑= Fdudm ii

rr
&& ,           Eq.1 

 
where ( )∑ Fd

r
 is the force vector acting on the free body, and in the quasistatic case, u  is particle i’s 

acceleration. (The super-arrow signifies a vector quantity, while the over dot signifies differentiation with respect to 
time.) 

0=i

r
&&

Dividing both sides of Equation 1 by the differential volume of particle i, dVi, and partitioning the force into 
components internal and external to the system of particles under consideration gives 

 
bLu
rrr

&& +== 0ρ ,           Eq.2 
 

where ρ is the mass density of particle i (at position ixr ), L
r

is the force vector per unit volume due to interaction 

with all other particles (for example, particle j) in domain R, and b
r

 is the externally applied body force vector per 
unit volume.  

The internal material force density per unit volume, L
r

, acting upon particle i, is an integral over all other particles, 
j, within the domain, R: 

 
( )∫=

R
jij dVfL

rr
,            Eq.3 
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where ijf
r

 is the density of force densities between dVi and the surrounding particles, dVj. The pairwise force 

function, ijf
r

, which has units of force per unit volume squared, can be viewed as a material constitutive property. In 
the simplest case, let us assume elastic behavior. In this case 
 

( ) ( )ijijijijijijij fxxuuff ξη
rrrrrrrrr

,, =−−= ,          Eq.4 
 

so the pairwise force function is a function of relative displacement and relative position between particles i and j.   
 

Force density, f 

c
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Figure 2. First order micro elastic peridynamic damage model. 

 
This model governs the pairwise force density, of magnitude, f, between two particles situated within the material 
horizon, δ, of each other. The zeroth order model results when s0 = s1; the first order model results when s0 < s1. 
 

Silling (Silling 1998) has proposed a simple nonlocal peridynamic constitutive model 
 

( ) ( )( )
ijij

ijijijijij

ijijijf
ηξ

ηξξηξµ
ξη rr

rrrrr
rrr

+

+−+
=,         Eq.5 

 

if *uijijij <−+ ξηξ
rrr

and  δηξ <+ ijij
rr

, and ( ) 0,
rrrr

=ijijijf ξη  otherwise. Here µ, δ, and u* are positive “micro 

elastic” constants. Thus, the “spring” connecting any two particles is linear for small relative displacements, but it 
breaks when the relative displacement between the two particles exceeds u*. Only particles within a distance δ (the 
material horizon) from each other, in the undeformed configuration, interact. Equation (5) can be linearized as 
 

( )ξηξµ
rrr

−+=f ,             Eq.5a 

 
where it is understood that the pairwise force, f, is collinear with the undeformed positions of the two particles i and 

j, and f = 0 if δξ >
r

. In the case where the displacement due to deformation is small compared with the distance 

between the particles, the force magnitude is proportional, with microelastic constant µ, to the change in distance 
between the two particles closer together than material horizon δ, while the force is collinear with the undeformed 

positions of the two particles. (In the special case where 0=ξ
r

, the force is collinear with η
r

.) 

In a slightly different version of the linearized pairwise force function (Silling and Askari 2003), the pairwise 
force function is assumed to be proportional to the stretch, s, rather than to the change in distance, between the two 
particles i and j. In this case,  
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( ) cscf =−+= )/(ξξηξ
rrrr

,         Eq.5b 

 
where c is the microelastic constant relating force to stretch, s. In this version of the model, the bond irreversibly 
breaks when s > s0, with s0 called the critical stretch for bond failure. 

A first order micro elastic peridynamic damage model is shown in Figure 2. When s0=s1 this model results in the 
“zeroth order micro elastic damage” peridynamic model used in the remainder of this paper.  
 
2. RELATIONSHIP BETWEEN MICROELASTIC AND CONVENTIONAL ELASTIC 

CONSTANTS 
Let us consider first a linear elastic, isotropic, plane stress or plane strain structure, of thickness, t, with micro 

elastic constant c and material horizon, δ. What are the corresponding Young’s modulus, E, and Poisson’s ratio, ν? 
We require that the strain energy density, UE1, due to a uniform principal strain state (s = ε1 = ε2) be equal to the 

integral of the strain energy of the pairwise peridynamic forces, f, (UM1) arising from a kinematically equivalent 
displacement field, as shown in Fig. 3a. Also, the strain energy density, UE2, due to a uniform shear strain (ε = ε1 = -
ε2) should be equal to the integral of the strain energy of the kinematically equivalent pairwise forces, f, (UM2) 
arising from a kinematically equivalent displacement field, as shown in Fig. 3b. Note that for an isotropic material 
(after rotation to principal directions) any other plane strain state can be considered as the linear superposition of 
these two strain states. 
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(a) Uniform normal strain, s                                   (b) Uniform shear strain, ε. 
 

Fig. 3 – Figure used to derive relationship between microelastic and elastic constants. 
 

It can be shown from conventional theory of linear elasticity, that ( )ν−
=

1

2

1
Es

EU  for plane stress and 

( )( )νν 211

2

1 −+
=

EsU E  for plane strain. Also, from the conventional theory of linear elasticity, ( )ν+
=

1

2

2
Es

EU  for 

a state of pure shear, shown in Fig. 3b, regardless of whether the problem is plane stress or plane strain. 
On the other hand, from the two-dimensional peridynamic theory, U  for the case of uniform 

normal stretch shown in Fig. 3a, and U  for the case of pure shear shown in Fig. 3b. Solving the 

equations U  and U  simultaneously for E and ν, we obtain 

6/32
1 δπtcsM =

12/32
2 δπtcsM =

2MU11 ME U= 2E =
 

( ) 12/13 νδπ += tcE       Eq. 6 
 

with 3/1=ν for plane stress and 4/1=ν for plane strain.  
A similar calculation for fully three-dimensional behavior shows that  and 12/4πδcE = 4/1=ν . In (Silling 

and Askari 2003), an implied formula appears to be in error. It is worthwhile to note that the plane 
stress Poisson’s ratio is different from the value of the 3D Poisson’s Ratio of ¼ computed in (Silling 1998). It is 
apparent that by appropriately choosing peridynamic constants c and δ, isotropic plane stress or plane strain 

4/3 4πδcE =
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structures can be represented. However, the peridynamic model considered in this paper restricts Poisson’s Ratio to 
ν = 1/3 for plane stress problems, and ν = ¼ for plane strain problems. 

It is important to understand that the peridynamic model predicts a more flexible, anisotropic material within a 
distance of the material horizon, δ, of material boundaries. This is because particles closer than the material horizon 
to the boundary are connected to fewer other particles, have fewer pairwise forces, and thus have reduced stiffness. 
However, it is possible to maintain constant material stiffness close to domain boundaries through an appropriate 
discretization strategy involving a “ghost domain” with zero micro-elastic constant c surrounding the domain of 
interest. 
 
3. NUMERICAL IMPLEMENTATION OF ELASTIC MODEL 
We have written a 2D, linear elastic, static, plane stress and plane strain, program in MatLab, called Peri2D. Straight 
linear elastic reinforcing bars may be included. At the current time, only rectangular geometric regions have been 
implemented. The structure of the input file, shown in Fig. 4, and node patterns, shown in Fig. 5, indicate the scope 
of the peridynamic model. Figure 6 shows an example problem, a uniformly loaded cantilever reinforced concrete 
beam, together with the model definition for input to Peri2D. “Ghost nodes”, discussed later, surround the beam. 
 

 
 

Model Definition for Peri2D 
 
node_pattern: ‘hexagonal’ or ‘rectangular’ pattern of nodes, as shown in Fig. 5. 
num_nodes_horizontal: the number of vertical columns of nodes, as shown in Fig. 5. 
material_horizon: radius of the material horizon, as shown in Fig. 5. 
problem_type: ‘plane_stress’ or ‘plane_strain’ 
regions = [xmin1    xmax1   ymin1    ymax1; 

     xmin2    xmax2   ymin2    ymax   . 2;  . . 
     xminN    xmaxN   yminN    ymaxN] (each row defines a rectangular region) 

mats = [E1  Gf1  region1; 
             E2  Gf2  region2;    . . . 
             EM  GfM  regionM]  (regioni refers to row i defined in regions) 
bcs =   [codex1  codey1  valuex1  valuey1  region1; 
             codex2  codey2  valu x2  valuey2  region2;  e

. . . 
             codexP  codeyP  valuexP  valueyP  regionP] (code: 0 = fixed; 1= free) (value = body force or displacement) 
rebar = [E1  Fy1  A1  xi1  yi1  xf1  yf1; 
               E2  Fy2  A2  xi2  yi2 xf2  yf2;   

. . . 
 ER FyR AR  xiR  yiR   xfR  yfR] (Young’s Modulus, Yield Strength, Area, start and end positions) 

 

Figure 4 – MatLab input file format for Peri2D. 
 

The discretized peridynamic model is essentially a grid of nodes connected together with links (truss elements) of 
appropriate stiffness. Peri2D automatically computes the stiffness of each link by considering the strain energies, 
UE1 and UE2 of a single node, i, embedded within two homogeneous strain fields (uniform normal strain, and pure 
shear, as depicted in Fig. 3.  For strain energy equivalence between the conventional theory of elasticity and the 
(discretized) peridynamic theory, UE1 and UE2 stored in the volume of node i should be equal to one-half of the strain 
energies, UM1 and UM2, stored by all links connected to node i.  
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(a) Rectangular Node Pattern     (b) Hexagonal Node Pattern 
 
  Node_Pattern  = ‘Rectangular’ Node_Pattern  = ‘Hexagonal’ Material 

Horizon Level 
 

Number of nodes 
enclosed 

Radius to most 
distant node /d  

Number of nodes 
enclosed 

Radius to most 
distant node /d 

0 1 0 1 0 
1 5 1 7 1 
2 9 1.414 13 1.732 
3 13 2 19 2 
4 21 2.236 31 2.646 
5 25 2.828 37 3 
6 29 3 43 3.464 
7 37 3.1623 55 3.606 
8 45 3.606 61 4 

 
Fig. 5 – Definition of node patterns and material horizon levels. 

 

  

Example Model Definition for Peri2D:  
Cantilever Reinforced Concrete Beam 

 
num_nodes_horizontal = 14; 
node_pattern = 'rec'; 
mat_horiz = 31.45; 
problem_type = 'plane_stress'; 
regions = [-37.5    137.5   -87.5    287.5; 
                     0        100         0       200; 
                     0        100       -50       0;  
                     0        100       200     250]; 
mat_regions = [0.000001,  0.001, 1; 
                          3604, 0.001, 2; 
                          3604, 0.001, 3; 
                          3604, 0.001, 4]; 
bc_regions = [1 1 0      0  3; 
                        0 0 100  0  4]; 
rebar = [29000  60  1  12.5  -50  12.5  250]; 

 
Fig. 6 – Example model for Peri2D: Cantilever Reinforced Concrete Beam, including “Ghost Nodes” Surrounding 

the Beam. 
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4. CONVERGENCE STUDY OF ELASTIC BEHAVIOR 
 To demonstrate the elastic convergence behavior with model node refinement, we consider the bar with 
geometry shown in Fig. 7. The bar has modulus of elasticity E = 3604 KSI and thickness, t = 1”. It is subject at its 
top and bottom ends to opposing uniformly distributed body forces B = 1 Kip, applied in the y direction to simulate 
an axial load.  
 

 
                        (a) Input to Peri2D                 (b) Deformed shape    

num_nodes_horizontal = 12; 
node_pattern = ‘hex’; 
mat_horiz = 31.45; 
problem_type = 'plane_stress'; 
num_nodes_in_margin = 1; 
margin = 0; 
while(margin < mat_horiz) 
    spacing = 100/(num_nodes_horizontal -2*num_nodes_in_margin); 
    margin = spacing*num_nodes_in_margin; 
    num_nodes_in_margin = num_nodes_in_margin + 1; 
end 
regions = [-margin    (100 + margin)   (-50 - margin) (250 + margin); 
                     0        100         0       200; 
                     0        100       -50       0;  
                     0        100       200     250]; 
mat_regions = [0.000001,  0.001, 1; 
                          3604,        0.001, 2; 
                          3604,        0.001, 3; 
                          3604,        0.001, 4]; 
bc_regions = [0 0   0    -100  3; 
                       0 0   0    +100 4]; 
rebar = []; 
  

Fig. 7 – Problem for convergence study. (7 nodes spanning the specimen, hexagonal node pattern.) 
 
 A typical deformed shape from Peri2D is shown in Fig. 7b, and Table 1 provides convergence data – first 
for the rectangular node pattern, and then for the hexagonal node pattern. There are clearly some problems with 
uniform convergence. It is believed that these problems are related to (1) improper application of equivalent nodal 
loads, and (2) aliasing due to the fact that depending upon slight change in the specified number of nodes per row, 
an extra row or column of nodes may or may not be included within the geometric region of the domain. Both of 
these problems could be remedied relatively easily by using topological, rather than merely geometric definitions of 
the regions (Gerstle 2002). However, it is clear that for problems with reasonable numbers of nodes contained within 
a circle of radius equal to the material horizon, δ, (say, 8 or greater), and reasonable numbers of nodes spanning 
each dimension (say, 12), the elastic displacements will be within 10 percent of the “exact” solution according to 
theory of continuum linear elasticity. There are some anomalies, perhaps due to a bug in Peri2D, particularly with 
the lateral strains with rectangular node patterns. The hexagonal node pattern appears to produce much better 
displacement predictions than the rectangular node pattern. 
 “Displacement Between Load Points” in Table 1 is computed as two times the total stored strain energy 
divided by the applied load at the top (and equal and opposite load applied at the bottom) of the specimen; it is thus 
a quantity that depends upon global results. 

Although monotonic convergence characteristics with mesh refinement are not observed, the computed 
displacements are adequate for most practical structural engineering purposes. Perhaps future work will identify why 
better convergence characteristics were not obtained. 
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Table 1 – Results of Linear Elastic Convergence Study 
 

Axial Bar – Rectangular Node Pattern – Convergence Study Results 
Response Type 

Number of 
nodes 

spanning 
specimen in 
the short (x) 

direction 

Percent error 
in Strain, εx 
at center of 
specimen 
(exact = 

0.00009249) 

Percent error 
in Strain, εy 
at center of 
specimen 
(exact = 

0.00027747) 

Percent error 
in Poisson’s 

Ratio 
at center of 
specimen 
(exact = 
0.3333) 

Percent error 
in 

Displacement 
Between 

Load Points 
 (exact = 

0.06474 in.) 

Number of 
Peridynamic 

Links per 
node 

Node 
Spacing 
(inches) 

4 -100.00 0.00 -100.00 -2.38 4 25 
5 25.06 0.14 24.89 -1.56 8 20 
6 25.27 0.15 25.08 -3.58 8 16.667 
7 -41.76 0.67 -42.15 -0.67 12 14.286 
8 -3.08 0.77 -3.83 -6.47 20 12.5 
9 31.61 0.22 31.32 -4.40 24 11.111 

10 -2.72 0.76 -3.45 -4.98 28 10 
11 -12.87 0.72 -13.49 -3.25 36 9.0909 
12 15.06 0.52 14.46 -5.70 44 8.3333 
13 -3.67 0.68 -4.32 -3.23 48 7.6923 
14 -3.13 0.70 -3.80 -5.96 60 7.1429 
15 3.51 0.65 2.84 -5.41 68 6.6667 
16 10.23 0.63 9.54 -6.28 80 6.25 
17 -3.46 0.69 -4.12 -4.91 88 5.8824 
18 4.51 0.61 3.87 -4.84 100 5.5556 

 
Axial Bar – Hexagonal Node Pattern – Convergence Study Results 

Response Type 
Number of 

nodes 
spanning 

specimen in 
the short (x) 

direction 

Percent error 
in Strain, εx 
at center of 
specimen 
(exact = 

0.00009249) 

Percent error 
in Strain, εy 
at center of 
specimen 
(exact = 

0.00027747) 

Percent error 
in Poisson’s 

Ratio 
at center of 
specimen 
(exact = 
0.3333) 

Percent error 
in 

Displacement 
Between 

Load Points 
 (exact = 

0.06474 in.) 

Number of 
Peridynamic 

Links per 
node 

Node 
Spacing 
(inches) 

4 -9.30 -8.27 -1.12 -17.56 6 25 
5 -4.87 -6.96 2.25 -18.12 6 20 
6 -7.36 -7.01 -0.37 -7.95 12 16.667 
7 -4.31 -5.64 1.41 -12.25 18 14.286 
8 -3.87 -4.94 1.12 -11.22 18 12.5 
9 -3.47 -4.59 1.17 -8.96 30 11.111 

10 -2.72 -3.88 1.20 -9.95 36 10 
11 -2.71 -3.56 0.89 -8.31 36 9.0909 
12 -2.43 -3.34 0.94 -7.85 54 8.3333 
13 -1.86 -2.87 1.04 -9.16 60 7.6923 
14 -2.32 -2.88 0.57 -6.59 72 7.1429 
15* 1.31 0.64 0.67 #VALUE!* 84 6.6667 
16 -1.50 -2.25 0.77 -8.13 90 6.25 
17* 1.10 0.56 0.53 #VALUE!* 108 5.8824 
18 -1.30 -1.97 0.69 -8.51 120 5.5556 

* This discretization resulted in a large rigid body rotation, due to equal end moments caused by nodal antisymmetry 
at the two ends of the specimen. 
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5. NUMERICAL IMPLEMENTATION OF DAMAGE MODEL 
We define the fracture energy, GF, as the minimum energy required to separate a unit area of material. In 

the peridynamic model, the fracture energy can be calculated by integrating the breaking energy stored by all 
pairwise forces, f, crossing a unit area. The breaking energy per pairwise force between differential volume dVi and 
differential volume dVj is ( ) jiij dVdVcsdU 2/2

0ξ= , as shown in Fig. 2. Consider the one-dimensional 
peridynamic bar of cross-sectional area, A, shown in Fig. 8. The fracture energy is given by 
 

( ) ( )
2

3
2

1 32
0

0

2
0 δ

ξ
ξδ δ

ξ

Acs
AdxAd

cs
A

G ix ijx

ij
F

i iij

=























= ∫ ∫= =

, so  

 

30 3
2

δAc
Gs F= .     Eq. 7a 

 
Similar integrations yield  
 

ct
Gs F

20
2

δ
=  in 2D, and     Eq. 7b 

 

50
10

δπc
Gs F= in 3D.     Eq. 7c 

 
 
 
 
 
 
 
 
 

 
fracture plane

ξij 
δ δ 

ji xi 

Fig. 8 – One-dimensional peridynamic bar, of cross-sectional area A. 
 
 The zeroth-order micro elastic damage model in Peri2D is simple: if the stretch between any pair of nodes 
exceeds s0, the corresponding pairwise force fij is ignored in subsequent load steps. Thus, links between nodes are 
successively broken as they reach the micro elastic breaking stretch, s0, and the load factor for each damage step is 
computed. So at each damage stage, the elastic response, as well as the load factor, is known. 
 The stiffness equations, [ ]{ } { }FDK =  are initially solved using efficient Cholesky factorization, 
implemented in MatLab using chol(K). chol(K) uses only the diagonal and upper triangle of [K], which is 
symmetric. If [K] is positive definite, then R = chol(X) produces an upper triangular matrix, [R], so that [R]T[R] = 
[K]. Subsequently, {Q} = [R]-T{F} and {D} = [R]-1{Q} are efficiently computed in turn. 
 Each damage stage involves a reduction in stiffness of the model. Rather than recreating the stiffness 
equations, it is much more efficient simply to update the already reduced stiffness matrix, [R], using the MatLab 
function cholupdate, which produces a rank 1 update to the Cholesky factorization. If [R] is the original Cholesky 
factorization of [K], then R1 = cholupdate(R, X, ‘-‘) returns the upper triangular Cholesky factor of [K] – {X}{X}T, 
where {X} is a column vector of appropriate length.  cholupdate uses only the diagonal and upper triangle of [R].  
As each bond is broken, its stiffness is computed and represented as {X}{X}T, and the vector {X} is easily 
computed. R1 = cholupdate(R, X, '-') returns the Cholesky factor of [K] – {X}{X}T. Thus computations for each 
damage step are computationally efficient. For up to 5000 degrees of freedom, each Cholesky update is 
accomplished in a several seconds on a typical desktop computer. Thus, one hundred bonds may be broken in three 
or four minutes on a typical desktop computer. Larger problems bog down and become very slow because they 
cannot be solved in core memory. Much larger problems, with 50,000 or more degrees of freedom, could be solved 
on typical single processor desktop computers by using efficient out-of-core block solvers. 
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6. CALIBRATION OF MICROELASTIC DAMAGE MODEL 
 The zeroth order micro elastic damage model considered in this paper has three parameters: micro elastic 
constant, c, material horizon, δ, and micro elastic breaking stretch, s0. These three parameters may be adjusted to 
represent three of the most important characteristics of concrete: Young’s modulus, E, uniaxial tensile strength, f’t, 
and fracture energy, GF. 
 Let us assume, heuristically, that the micro elastic breaking strain is equal to the uniaxial tensile strain: 
 

E
f

s t
t

'
0 == ε       Eq. 8. 

 
Combining Eqs. 6, 7b, and 8, we find that 
 

2'9
4

t

F

f
EGπ

δ =       Eq. 9 

 
Taking a typical concrete, with E = 3604 ksi, f’t = 0.4 ksi, and GF = 0.001 k/in, we find that δ = 31.45”. This implies 
that, to represent concrete, the node spacing in Peri2D should not exceed approximately δ/3 = 10” if E, f’t, and GF 
are to be faithfully reproduced. (However, the node spacing may be any value less than δ/3 for the purpose of 
analyzing small structures at high levels of spatial resolution.) 
 
7. EXAMPLES OF DAMAGE IN PLAIN CONCRETE 
Let us first consider a two-dimensional representation of a 100” by 200” long plain concrete block subject to first 
tension, then compression. We choose a typical concrete with E = 3604 ksi, f’t = 0.4 ksi, and GF = 0.001 k/in, and 
thus, by Eq. 9, δ=31.45”. We analyze a 1” thick slice of the 100” by 200” specimen, and assume plane stress 
conditions, as shown in Fig. 9.  
 The 50” long end caps represented by regions 3 and 4 have the same Young’s modulus as the central region 
2, but the fracture energy, GF, of the end caps is made very large to prevent damage at the ends of the specimen. 
Also, the fracture energy, GF, of region 5, near the center of the specimen, is reduced by 5% to induce the initial 
tensile cracking to be reasonably centered in the specimen. (Rigid body displacements are suppressed by adding 
very small (10-10 k/in) stiffnesses along the main diagonal of the stiffness matrix. This way, if during the damage 
process a group of nodes becomes a completely detached rigid body, the incremental solution can continue. It is thus 
not necessary to supply specified displacement boundary conditions in the example problems considered here.) 
 In the nominal stress versus displacement plots of Figs. 10 and 11, the “nominal stress” is the load factor 
necessary to break the most highly stressed link, assuming an original applied load of 100 kips (on a specimen with 
cross-sectional area of 100 in2). The “displacement” is twice the current total strain energy divided by the current 
applied load. Results from Peri2D as well as approximate expected results (from the literature and the authors’ 
experience, are shown as bold lines on the plots. 

Figures 10, (a) (b) and (c) show the deformed grid at three different times during tensile loading, shown 
with exaggerated displacements. Readers may wonder why the result is asymmetric. Presumably this is because 
fracture, as a type of instability, introduces a source of randomness in the result. 

. On Figure 11(d), perhaps the under prediction of peak compressive stress at failure is due to the fact that 
the model only has a tensile failure mode in it, and bond strain at failure is assumed to be independent of what 
happens in other bonds. So, if we had a model in which bond strain at failure depends on local hydrostatic pressure, 
better agreement could be obtained. Indeed, subsequent calculations bear out this hypothesis. 
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              (a) Input data to Peri2D                           (b) Tension                     (c) Compression 

Model Definition for Peri2D:  
Plain Concrete Cylinder in Tension 

(and in Compression) 
 
num_nodes_horizontal = 14; 
node_pattern = 'rec'; 
mat_horiz = 31.45; 
problem_type = 'plane_stress'; 
regions = [-37.5    137.5   -87.5 287.5; 
                     0        100         0       200; 
                     0        100       -50       0;  
                     0        100       200     250; 
                     35        65        85    115]; 
mat_regions = [0.000001,  0.001, 1; 
                          3604, 0.001,   2; 
                          3604, 1000., 3; 
                          3604, 1000., 4; 
                          3604, 0.00095, 5]; 
bc_regions = [0 0 0   (- or +)100   3; 
                        0 0 0   (+ or -)100  4]; 
rebar = []; 

 
Fig. 9 – Plane stress representation of concrete block in tension and in compression, showing broken bonds on 

magnified deformed shape after 10 damage steps. 
 



 

 
 

   
 
            (a) 50  links broken                  (b) 100 links broken                (c) 150 links broken 

Tension: Load versus Displacement

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0 0.005 0.01 0.015 0.02 0.025

Displacement, in.

N
om

in
al

 S
tr

es
s,

 k
si

Peri2D
Laboratory

 
(d) Graph of Load Versus Displacement. 

Fig. 10 – Deformed shape of the block in tension. Broken links are shown in (a) and (b). 
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          (a)  10 links broken                      (b) 100 links broken                     (c) 500 links broken 

Peri2D Compression: 
Load versus Displacement
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  (d) Load versus load-point displacement 

 
Fig. 11 – Deformed shape of the block in compression. Broken links are shown in (a) and (b). 

 
8. REPRESENTATION OF REINFORCING BARS 
 In Peri2D, reinforcing bars can currently be modeled as straight bars with linear elastic axial stiffness. 
(Elastoplastic behavior of the reinforcement could also be modeled, but the solution algorithm would be more 
complex and computationally expensive, so in this paper, plasticity of reinforcement is ignored. Thus, in this paper, 
only over-reinforced structures are considered.) 
 Although the reinforcing bars could be modeled using a one-dimensional peridynamic approach, because 
we know in advance that the bars will not fracture, we have chosen to model the reinforcing bars as simple 
continuum bar (truss) elements. The reinforcing bars are automatically divided into finite elements of equal length of 
approximately the node spacing of the peridynamic model. The nodes of the reinforcing bars are connected to the 
peridynamic concrete nodes using the micro elastic properties of the concrete nodes, on the assumption that the 
peridynamic nodes represent a weaker material.  It would also be possible to provide a special peridynamic model to 
represent the behavior of the concrete/rebar interface (reflecting rebar rib behavior), but this has not been done here. 
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9. EXAMPLE OF DAMAGE IN REINFORCED CONCRETE 
 As an example of a reinforced concrete structure, we take the same specimen as that shown in Fig. 9, but 
add a single steel reinforcing bar (with Young’s modulus E = 29,000 ksi, yield strength fy = 60 ksi, and cross-
sectional area A = 3 in2) located 10” from the left side of the beam. The beam is over reinforced, and the steel will 
not yield. The boundary conditions are altered to represent a cantilever beam fixed at its base and loaded 
horizontally at its top end. 
 Note that in Fig. 12 (a) the breaking of links can be interpreted as cracking on the tension side of the beam, 
in Fig. 12 (b) the breaking of links on the compression side of the beam can be interpreted as a compression failure, 
and in Fig. 12 (c), in addition to extensive cracks on the tensile and compressive sides of the beam, there are bonds 
are broken through the mid-depth of the beam as well, in what we might interpret as diagonal shear cracking. Fig. 
12(d) shows that stable crack growth is predicted initially as increasing load levels can be sustained, but that after a 
certain point, the cracks develop at ever decreasing loads, indicating what would in reality be a sudden, dynamic 
failure. 

   
 

(a) 25 links broken                    (b) 50 links broken                    (c) 400 links broken 
 

 
(d) Load versus load-point displacement 

 
 

Fig. 12 – Magnified deformed shape of the singly reinforced cantilever beam. 
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10. CONCLUSIONS 
The main conclusions that can be drawn from the present study, which considers a “peridynamic linear 

quasistatic zeroth-order micro elastic 2D damage model” are listed below. 
(1) The peridynamic model is capable of replicating the results of conventional linear elasticity by appropriately 

choosing the micro elastic constant, c, and the material horizon, δ. However, the Poisson’s ratio is limited to 1/3 
for plain stress, and ¼ for plain strain problems. To eliminate strong boundary effects, it is necessary to include 
a “ghost domain” with null micro-elastic constant, c, surrounding, with margin at least equal to the material 
horizon, the domain of analysis. 

(2) Hexagonal and rectangular node patterns have been studied. The hexagonal pattern is superior because it 
provides improved material isotropy, more consistent Poisson’s ratio at coarse discretization, and more rapid 
convergence. 

(3) The convergence characteristics of the peridynamic model with discretization refinement is relatively poor in the 
current implementation. This is mostly due to biasing effects of nodes in relation to the specified geometry of 
the problem. This biasing problem could be avoided by modeling geometric domains as topological entities, 
each of which is discretized independently, as is further explained in [Gerstle 2002]. Also, application of proper 
work-equivalent nodal loads would help with convergence.  

(4) By appropriately choosing the micro elastic breaking strain, s0, it is possible to objectively model the fracture 
energy, GF, of an equivalent continuum. 

(5) The major elasticity and damage aspects of concrete behavior appear to be modeled correctly in a qualitative 
sense by the peridynamic model, even using the very basic (three parameter: c, δ, s0) zeroth order peridynamic 
damage model described herein. However, the examples show that the quantitative agreement between the 
peridynamic model and the observed material behavior in the compressive regime is poor. Recent work has 
shown that a first order micro elastic damage model (with modification to account for enhanced micro elastic 
strength in the compressive strain regime) is promising for modeling concrete in compression. 

(6) One-dimensional models of discrete reinforcing bars can be easily added to two-dimensional plain concrete 
models, hence enabling the modeling of reinforced concrete structures. 
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