
 

 
 
 
 
 
 
 
 
 
 
 

SANDIA REPORT 
SAND2020-5413 
Printed May 2020 
 

The GABLE Report: 
Garbled Autonomous Bots  
Leveraging Ethereum 
 
Michael P. Frank 
Christopher N. Cordi 
Kasimir G. Gabert  
Carollan B. Helinski 
Ryan C. Kao 
Vladimir Kolesnikov 
Abrahim K. Ladha 
Nicholas D. Pattengale 
 
 
 
 
 

Prepared by 
Sandia National Laboratories 
Albuquerque, New Mexico 
87185 and Livermore, 
California 94550 



 

2 

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National 
Technology & Engineering Solutions of Sandia, LLC. 
 
NOTICE:  This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of 
their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal 
liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency 
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily 
state or reflect those of the United States Government, any agency thereof, or any of their contractors. 
 
Printed in the United States of America. This report has been reproduced directly from the best available copy. 
 
Available to DOE and DOE contractors from 
 U.S. Department of Energy 
 Office of Scientific and Technical Information 
 P.O. Box 62 
 Oak Ridge, TN 37831 
 
 Telephone: (865) 576-8401 
 Facsimile: (865) 576-5728 
 E-Mail: reports@osti.gov 
 Online ordering: http://www.osti.gov/scitech 
 
Available to the public from 
 U.S. Department of Commerce 
 National Technical Information Service 
 5301 Shawnee Rd 
 Alexandria, VA 22312 
 
 Telephone: (800) 553-6847 
 Facsimile: (703) 605-6900 
 E-Mail: orders@ntis.gov 
 Online order: https://classic.ntis.gov/help/order-methods/ 
 
 

 
  

mailto:reports@osti.gov
http://www.osti.gov/scitech
mailto:orders@ntis.gov
https://classic.ntis.gov/help/order-methods/


 

3 

ABSTRACT 
Simple but mission-critical internet-based applications that require extremely high reliability and 
availability could potentially benefit from running on robust public programmable blockchain 
platforms such as Ethereum.  Unfortunately, program code running on such blockchains is or-
dinarily publicly viewable, rendering these platforms unsuitable for applications requiring strict 
privacy of application code, data, and results.  However, might it be possible to encode an ap-
plication’s business logic and data for these platforms in such a way that it becomes impossible 
for unauthorized parties to infer any meaningful information whatsoever about the semantics 
of the data, and the operations being performed on that data?  In this report, we describe GA-
BLE (Garbled Autonomous Bots Leveraging Ethereum), a system concept developed at Sandia 
that achieves this security goal in a limited, but still useful range of circumstances.  GABLE uses 
simple but effective algorithms to permit secure private execution of garbled state machines 
(and more efficient garbled circuits) on public computing resources.  We give an example work-
ing implementation for garbled state machines, written using the Python and Solidity program-
ming languages, and outline how our methods can be extended to support a more powerful 
garbled universal circuit model of computation.  The capability embodied by the GABLE system 
has significant potential applications, a few of which we discuss in this report. 
 
 

  
 
 
 
  



 

4 

ACKNOWLEDGEMENTS 
Thanks are owed to Tan Thai of Sandia, for early discussions about a problem statement which in-
spired the development of the design concepts described in this document. 

This work was supported by the Laboratory Directed Research and Development program at 
Sandia National Laboratories.  Sandia National Laboratories is a multimission laboratory managed and         
operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsi-
diary of Honeywell International, Inc., for NNSA under contract DE-NA0003525.   

NOTE:  This report describes objective technical results and analysis.  Any subjective views or 
opinions that might be expressed in this report do not necessarily represent the views 
of the U.S. Department of Energy or the United States Government. 

 
 

 
 
  



 

5 

CONTENTS 
1. Document Description ............................................................................................................................ 25 

1.1. Organization of this Document .................................................................................................... 25 

2. Motivations and Broad Use-Case Scenarios ......................................................................................... 26 

3. Requirements for the GABLE System .................................................................................................. 28 
3.1. Assumptions & Limitations .......................................................................................................... 30 

4. Example Applications .............................................................................................................................. 31 
4.1. Toy Problems .................................................................................................................................. 31 

4.1.1. Millionaires’ Problem ........................................................................................................ 31 
4.1.2. “Dungeon Race” game ..................................................................................................... 32 

4.2. Serious Applications ....................................................................................................................... 33 
4.2.1. Supply Chain Provenance Tracking ............................................................................... 33 
4.2.2. Sealed-Bid Auctions .......................................................................................................... 33 
4.2.3. Transactive Energy............................................................................................................ 33 
4.2.4. Data Peering ....................................................................................................................... 34 

5. Technical Outline of the GABLE System Design ............................................................................... 35 
5.1. State-Machine Formalism .............................................................................................................. 35 
5.2. Garbled State Machine Encoding ................................................................................................. 38 
5.3. Garbled State Machine Execution ................................................................................................ 43 
5.4. Risks and Vulnerabilities ................................................................................................................ 47 

5.4.1. Lookahead (a.k.a. Fairness) Problem ............................................................................. 47 
5.4.2. Reconvergent Arcs Problem ............................................................................................ 49 
5.4.3. Reconvergent Paths Problem .......................................................................................... 49 
5.4.4. Collusion Problem ............................................................................................................ 50 

6. Technical Details of the Prototype Implementation ........................................................................... 51 
6.1. Prototype Implementation of a Garbler in Python ................................................................... 51 
6.2. Prototype Implementation of an Executor in Solidity .............................................................. 52 
6.3. Testing the Prototype Implementation ....................................................................................... 53 

7. Demo Applications ................................................................................................................................... 55 
7.1. Supply-Chain Provenance Tracking Demo ................................................................................ 55 
7.2. Millionaires’ Problem Demo ......................................................................................................... 58 
7.3. Remarks on Red-Teaming ............................................................................................................. 60 

8. State-Machine Compiler Concept ........................................................................................................... 64 
8.1. Compilation Stages ......................................................................................................................... 64 
8.2. Software Architecture ..................................................................................................................... 65 

8.2.1. Access Package .................................................................................................................. 65 
8.2.2. Crypto Package .................................................................................................................. 66 
8.2.3. Functionality Package ....................................................................................................... 66 
8.2.4. Garbler Package ................................................................................................................. 67 
8.2.5. I/O Package ....................................................................................................................... 67 
8.2.6. Machine Package ............................................................................................................... 68 
8.2.7. Participants Package .......................................................................................................... 69 
8.2.8. Stagers Package .................................................................................................................. 69 
8.2.9. Stages Package ................................................................................................................... 70 
8.2.10. Testing Package ................................................................................................................. 70 



 

6 

9. A More Efficient Computation Model .................................................................................................. 71 
9.1. Cost Analysis ................................................................................................................................... 77 
9.2. Cost Comparison vs. Garbled Circuits without Functional Privacy ....................................... 79 
9.3. Cost Comparison vs. State Machines for Auction Problem ..................................................... 80 
9.4. Conclusions on Cost ...................................................................................................................... 83 

10. Related Work ............................................................................................................................................. 85 
10.1. Secure Multi-Party Computation .................................................................................................. 85 
10.2. Homomorphic Encryption ............................................................................................................ 86 

10.2.1. Brief Review of FHE ........................................................................................................ 87 
10.2.2. Comparison with FHE ..................................................................................................... 88 

10.3. Indistinguishability Obfuscation ................................................................................................... 88 
10.4. Functional Encryption ................................................................................................................... 90 

10.4.1. Brief Review of FE ........................................................................................................... 90 
10.4.2. Comparison with FE ........................................................................................................ 90 

10.5. Verifiable Computation ................................................................................................................. 91 

11. Conclusions and Future Work ................................................................................................................ 92 

Appendix A Tables of Notations .......................................................................................................... 96 
A.1 Table of Notations—In Order of Appearance .......................................................................... 96 
A.2 Table of Notations—In Alphabetical Order ............................................................................ 101 

Appendix B Reference Garbler Implementation (in Python) ......................................................... 105 
B.1 Concise version of Garbler code (no comments) .................................................................... 105 
B.2 Verbose listing of Garbler code (with detailed comments) .................................................... 106 

Appendix C Reference Solidity code for Executor .......................................................................... 120 
C.1 Concise version of reference Solidity implementation of Executor ..................................... 120 
C.2 Verbose version of reference Solidity code for Executor (with comments) ........................ 121 

Appendix D Development Testing ..................................................................................................... 133 

LIST OF FIGURES  
Figure 3-1.  Overall architecture of the GABLE system. .......................................................................... 28 
Figure 4-1.  State machine for the Millonaires’ Problem. .......................................................................... 31 
Figure 4-2.  A simple state machine for the supply-chain provenance tracking problem. .................... 34 
Figure 5-1.  Overall picture of a state machine operating for up to ℓ time steps. ................................. 35 
Figure 5-2.  An arc in a state machine. ......................................................................................................... 37 
Figure 5-3.  Complete state machine example. ............................................................................................ 38 
Figure 5-4.  Overall illustration of arc-garbling algorithm. ........................................................................ 41 
Figure 7-1.  Sample output from supply-chain demo. ................................................................................ 56 
Figure 7-2.  Pie chart of gas cost distribution for the supply-chain demo. ............................................. 57 
Figure 7-3.  State machine for Millionare’s Problem with a round-robin input model. ........................ 58 
Figure 7-4.  Sample output from first 6 time steps of the Millionaire’s Problem demo. ...................... 59 
Figure 7-5.  Sample output from last 3 time steps of the Millionaire’s Problem demo. ....................... 60 
Figure 7-6.  Sample output from last 5 time steps of Finisher in the Millionaire’s Problem demo. ... 60 
Figure 7-7.  Bytecode size and deployment gas cost for the Millionaire’s Problem demo. .................. 61 
Figure 7-8.  ERAYS analysis of the GABLE contract for the supply-chain demo. ................................. 62 
Figure 7-9.  ERAYS analysis of the GABLE contract for the Millionaire’s Problem demo. ................. 63 
Figure 8-1.  Stages of compilation. ................................................................................................................ 64 



 

7 

Figure 8-2.  Compiler packages. ..................................................................................................................... 66 
Figure 9-1.  A circuit computation operating for up to ℓ layers of logic / time steps. ......................... 71 
Figure 9-2.  Generalized connector network, and a routing element in this interconnect fabric. ....... 72 
Figure 9-3.  Algorithm for garbling selector gates in the first layer of the interconnect fabric. ........... 74 
Figure 9-4.  Simplified algorithm for garbling selector gates in first layer of interconnect fabric. ...... 76 
Figure 9-5.  Profile of circuit width versus logic layer for the SHA-256 circuit. .................................... 78 
Figure 9-6.  Profile of circuit width versus logic layer for the AES example circuit. ............................. 78 
Figure 9-7.  Pseudocode for bitwise multi-bidder auction algorithm....................................................... 80 
Figure 9-8.  Application circuit example for multi-bidder auction algorithm for 𝐵𝐵 = 3 bidders. ....... 82 
Figure 9-9.  Semi-logarithmic chart comparing costs of FSM vs. GUC approaches for auctions. ..... 83 

LIST OF TABLES 
Table 7-1.  Gas Cost for Vendor Demo Transactions (in order of occurrence) ............................................ 57 
Table 9-1.  Deployment Cost Estimates for Circuit Examples ................................................................. 77 
Table 9-2.  Deployment Cost Estimates for Circuit Examples without Functional Privacy ................ 79 
Table 9-3.  Complexity and Cost of Monolithic State Machines for Simple Auctions ......................... 81 
Table 9-4.  Complexity and Cost of Garbled Universal Circuits for Small Auctions ............................ 82 
Table 9-5.  Complexity and Cost of Garbled Universal Circuits for Large Auctions ............................ 83 
Table A-1.  Table of Notations (in order of appearance) ................................................................................. 96 
Table A-2.  Table of Notations (in alphabetical order) ................................................................................ 101 
 

 

 
 

 

  



 

8 

 

This page left blank 
  



 

9 

EXECUTIVE SUMMARY 

Contemporary programmable blockchain platforms such as Ethereum are touted as providing a sort 
of  “world computer,” in the sense of, an always-on public computing resource that uses the distributed 
consensus protocol underlying its blockchain technology to provide guaranteed reliability, availability 
and auditability for computations implemented as smart contracts, which are (for a fee) posted to the 
blockchain and subsequently executed.  Even in the event of a widespread disaster, if one can access 
a connected component of the Ethereum network, this computing resource will remain online.  Some 
organizations may wish to be able to take advantage of such a robustly available computing facility to 
execute particularly mission-critical computational tasks, but only if they can do so without revealing 
openly (including to potential adversaries or competitors) the nature of the computation performed.   

This, then, raises an interesting question:  Namely, is it possible to run a computation on an exis-
ting public blockchain such as Ethereum while publicly revealing no information at all about the data 
being operated on, the computation being performed on that data, or the computed results?  If so, 
then exactly how, and under what conditions, can this be accomplished? 

Although the above may, at first, sound like an impossible goal, we show in this report that it can 
in fact be achieved, and in a reasonably practical way, subject to certain assumptions and limitations; 
and we describe an example system called GABLE (Garbled Autonomous Bots Leveraging Ethereum) 
developed at Sandia that illustrates this capability.  The complete source code for a reference imple-
mentation of a simple working prototype of GABLE is given in Appendices B & C, and results from 
tests of more complete demonstration applications are shown in §7. 

The design of GABLE works by applying, in (what we find) an interesting way, some basic cryp-
tographic techniques that have already been well known in the literature for some time.  The key 
technique that we leverage is something we call garbled lookup tables, which provide a generic means by 
which encrypted inputs can be used to look up encrypted results, while not revealing the meaning of 
either the input, the result, or the function encoded by the lookup table.  By chaining such garbled 
table lookups together in specific ways, we can easily implement garbled state machines (§5) and garbled 
universal circuits (§9), either of which can encode a desired computation in a way that meets the desired 
goal of completely inscrutable operation, under certain assumptions.  Both methods incur certain 
complexity overheads, but for general (worst-case) computations, the overhead of the latter approach 
is much smaller—namely, a logarithmic factor, rather than exponential for the former.  Our techniques 
also touch upon aspects of several popular secure computing paradigms such as secure multiparty comp-
utation, fully homomorphic encryption and indistinguishability obfuscation, as discussed in §10. 

Results of experiments on our existing demos indicate that very simple applications can be per-
formed in a totally garbled fashion on the public Ethereum network at a modest cost, that is, with fees 
equivalent to a few U.S. dollars.  Somewhat more complex applications would of course cost more to 
deploy and execute in this way, but some are still feasible (§9.3).  Extremely complex applications may 
not yet be feasible on today’s Ethereum network using the techniques we describe at present, but may 
become increasingly feasible over time given further development of more efficient programmable 
blockchain platforms and further refinement of our techniques. 

Overall, our conclusion in this report is that secure, completely inscrutable execution of usefully 
complex application logic on programmable blockchain platforms such as Ethereum is a capability 
that is in fact already straightforward to achieve today, and the techniques available for doing this will 
only become more efficient and more capable in the future.   



 

10 

One important implication of this result is that, if and when these kinds of methods become widely 
utilized, it will then become highly unwise in general to assume that one can necessarily infer anything 
meaningful at all about what a given smart contract is actually doing merely by inspection of its code 
or its execution trace.  Whether this development might eventually impact the design of, or governance 
policies for programmable blockchain platforms themselves remains an interesting open question. 

 
 

 
 
 



 

11 

GLOSSARY OF ACRONYMS AND DEFINITIONS 
Please note that each instance of a glossary term is lightly underlined throughout this document. 

Term Definition 
51% attack In a blockchain-based system, a 51% attack occurs when more than half of the 

voting authority (e.g. hashing power) conspires to roll back transactions. 

abstract (finite) state 
machine 

In the GABLE compiler (in progress), an abstract state machine means a finite 
state machine prior to concretization transformations to prepare it for garbling. 

(access) authorization A key to access a specific capability relating to a given garbled Machine.  Such 
authorizations may be delegated by the Garbler to other protocol participants. 

access information A body of information from the Garbler that is distributed to authorized Provi-
ders and Spectators that enables them to provide inputs to and/or interpret out-
puts from the given Machine.  Essentially, this comprises a set of keys. 

activation key A special key 𝑎𝑎𝑖𝑖 that is needed to unlock the first-layer routing element for a gi-
ven time step and combination of input values to that routing element; see §9. 

activation phase A phase during the execution cycle for the circuit model, after the input-
gathering phase and before the evaluation phase, in which an Unlocker 
provides activation keys or activated/decrypted input keys, which then allow 
evaluation of the garbled universal circuit to proceed. 

Accessor In general, an Accessor is any entity that may possess Reader and/or Writer 
capabilities with respect to a given Machine. 

AES The Advanced Encryption Standard is a widely-used symmetric cryptosystem. 

AND A Boolean logical gate whose output is True if and only if all its inputs are True. 

application cycle A period of Machine execution during which the machine first gathers some 
input values from its external environment, and then updates its internal state in 
a process that may, in general, involve a sequence of multiple computation 
steps.  In most of this document, we assume that there is only one computation 
step per application cycle and prefer to use the phrase time step in such cases.  
However, in parts of §9, we consider models that allow multiple computation 
steps to take place per application cycle; for example, the circuit in Figure 9-8 
carries out one application cycle over a series of several computation steps. 

application time step See application cycle. 

arc A connection between two nodes in a graph.  May be directed or undirected.  
The arcs found in GABLE’s state transition graphs are directed, and are labeled 
with transition conditions, and they represent conditional state transitions. 

arc identifier In GABLE, an arc identifier is a hash code that identifies a particular arc in the 
machine’s state transition graph (for a particular time step).  Knowing an arc’s 
identifier enables one to locate and decrypt its arc data. 

arrow Often used as a graphical representation of an arc in a graph.  Undirected arcs 
may be represented by double-headed arrows. 

ASCII The American Standard Code for Information Interchange is a standard 
encoding for English text characters encoded in 7 or 8 bits. 

asymmetric 
cryptosystem 

See public-key cryptosystem. 

authority A specific set of access authorizations associated with a given Machine. 



 

12 

Term Definition 
big-endian A bit-ordering convention in which the most significant bit in a binary (base-2) 

number is ordered first. 

bit Historically a portmanteau of “binary digit,” this refers to a variable with two pos-
sible values or states, or to a specific value of such a variable. 

bit string/vector A sequence of bit values. 

blockchain A specific type of protocol and data structure that provides a distributed ledger 
capability.  Blockchains organize transactions into a sequence of blocks. 

Bloom filter A Bloom filter [1] is a data structure that supports fast probabilistic testing for 
set membership.  The method supports a nonzero but negligible probability of 
false positive results but verifies non-membership with certainty. 

Boolean (logical) gate A special type of computational gate in which the inputs and outputs are all bits 
(two-state variables) which can be interpreted as truth values.  George Boole 
famously studied examples such as AND, OR, NOT.  See also logic gate. 

Boolean variable A variable that takes on a truth value.  Named after George Boole. 

bot Derived from “robot;” an application that runs autonomously on a network. 

bytecode In general, a bytecode could refer to any encoding of data in terms of 8-bit oc-
tets or bytes; in this document, the word may also sometimes refer more specif-
ically to compiled machine code for the Ethereum virtual machine. 

cardinality The cardinality of a finite set is just the number of elements in the set. 

chain Short for blockchain in this document. 

check all subsets An input method for the state machine model in which any subset of the set of 
provision keys received so far can potentially trigger a state transition. 

(digital) circuit See computational circuit.  The state-updating block of Figure 3-1 can also be 
considered as a monolithic circuit consisting of a single large gate. 

circuit layer See logic layer. 

(computational) 
circuit (model) 

An efficient model of computation that can be described in terms of a directed 
acyclic network (or circuit) connecting primitive units called gates, which can be 
thought of as operations for assigning to specific internal state variables (ISVs) 
values that are functions of other ISVs. 

clock cycle See time step, application cycle. 

collusion (problem) This refers to a situation in which multiple protocol participants combine their 
access information in ways that allow them to infer properties of the Machine 
that they could not otherwise discover.  In general, GABLE’s privacy properties 
are only guaranteed to be maintained assuming that collusion does not occur 
(and that requisite access information is not stolen from participants).     

Combinator Any standardized associative, commutative binary operator for combining bit 
strings that exhibits a low probability of generating collisions on random data.  
Some choices include binary addition, bitwise XOR, and sorted concatenation. 

commitment A cryptographic commitment to some data refers to some encoded information 
that commits to the identity of that data, where the data itself may not yet be re-
vealed.  Examples can include a cryptographic hash of, or digital signature for 
the data.  To unlock a commitment means to reveal the original matching data.   

Company, the Whatever entity creates/deploys a given GABLE application. 



 

13 

Term Definition 
computational circuit Any particular circuit in the circuit model of computation. 

computational gate See gate below. 

computation step In §9 of this document, this phrase refers to the execution of a single layer of 
application logic gates within a multi-layer computational circuit whose 
evaluation comprises the state-updating phase of an application cycle. 

concrete (finite) state 
machine 

In the GABLE compiler, a concrete state machine is a version of the applica-
tion’s finite state machine that has had concretization transformations applied. 

concretization A process of transforming a finite state machine to prepare it for garbling by un-
rolling the state sequence, splitting reconvergent arcs, and delaying outputs. 

condition See transition condition. 

conditional state 
transition 

This refers to a directed arc in a state transition graph that is labeled with a set 
of transition conditions, which must all be satisfied in order for the transition to 
occur.  See also state transition.  (All state transitions in GABLE are considered 
to be conditional.) 

contract See smart contract. 

cryptographic hash 
(function) 

This is a hash function that satisfies certain standard cryptographically desira-
ble properties, such as preimage resistance and collision resistance; and its I/O 
relation (although deterministic) should be effectively random. 

current (machine) 
state 

The state 𝑠𝑠(𝑡𝑡) of the state machine during the current time step 𝑡𝑡, before the 
state-updating phase has completed. 

cyber-physical system A cyber-physical system (CPS) [2] denotes a real-world system, typically net-
worked, that is subject to some form of external (e.g., network-based) control. 

cycle  In a directed graph, a cycle would be a sequence of directed arcs that are con-
nected head-to-tail to form a closed loop in the graph.  In this document, we 
sometimes also use the word cycle as a synonym for time step.  Finally, in §9 
we occasionally use cycle to refer specifically to an application cycle, as distinct 
from a computation step. 

DAG This stands for directed acyclic graph.  This refers to a graph in which nodes 
are connected by directed arcs, but where there are no cycles. 

dApp Decentralized application.  A user-facing (e.g., web-based) application in which 
the back-end support runs on a blockchain or other distributed system. 

data entry Refers to a particular field within a particular instance of a given data structure. 

data source See Source. 

destination state For an arc in the state transition diagram for a given state machine, the destina-
tion state is the state at the head of the arrow. 

deterministic A given Machine is called deterministic if and only if, at any time step, and in 
any machine state, and for any set of input values that may be received in that 
cycle, there is at most one possible immediate successor state.  If a given Ma-
chine is not deterministic, we call it nondeterministic or stochastic. 

deterministic finite 
automaton (DFA) 

Another term for a (deterministic) finite state machine. 

DFA See deterministic finite automaton. 



 

14 

Term Definition 
digital signature Digital data that authenticates the identity of the sender of a given message.  A 

digital signature can be generated using a public-key cryptosystem if the sender 
encrypts the message with his or her private key. 

directed arc/edge An arc in a graph represented by a (single-headed) arrow.  We say that the arc 
is directed from the node at the tail of the arrow to the node at its head. 

directed graph This is a graph in which all arcs are directed arcs. 

distributed consensus This phrase refers generally to methods by which the various entities making up 
a distributed system may reliably reach a consensus as to the answer to some 
question.  Examples of distributed consensus mechanisms include voting sys-
tems as well as blockchain-based distributed ledger technologies. 

distributed ledger This phrase refers to a capability provided by a distributed system to maintain a 
(nominally consistent and reliable) ledger, or in other words an accounting sys-
tem for some type of data. 

DNS Domain Name System, the Internet’s hierarchical naming system. 

DOE Abbreviation for the (United States) Department of Energy. 

DOS (attack) A Denial-of-Service attack refers to a scenario in which an adversary attempts 
to reduce the availability of a networked computing resource to its legitimate 
users, typically by overwhelming the resource with illegitimate requests (spam). 

edge See arc. 

end symbol See Finish symbol. 

entry identifier A key, derived from the arc identifier, for decrypting a specific data entry or field 
of a given instance of an encrypted arc data structure. 

ETH Abbreviation for 1 Ether. 

Ether The basic monetary unit in Ethereum, it is abbreviated ETH.  It is occasionally 
also called 1 buterin to honor Vitalik Buterin, Ethereum’s creator. 

Ethereum A popular programmable blockchain platform; see www.ethereum.org.  

Ethereum Virtual 
Machine 

The Ethereum Virtual Machine (EVM) defines the abstract computing platform 
on which smart contracts run in the Ethereum programmable blockchain. 

evaluation phase A phase of the execution cycle in the circuit model, during which one or more 
computation steps are carried out to evaluate corresponding layers of the 
application circuit.  At the end of the evaluation phase, the machine’s internal 
state variables are updated with the outputs from the last circuit layer.  See also 
state-updating phase. 

exclusive OR See XOR. 

execution cycle See application cycle. 

Executor A generic interpreter “Exec” for garbled machines with a specific I/O model. 

executable machine A self-interpreting smart contract Exec[𝐺𝐺] in which a generic Executor is applied 
to the garbled machine data 𝐺𝐺. 

fairness problem See lookahead problem, and also the discussion in §5.4.1.  More specifically, 
the fairness problem refers to situations in which a player may gain a tactical 
advantage by looking ahead at immediate outputs. 

False Together with True, this is one of the two Boolean truth values. 

http://www.ethereum.org/


 

15 

Term Definition 
FHE Fully Homomorphic Encryption; a strong form of homomorphic encryption (HE). 

field A location within a data structure, or a column in a table.  See also input field. 

final state /  
halting state 

A state in a state machine that has no successor states. 

finite state machine A state machine that has a finite (as opposed to infinite) number of states.  Also 
known in some circles as a deterministic finite automaton (DFA). 

Finisher A participant whose role is to send a Finish symbol to the Machine to reveal the 
Machine’s final output after all other computation is complete. 

Finish symbol/token A special input symbol (which we denote with Unicode “⊝”, or ASCII “F,” or 
possibly the nonprintable ASCII character DC4/control-T) which means roughly, 
“produce final output and halt,” which may be used to trigger the completion of 
Machine execution in some application scenarios. 

FSM See finite state machine, above. 

functional encryption A paradigm for secure computing; see §10.4. 

(computational) 
functionality 

An abstract description 𝐹𝐹 of an application’s functional behavior, in a form that 
can be translated into a state machine or computational circuit. 

functional privacy This refers to the property that (under requisite assumptions) all possible as-
pects of a given computational process are obscured from (inscrutable to) 
outside parties.  This is a key security goal achieved by the design of GABLE. 

GABLE Garbled Autonomous Bots Leveraging Ethereum – The name of the system 
concept described in this document. 

garble For our purposes, to garble an element of a computational process (all or part 
of the program code or data) means to encrypt (scramble or encode) it in such 
a way that it is impossible to infer its meaning, for all entities not possessing the 
required decryption key(s). 

garbled (lookup) table A garbled data structure that supports looking up one or more result fields, 
which are indexed by combining values of one or more input fields, but where 
the meaning of the input values, result fields, and the function computed by the 
lookup table are completely obscured by the garbling process.  The state-ma-
chine version of GABLE (§§5–6) uses garbled lookup tables to encode state 
transition functions.  A future universal-circuits version of GABLE (§9) will use 
garbled lookup tables to encode routing elements and application gates. 

garbled (state) 
machine 

A computational process (maybe using the state machine model), encoded in a 
garbled but still-executable form.  Also referred to abstractly with the symbol 𝐺𝐺. 

garbled (universal) 
circuit (GUC) 

A computational process using the circuit model, represented in a garbled but 
still-executable form 𝐺𝐺.  When we emphasize that a garbled circuit is universal, 
this means that its function cannot be inferred by inspecting its structure. 

Occasionally, we also use the phrase “garbled circuit” to refer to the garbled 
state-updating block in the state machine model, which can be considered to be 
a sort of monolithic circuit. 

Garbler The entity that produces the garbled representation 𝐺𝐺 of a given application-
specific computational functionality 𝐹𝐹.  

gas A measure of computational cost used on the Ethereum platform. 



 

16 

Term Definition 
(computational) gate A function that computes the value of an output variable given the values of a 

small fixed number of input variables, or, an instance of the application of some 
such function to compute a new value of a state variable in terms of old values 
of other state variables. 

gather all inputs A simple input method under the multiple source input model in which (for state 
machines) garbled input provision keys are accepted from authorized 
participants until an arc is matched.  Not resilient to malicious participants. 

gather 𝑁𝑁 out of 𝑀𝑀 
inputs 

An input method under the multiple source input model in which only 𝑁𝑁 out of 𝑀𝑀 
input variables need to be assigned values before the state can update. 

GCN See generalized connection network below. 

generalized 
connection network 

Described in Thompson 1977 [3], this is a configurable interconnect network 
that can be configured to assign each of 𝑁𝑁 outputs from any of 𝑁𝑁 inputs. 

go symbol/token See Proceed symbol. 

graph An abstract model of a system of nodes connected by arcs; graphs may be 
used to represent a very wide variety of different structures, including abstract 
relations, networks, polyhedra, and state machines. 

GUC See garbled universal circuit. 

Gwei 1 Gwei, also known as 1 shannon, is equal to 1 billion (109) wei or 1 nanoether. 

halting state See final state / halting state. 

hash (function/value) A hash function takes an object as input and produces a derived pseudo-ran-
dom number within some range (the hash or hash value) as output.  See also 
cryptographic hash. 

hash table A hash table is a data structure that supports fast lookup of elements by utiliz-
ing a hash (not necessarily cryptographically secure) of the item to suggest a 
storage location for the item.  In Solidity, mapping types implement hash tables. 

HE Abbreviation for homomorphic encryption.  

homomorphic  
encryption 

A paradigm for secure computing; see §10.2. 

indistinguishability  
obfuscation 

Abbreviated IO; this is a paradigm for secure computing.  See §10.3. 

initial state This refers to the state that a given state machine occupies initially, before it 
has performed any computation steps.  In some variations of the GABLE proto-
col, a separate protocol participant of a special type called a Starter may supply 
a (garbled) initial state key 𝐾𝐾(𝑠𝑠init) to start the machine’s execution in a particu-
lar state after its smart contract has been deployed to the blockchain. 

IO See indistinguishability obfuscation. 

I/O model A particular combination of an input model and an output model.  

information source See Source. 

Initializer See Starter. 

input cycle See application cycle. 

input field In a lookup table, for our purposes, an input field refers to a particular column of 
the table such that, together with any other input fields, the input values in those 



 

17 

Term Definition 
fields define a key that is used to select a matching subset of table rows and 
identify the selected result value(s). 

input-gathering phase This refers to the first portion of each application cycle, during which the 
Executor gathers input values from providers until the machine state can be 
updated.  How this phase works in detail is specified by the input model. 

input (value) key This refers to a random 𝑛𝑛-bit key designated 𝐾𝐾(𝑣𝑣𝑖𝑖
𝑗𝑗, 𝑡𝑡) generated by the Garbler, 

which authorizes an entity to supply the value 𝑣𝑣𝑖𝑖
𝑗𝑗 to input line 𝑉𝑉𝑖𝑖 on time step 𝑡𝑡. 

(external) input line / 
input variable 

Usually these phrases refer to a particular designated input channel 𝑉𝑉𝑖𝑖 coming 
into the Machine from its external environment.  Often these two terms are used 
interchangeably in this document, but we may sometimes prefer to say that a 
given input variable 𝑉𝑉𝑖𝑖 is an input channel whose existence persists over time, 
while its value 𝑣𝑣𝑖𝑖(𝑡𝑡) is a function of time, and varies across time steps; while (in 
a circuit picture) we may prefer to say that there is a separate input line 𝑉𝑉𝑡𝑡𝑖𝑖 =
𝑉𝑉𝑖𝑖(𝑡𝑡) that feeds into each layer of the Machine’s state-updating circuitry, corres-
ponding to the circuit layer for computing each time step 𝑡𝑡. 

However, occasionally in this document, these phrases are instead used 
more generically to refer to any conceptual channel coming into a given circuit, 
gate, or garbled lookup table, not necessarily an external one.  So, for example, 
the word “input” in such contexts could refer to a line carrying internal state 
information into the element, and not necessarily to externally supplied input. 

input (gathering) 
method 

A protocol that specifies the rules determining (1) the process by which input 
providers provide input values to a machine, and (2) how those input values are 
used to determine how the machine’s state will be updated.  The phrase input 
method typically refers to a more concrete/specific example of an input model. 

input model See also input method.  An input model is the same general idea, but at a more 
abstract level.  Examples of input models include single source and multiple 
source. 

input provider/source See Provider. 

input provision key A state-dependent key that is used to supply a given input value to the Machine 
on a given time step, when the Machine is in a particular state.  Requiring a 
state-dependent key prevents certain replay attacks (that could otherwise 
compromise privacy) in which input keys already seen previously are applied to 
an alternate sequence of states.  See the Reconvergent Paths Problem 
discussed in §5.4.3 for more information. 

input symbol/token A generic symbolic meaning associated with a particular input value.  For 
example, an input variable 𝐴𝐴 could take on the input value 1𝐴𝐴 representing the 
symbolic token ‘1.’ 

input value A specific possible value (designated 𝑣𝑣𝑖𝑖
𝑗𝑗) that may be associated to a specific 

input variable 𝑉𝑉𝑖𝑖.  May represent a (more abstract) input symbol. 

input variable See the entry for input line / input variable, above.   

interconnect fabric A configurable network that can be used to route data in a circuit.  See also 
routing network. 

internal state In the context of finite state machines, this refers to the machine state. 

internal (state) line/ 
variable 

In the circuit model of computation, instead of having a single monolithic 
machine state, we have multiple independent internal state variable or ISVs 
(often binary), corresponding to wires crossing a bisection of the circuit. 



 

18 

Term Definition 
ISV / i.s.v. See internal state variable above. 

JSON JavaScript Object Notation is a simple format for representing structured data. 

Keccak A family of cryptographic hash functions that includes SHA-3.  Note that the 
specific function in the Keccak family that is supported by Ethereum, called 
keccak, is not in fact identical to the final SHA-3 standard. 

(cryptographic) key In this document, the word “key” is used generally to refer to any information 
that is needed to decrypt or unlock some other information or process.  Usually 
for us, keys will be random bit vectors of some prespecified length.  Examples 
of specific types of keys in GABLE that we discuss in this document include act-
ivation keys, arc identifiers, entry identifiers, input provision keys, input value 
keys, output keys, participant keys, state keys, and time step keys.  See also 
the individual glossary entries for these phrases. 

layer See logic layer below. 

LDRD Laboratory-Directed Research and Development – The internally-funded re-
search programs at the DOE National Laboratories. 

line A conceptual wire or communication channel in a circuit picture of a Machine.  
Lines in GABLE include input lines coming into a given time step, state lines or 
internal state variable lines running in between time steps, and various other in-
ternal bit lines in the universal circuit implementations discussed in §9. 

logic gate A gate that operates on binary (two-state) inputs and produces a binary output.  
See also Boolean gate. 

logic layer/level Any computational circuit can be organized into layers (or levels), where all of 
the gates in each layer can operate simultaneously with each other, and they all 
feed their outputs to the inputs of gates in the next layer and/or subsequent lay-
ers.  Layers can be evaluated in sequential order. 

lookahead (problem) By lookahead, we mean a situation where an input provider privately considers 
the effect, on resulting Machine execution, of providing one or more alternate 
input values to the current (or a past) state of the Machine, but without actually 
providing it.  In some circumstances, this could allow the provider to infer some 
information about the Machine’s function or output that we might not want it to 
obtain, and to modify its own behavior accordingly.  We call this the lookahead 
problem, and identifying methods to prevent this problem from arising was one 
of the challenges that was overcome in the design of the GABLE protocol.  See 
also the related reconvergent arcs and reconvergent paths problems, which can 
be considered as special cases of lookahead. 

lookup table For our purposes, a lookup table refers generally to a data structure that can be 
visualized as a two-dimensional array, whose columns can be divided into input 
fields and result fields.  One operation supported by a lookup table is to query it 
by specifying values for all of the input fields and retrieve the corresponding val-
ue(s) for the result fields.  GABLE’s technology relies heavily on garbled ver-
sions of lookup tables; see the garbled lookup table entry. 

Machine Used here occasionally as shorthand for garbled machine.  The word “machine” 
(not capitalized) may also refer to an ordinary state machine, before garbling. 

machine state A state of a state machine. 

magic cookie An easily recognizable constant bit string that renders a data object identifiable. 



 

19 

Term Definition 
Mealy machine In a Mealy-type finite state machine, the output from each time step depends on 

the arc or transition that was taken.  In other words, it depends on both the old 
state, and the input that was provided (since these determine the transition).  
Contrast Moore machine.  There are a number of ways that Mealy machine 
type behavior could be facilitated in GABLE, but this has not been our focus. 

Millionaires’ Problem A classic problem of MPC in which two parties A and B wish to jointly determine 
which of them is wealthier without disclosing any other information. 

Moore machine In a Moore-type finite state machine, the output from each time step depends 
only on the new machine state.  Contrast Mealy machine.  Our existing GABLE 
demos have generally been Moore machines, but not out of necessity. 

move If one thinks of a GABLE computation as a game, then a move by a player in 
the game (input provider) refers to the player’s action in supplying values for 
one or more input variables during a given application cycle. 

MPC (Secure) Multi-Party Computation; see SMC. 

multiple-source input This refers to input models in which, on a given cycle, multiple inputs must be 
received from providers before the machine state is updated.  Several subtypes 
of multiple-source input methods are described in §5.3. 

NAND A Boolean logical gate whose output is False if all its inputs are True. 

NNSA National Nuclear Security Administration, a sub-agency within DOE. 

node In an abstract graph, nodes are connected by arcs.  In this document, the word 
“node” may also sometimes refer to a host, meaning a specific independently 
operating computer on a computer network. 

NOR A Boolean logical gate whose output is False if any of its inputs is True. 

NOT A Boolean logical gate whose output is True if its (sole) input is False. 

nondeterministic For our purposes in this report, a given machine is called nondeterministic if 
and only if it is not deterministic, that is, if there are possible situations in which 
it could immediately transition to any of multiple different next states given its 
current state and the inputs for the current cycle.  This report does not specify a 
particular scheme for operation of nondeterministic machines. 

Observer See Spectator. 

one-time pad A cryptographic technique based on bitwise-XOR’ing the message to be 
encrypted with a random key that is the same length as the message and that 
is not reused.  This encoding is theoretically unbreakable when the key is 
completely unknown.  GABLE’s encryption methods can be considered to be 
based on one-time pads using the values of cryptographic hashes as keys. 

OR A Boolean logical gate whose output is True if any of its inputs is True. 

origin state For an arc in the state transition diagram for a given state machine, the origin 
state is the state at the tail of the arrow. 

out-conditions When we speak of the out-conditions of a given state, we are referring to the 
set of condition sets associated with that state’s outgoing arcs. 

output key A key that is required for decrypting (extracting meaningful information from) 
one or more possible outputs from a given Machine. 



 

20 

Term Definition 
output message An encrypted message string embedded in the contract that may be decrypted 

by spectators holding a certain output key when the machine decodes a certain 
transition (for Mealy machines) or a certain state (for Moore machines). 

output model A protocol specifying the rules determining the process by which authorized 
spectators may view specified outputs from machine states and/or transitions. 

output variable Although not utilized in the present implementations of GABLE, this phrase 
could be used to refer to a designated output channel from a given machine.  
This phrase may also be used to refer to the output fields in a lookup table. 

output viewer See Observer. 

P2P Abbreviation for Peer-to-Peer.  Refers to a distributed network with no central 
server.  Blockchain-based systems typically run on top of P2P networks. 

participant Any entity participating in a GABLE protocol.  Specific participant roles that we 
mention in this document include the Garbler, Starter, Provider, Stepper, Un-
locker, Spectator, and Finisher roles. 

participant key In an optimized key-distribution scheme, a single randomly generated partici-
pant key 𝐾𝐾𝑖𝑖 is securely distributed to the 𝑖𝑖th protocol participant; this then effec-
tively becomes the seed for deterministically (but pseudo-randomly) deriving all 
the various access keys delegated to that participant. 

PKI Public Key Infrastructure, a system for managing keys for a public-key (i.e., 
asymmetric) cryptosystem. 

player If one thinks of a GABLE computation as a game, then the input providers (with 
or without Spectator abilities) could be thought of as players who are making 
moves in the game.  (Other types of protocol participants may or may not also 
be thought of as players, depending on what story you want to tell.) 

point-and-permute An optimization of garbled lookup tables, introduced in [4], in which randomly 
assigned but unique point bits associated with each possible value of a given 
input variable are concatenated together over the variables and used to form a 
table row index.  A disadvantage of using this method in GABLE is that it re-
veals an upper bound on the number of possible values of each variable. 

private key In a public-key cryptosystem, the private key is a key that is held privately by its 
owner, which can be used to decrypt messages encrypted using the 
corresponding public key, or generate digital signatures that can be verified 
using the public key.  Also in this document we use the phrase “private key” 
more generally to refer to any privately-held encryption key (including for 
symmetric cryptosystems). 

Proceed symbol/token A special input symbol or token (which we can denote with Unicode “⊚”, or 
possibly the nonprintable ASCII character DC1/control-Q) meaning “proceed 
forwards to the next state,” which is necessary to advance Machine execution 
forwards in some input models.  In some variants of GABLE, there may be sev-
eral different proceed symbols ⊚𝑣𝑣 depending on a previous input 𝑣𝑣. 

Provider Short for “input provider;” an entity providing (garbled) input data to a Machine. 

provision key See input provision key. 

public key In a public-key cryptosystem, the public key is a key that is openly released, 
which can be used to encrypt messages to (or verify signatures from) the owner 
of the corresponding private key. 



 

21 

Term Definition 
public-key 
cryptosystem 

An asymmetric cryptographic framework in which there are two different, com-
plementary keys, each of which can be used to decrypt messages that the oth-
er one encrypts.  One of the two keys can be released publicly. 

Python A popular programming language which was used to implement our prototype 
Garbler. 

Reader Synonym for Spectator. 

reader key A key for read access to a Machine, associated to a specific reading authority.  
See also output key. 

reader/reading 
authority 

Associated with a body of access information that enables the holder of that in-
formation to spectate on specific outputs from the Machine at specific times. 

reconvergent arcs 
(problem) 

This refers to a situation in which there are two or more arcs from a given origin 
state 𝑂𝑂 to a given destination state 𝐷𝐷 which can be activated by the actions of a 
given input provider which is the last one to move on a given time step.  This 
would weaken the privacy properties of the garbled state machine, so we avoid 
it using a process of reconvergent arc elimination, discussed in §5.4.2. 

reconvergent paths 
(problem) 

This refers to a scenario in which there are two or more paths in the state graph 
from a given origin state 𝑂𝑂 to some state (multiple cycles later) that are distin-
guished only by the input value provided by a given input provider in state 𝑂𝑂.  
The possibility of this scenario would weaken the privacy properties of the gar-
bled state machine, if not for our use of input provision keys. 

replay attack In computer security, a replay attack [5] refers generally to a class of exploits in 
which some previously seen data is maliciously re-injected into the system by 
an adversary, with the effect of compromising the security goals of the system.  
In this document, we extend the scope of this term to include scenarios where 
the adversary only mentally replays previously seen data (in a sort of imagined 
alternate timeline) in a way that would allow them to infer information about the 
Machine that would violate our privacy goals.  GABLE is designed to resist this 
class of exploits (assuming no collusion between participants). 

result field An output field of a lookup table. 

result state A final state whose output is readable by some parties (other than the Garbler). 

Python A popular programming language, used to code our example Garbler (App. B). 

round-robin input 
method/model 

A variant of the single-shot update method in which input providers take turns 
providing input values on subsequent application cycles in a predefined order. 

routing element/unit A unit cell making up an interconnect fabric.  Generically, its function is to as-
sign each of its outputs from a specific one of its inputs.  An illustration of a two-
input, two-output routing unit is shown in Figure 9-2 on p. 72. 

routing network See interconnect fabric.  Note that a GCN is one type of routing network. 

SAND Report A technical report produced at Sandia National Laboratories, such as this one. 

Sandia (National 
Laboratories) 

Sandia National Laboratories (SNL) is the flagship US DOE national laboratory; 
its contract is issued/overseen by NNSA. 

secure computing / 
secure computation 

For our purposes in this document, this phrase refers generally to any ad-
vanced computing method that provides a strong guarantee of properties such 
as the privacy, integrity, reliability, availability, and/or auditability of the compu-
tational process and/or results. 



 

22 

Term Definition 
selector gate A simple type of computational gate that simply assigns to its output from a pre-

determined one of its inputs. 

SHA-2, SHA-3 Families of cryptographic hash functions defined by two (very different) 
releases of the Secure Hash Algorithm standard endorsed by the U.S. 
government.  See also Keccak. 

SHA-256 A hash function that is a 256-bit instance of either SHA-2 or SHA-3. 

shannon Claude Shannon invented both Boolean digital circuits and information theory, 
and his name is sometimes used for the Gwei or nanoether in his honor. 

signature See digital signature. 

single-shot update This refers to an input method that implements the single-source input model. 

single-source input This refers to an input model in which, on any given input cycle, only a single 
input value from a single input provider is received before the machine state is 
updated. 

smart contract A program for executing transactions that enforces its own contractual terms. 

SMC Secure Multiparty Computation, a paradigm for secure computing.  See §10.1. 

Solidity A programming language for writing smart contracts for the Ethereum platform. 

Source In this document, short for “information source” or “input source.”  See Provider. 

Spectator An entity that can view and interpret output from a (garbled) Machine. 

spectator key See output key. 

Starter This is a special type of protocol participant that could exist in some variants of 
GABLE.  A Starter holds a special type of access authority that enables it to set 
the initial state of a deployed Machine that has not yet been initialized.  (This 
capability is not yet implemented in our present prototypes and demos.) 

Stepper A special type of protocol participant that could exist in some versions of GA-
BLE.  The role of a Stepper is to send special Proceed symbols that cause the 
Machine to advance to the next state after ordinary inputs have been received.  
This can provide a way to avoid issues with lookahead or reconvergent arcs. 

state A particular configuration of a state machine, or a value of a state variable. 

state (transition) 
diagram/graph 

A representation of the functionality of a finite state machine using a graph.  
See state transition diagram/graph below. 

state key A randomly generated key for designating that a given state line within the 
Machine (for a given time step) is assigned to a given state. 

state line In the state-machine model, this refers to a conceptual wire 𝑆𝑆𝑡𝑡 that runs be-
tween the state-updating circuits for time step #𝑡𝑡 and time step #(𝑡𝑡 + 1) respec-
tively, except that, conceptually, 𝑆𝑆−1 feeds the initial state into the Machine, and 
𝑆𝑆ℓ−1 feeds the final state after time step #(ℓ − 1) out of the Machine.  In the cir-
cuit model (§9), wires associated with individual internal state variables (as well 
as internal wires within the routing network) can also be considered to comprise 
types of state lines. 

(explicit / monolithic) 
state machine (model) 

A simple type of computational model, specifying an abstract machine that can 
change its state according to specified transitions activated by the input data.  
All state machines dealt with in this project qualify as finite state machines. 



 

23 

Term Definition 
State machine behavior can be implemented using more efficient computa-

tional circuits rather than by state transition graphs; we would not refer to such 
an implementation as an “explicit” or “monolithic” state machine, however. 

state transition 
diagram/graph 

A visual depiction of an FSM using a directed graph representation.  In a state 
transition diagram, states are represented by nodes and possible transitions are 
represented by directed arcs labeled with transition conditions. 

state-updating phase The last part of each application cycle, during which the new machine state is 
computed.  This can be done all at once, as in the monolithic state machine 
model, or over several computation steps in the circuit model (see evaluation 
phase). 

state variable See internal state variable. 

step See time step. 

Stepper A special type of protocol participant that, in some input models, is required to 
send a special proceed token “⊚” to the Machine to tell it to go ahead and pro-
ceed forwards to the next state, after any other inputs have been received. 

stochastic A given state machine is called stochastic if its behavior is (pseudo-) random. 
Such a machine is not deterministic.  Stochastic machines are not currently 
supported in GABLE but could easily be added.  See also nondeterministic. 

successor state In a finite state machine, state 𝑠𝑠𝑗𝑗 is a successor of state 𝑠𝑠𝑖𝑖 if and only if the ma-
chine’s state transition graph includes an arc directed from 𝑠𝑠𝑖𝑖 to 𝑠𝑠𝑗𝑗. 

symbol / token See input symbol. 

symmetric 
cryptosystem 

A cryptographic system in which the same key is used both to encrypt and 
decrypt messages.  Contrast asymmetric cryptosystem. 

table See lookup table. 

Thompson (intercon-
nect) network 

A particular construction for GCNs described in Thompson, 1977 [3]. 

time step Refers to a time interval 𝑡𝑡 during which a Machine gathers external inputs and 
then updates its internal state.  See also application cycle, computation step. 

time step (unlock) key A random key 𝑘𝑘𝑡𝑡 that is needed to unlock the evaluation of the application cir-
cuit for time step #𝑡𝑡 in a (future) universal-circuit-based version of GABLE. 

token See symbol. 

transition A directed arc (arrow, edge) between states in the state graph of a finite state 
machine, labeled with a set 𝑪𝑪 of transition conditions.  The transition conditions 
must all be met in order for the machine to follow a given arc to its destination. 

transition condition Specifies a condition that must be satisfied in order for a given transition be-
tween states in a state graph to occur.  The nature of such a condition in GA-
BLE is to require that some specific input value 𝑣𝑣𝑖𝑖

𝑗𝑗 must be assigned to a speci-
fic input variable 𝑉𝑉𝑖𝑖. 

True Together with False, this is one of the two Boolean truth values. 

truth table A lookup table that tabulates the value of the output variable of a given logic 
gate for each possible combination of values for its input variables. 

truth value A variable that represents a truth value, a.k.a. a Boolean variable, can take on 
the value True or False, often equated with 1 or 0, respectively. 



 

24 

Term Definition 
turn If one thinks of a GABLE computation as a game, then a turn in the game 

would refer to a given application cycle; if there is only a single player “A” that 
may move on a given turn, then we can refer to that turn as “player A’s turn.” 

UC or u.c. See universal circuit, below. 

Unassigned/ 
Undefined symbol 

For a given input line 𝑉𝑉𝑖𝑖, this is a special symbol ⊥𝑖𝑖 meaning roughly, “no values 
were assigned to input variable 𝑉𝑉𝑖𝑖 on this cycle.”  If the encoded representation 
of ⊥𝑖𝑖 is hard-coded into the contract, care should be taken in the protocol to 
ensure that this does not allow lookahead to occur. 

undirected arc An arc between two nodes in a graph that has no associated directionality.  
Could be modeled with a pair of directed arcs going in opposite directions. 

universal circuit A programmable computational circuit which can be configured to emulate any 
computational circuit up to a certain size, given appropriate configuration data. 

Unlocker In the efficient universal-circuit-based garbled computation protocol described 
in §9, an Unlocker is a special participant that unlocks (activates, decrypts) in-
puts to the first layer of the u.c. for computing a given time step. 

value A value is any conceptual entity that can be assigned to a variable. 

variable An abstract quantity that varies, that is, takes on different values in different cir-
cumstances.  Important types of variables that are dealt with explicitly in GA-
BLE include input variables and state variables. 

vendor client In the supply-chain provenance tracking demo (§7.1), a vendor client is an in-
stance of a script that performs actions to emulate the behavior of an input pro-
vider called a vendor, which interacts with the garbled Machine to provide for 
on-blockchain provenance tracking with strict privacy controls.  

verifiable computation A paradigm for secure computing; see §10.4. 

vertex See node. 

VPN Virtual Private Network, a secure virtual network between hosts, implemented 
as a cryptographic overlay on top of an underlying network that is not private. 

wei 1 wei is equal to 10−18 ether or 1 attoether.  It is the smallest unit of Ether that 
can be transferred on the Ethereum blockchain.  It is named after Wei Dai, who 
described an early concept for digital currency which he called “b-money.” 

width The width of a circuit or memory refers to the number of (usually binary-valued) 
lines bisecting the circuit, or to the number of internal state variables (usually 
bits) in the memory. 

wire In a computational circuit, a wire is a connection between gates that conceptu-
ally carries a data value.  In abstract terms, it can be represented by an internal 
state variable.  See also line. 

Writer Synonym for Provider. 

writing authority Associated with a body of access information that enables the holder of that in-
formation to supply particular values to specific input variables on specific time 
steps. 

XOR A Boolean logical gate whose output is True if an odd number of its inputs are 
True. 

 



 

25 

1. DOCUMENT DESCRIPTION 
This document is intended for public release.  It comprises the primary final report from the 3-year 
“Blockchain Derived Secure Computing” LDRD project at Sandia National Laboratories, which ran 
from 2017 to 2020.  The primary purpose of this report is to outline the technical design specifications 
for a system named GABLE (an acronym for Garbled Autonomous Bots Leveraging Ethereum), which was 
developed at Sandia (in collaboration with the Georgia Institute of Technology) in fulfillment of pro-
ject goals, in which garbled or encoded representations of simple state-machine circuits can be genera-
ted and then executed, with strong privacy properties, on robust smart-contract execution platforms, 
such as (as an initial target) the public Ethereum network. 

1.1. Organization of this Document 
The rest of this document is organized as follows: 

Section 2 motivates the work by summarizing a few general categories of use-case scenarios that 
could benefit from the availability of a system such as GABLE, and Section 3 outlines some general 
requirements on the capabilities of the GABLE system that arise out of consideration of those scen-
arios.  Section 4 describes some more specific example applications.  Section 5 describes, at a con-
ceptual level, some technical aspects of how present versions of GABLE function, and/or (in cases 
where not-yet-implemented features are described) how future versions are envisioned to function.  
Section 6 gives more detailed, concrete specifications of particular representations/encodings that are 
utilized by actual deployed GABLE instances, and discusses prototype implementation and testing.  
Section 7 describes several complete multi-node demonstration applications that have been devel-
oped and successfully tested at Sandia (in sandboxed environments) to exercise the new GABLE 
capability.  Section 8 describes a concept for a state machine compiler (not yet implemented).  Section 
9 describes one way that the computation model used in GABLE can be made much more efficient 
without sacrificing privacy, and does some cost analysis.  Section 10 surveys some of the related work 
in the literature, and compares and contrasts our paradigm for secure computation with several more 
standard ones.  Section 11 outlines some possible directions for future work and concludes.   

There are also several appendices:  Appendix A tabulates the mathematical notation used in this 
document.  Appendices B & C provide source code (in Python and Solidity) for a simple prototype 
implementation of the concepts described in this document.  Appendix D describes how to exercise 
the GABLE prototype in a development environment.   

A detailed table of contents may be found on pp. 5–6. 

 
 

 
 

 



 

26 

2. MOTIVATIONS AND BROAD USE-CASE SCENARIOS 
We begin by noting that existing public programmable smart-contract blockchains such as Ethereum 
provide a computing platform that is highly robust and widely accessible.  Similar but smaller private 
blockchains may also provide these characteristics, albeit to a lesser extent.   

Any entity (which we’ll generally call “the Company” to be concise, although it may or may not be 
a business entity in a traditional sense) whose operations may sometimes require the execution of 
business or strategic logic that needs to function (using inputs from various providers or sources) with an 
extremely high degree of assurance of its reliability and availability may therefore wish to consider 
implementing that functionality in the form of a smart contract running on top of a blockchain.   

However, depending on the nature of the Company’s operations, a very high degree of privacy for 
the required computational process (which we’ll generically refer to as “the Machine”) may also be ne-
cessary.  Information that the Company may wish to keep private (not decipherable by unauthorized 
parties) may include the following: 

• The real identities of any information sources that are providing inputs to the computation, 
and in some cases, even the number of distinct input sources that exist. 

• The meanings of the actual input values that are provided to the computation, and in some 
cases, even the number of possible alternative values of each input that is provided to the com-
putation (within very large bounds). 

• The nature of the computation that is being performed on the inputs.  Most generally, we may 
wish for all information about the structure and function of the computation to be obscured. 

• The meanings of any intermediate or final outputs produced by the computation. 

Altogether, we consider obscuring as much of the above information as possible (where this turns 
out to mean all, or almost all of it) to constitute what we mean by attaining functional privacy. 

One of the well-studied related notions from cryptography and computer science that is at play 
here is that of Secure Multiparty Computation (SMC or MPC) (cf. [6], [7], [8]) (see also §10.1), in which 
various entities supply inputs to a computational process, which is carried out via a protocol involving 
those entities, where a function of all those inputs gets computed by the process (and thence becomes 
common knowledge to the participants), but without revealing any other information about the values 
of the inputs publicly, or even to other participants.  Ideally, a protocol for SMC should preserve these 
security guarantees even if no individual entity participating in the protocol is trusted.  That is, each 
individual input provider is at most able to openly reveal the inputs that they themselves provided to 
the computation, but not the inputs provided by other participants.  And, no trusted central compu-
tation server is assumed to be available, either. 

In our scenario, we further specify that only the entity responsible for originally deploying the 
system (i.e., the Company), or its delegates, and not necessarily any of the individual input providers, 
will necessarily be able to inspect the output of the computation.  The Company will also be able to 
inspect the inputs to and all intermediate and final results from the computation.  (A pre-selected subset of 
outputs, may, however, be made available to other authorized parties.)  Further, all participants, other 
than the Company itself, including any authorized input providers and output viewers, need not even 
be aware of what is the nature of the computation that is being performed by the Machine. 

The net effect, therefore, in our scenario, is roughly equivalent (aside from some verifiability pro-
perties which we’ll discuss in Sec. 10.4) to one in which the entire computation was being performed 



 

27 

in private by the Company itself, after receiving encrypted inputs from the input providers—but the 
difference here is that we wish for the computational mechanism itself to operate autonomously, with 
very high reliability and availability.  Ideally, the Company could simply deploy the computing system 
to a blockchain at any time (e.g., shortly before it is about to be needed), and then disappear from the 
scene indefinitely, leaving the Machine to operate autonomously, and then (optionally) come back to 
retrieve the final result(s) of the computation at a later time.  (Or alternatively, other authorized parties 
may utilize its outputs.) 

Besides SMC, some other notions of secure computing that relate to our security model are those 
of (a) homomorphic encryption [9] (§10.2), which involves computation on encrypted data without decryp-
ting it, (b) indistinguishability obfuscation [10] (§10.3), which involves making it impossible to tell what 
program for computing a given function is being executed, or to predict (without running the pro-
gram) what the program’s output would be for input cases that have not yet been tested, (c) functional 
encryption [11] (§10.4), which allows obtaining the value of a function of some encrypted data, but not 
the data itself, and (d) verifiable computation [12] (§10.5), in which the fact that a given computation was 
performed correctly by another party can be independently verified.  Although these notions are not 
precisely the same ones that we are invoking in our particular scenario, our setup does provide certain 
aspects of these capabilities as well; we’ll review some relevant comparisons in Sec. 10. 

The envisioned need, as outlined above, for an extremely high degree of privacy may, at first, 
appear to be inherently incompatible with the very public nature of the largest existing programmable 
blockchains, such as Ethereum.  However, as we will see, these requirements may nevertheless be met 
using some surprisingly simple techniques, which we will present in section 5 (with further technical 
elaboration in §6 & §9).  But first, in the next section, we’ll describe the requirements in more detail. 

 
 

 



 

28 

3. REQUIREMENTS FOR THE GABLE SYSTEM 
Based on the general motivating scenario from Sec. 2, the following lists the high-level technical re-
quirements that we wish to be met by our design for the GABLE system (see Figure 3-1): 

1. For high robustness and availability, the computing machine should run on top of an existing 
programmable blockchain platform.  For our initial prototype, we chose to target the Ethere-
um platform due to its being the oldest and most well-established of these systems, although 
a number of other programmable blockchains could have been used instead. 

2. Whenever the Company wishes to deploy a particular operational function 𝐹𝐹 (representable 
as a state machine) on the target blockchain platform, it runs a specific (finite state machine 
or circuit-based) representation of 𝐹𝐹 through an internal subsystem called the Garbler, which 
translates 𝐹𝐹 into the form of an encoded (“garbled”) representation 𝐺𝐺 (a.k.a. the “Machine”). 
𝐺𝐺 is then embedded within an executable smart contract Exec[𝐺𝐺] that is digitally signed by 
the Company and published on the blockchain.  In our scheme, the only openly meaningful 
information about 𝐹𝐹 that the garbled representation 𝐺𝐺 of the computation is allowed to openly 
reveal (through its plaintext representation on the blockchain) is: 

a. An upper bound ℓ� ≥ ℓ on the number ℓ of steps (cycles of execution, or layers of gates 
in a circuit) that are supported by 𝐺𝐺.  (Steps are taken when encoded input symbols 
are provided by one or more input providers.)  It is only an upper bound since the 
representation of 𝐺𝐺 could always be padded with extra dummy cycles. 

Figure 3-1.  Overall architecture of the GABLE system. 
The Company wishing to run the application function 𝐹𝐹 deploys the garbled Machine 𝐺𝐺 as an executable smart 
contract on a public blockchain. The Company also distributes corresponding access information (keys) to 
authorized input providers and spectators, which allows them to provide inputs to, and/or interpret outputs 
from, the deployed Machine. 



 

29 

b. For each potential step of the computation, an upper bound 𝑞𝑞� ≥ 𝑞𝑞 on the number 𝑞𝑞 
of alternative conditional state transitions (“arcs”) that are supported by 𝐺𝐺 for that 
step, or, in the circuit model (§9), an upper bound 𝑤𝑤� ≥ 𝑤𝑤 on the circuit width 𝑤𝑤. 

We will see later that, with a little more work, even the values ℓ�, 𝑞𝑞� can be further obfuscated, 
albeit while still revealing an upper bound   ℓ𝑞𝑞� ≥ ℓ𝑞𝑞 on the product ℓ𝑞𝑞.1   

3. In addition to 𝐺𝐺, the Garbler also generates some corresponding access information (e.g. a set of 
private keys), which gets distributed via secure channels, both to selected entities (called “Sour-
ces” or “Providers”) that it wants to enable to serve as information sources, as well as to any 
entities (“Spectators”, “Observers”) that it wishes to enable to inspect and interpret specified 
outputs of the computation.  So far, the conceptual design of GABLE does not yet explicitly 
constrain how the access information is to be distributed to the various Sources and Specta-
tors, but in general, any available secure method could be used. 

4. During each cycle of execution of the garbled machine 𝐺𝐺, there are two general classes of 
options that we primarily consider for how the input model may work: 

a. Single-source input:  Any single Source (which could be any entity on the Internet holding 
the requisite access credentials) submits an encoded input symbol 𝜎𝜎 to the machine by 
posting a corresponding message to the smart contract (while paying any required 
transaction fee); the machine 𝐺𝐺 then (if authorization succeeds) updates its internal 
state accordingly and (optionally) produces an intermediate output, which generally 
would be interpretable only by entities holding the required key(s). 

b. Multiple-source input:  In this type of input model, the machine waits to asynchronously 
receive some number 𝑁𝑁 of inputs satisfying stated criteria—for example, this may 
include 1 message from each of 𝑁𝑁 distinct authorizations, or, more generally, an “𝑁𝑁 
out of 𝑀𝑀” criterion (with 𝑀𝑀 ≥ 𝑁𝑁).  After the required number 𝑁𝑁 of appropriate input 
symbols are obtained, regardless of the order in which they were received, the machine 
then updates its state based on these inputs (and optionally produces an output). 

Other input models are possible, and we will describe a few more of them in section 5.3, but 
many (if not all) cases could ultimately be reduced, if needed, to just these two categories—
and even the multiple-source input case could, if necessary, be implemented via multiple steps 
of a state machine or circuit that takes just a single-source input on each cycle. 

5. While the garbled machine 𝐺𝐺 is running on the blockchain, inspection of its public execution 
trace only necessarily reveals the following information, at any given time: 

a. How many encoded input messages have been provided to the machine from outside 
sources; 

b. Which specific encoded messages triggered the machine to immediately update its state 
after being received. E.g., in the multiple-source input model, the machine might al-
ways be seen to update its state after receiving some number 𝑁𝑁 of properly authorized 
messages providing values for different inputs.  However, the observation that the 
state was updated after 𝑁𝑁 messages were received in general implies only that it was 

                                                 
1 Also, although we do not discuss it further in this document, our scheme could be modified to generate the Machine 

dynamically as the computation runs, in a piecemeal fashion as a sequence of contracts, in which case there would not 
necessarily be any a priori discernible upper bound on its ultimate complexity. 



 

30 

possible for that number of messages to cause the state to be updated on that cycle.  
(Since, depending on the input model, some machines 𝐺𝐺 might be able to update 
themselves after receiving varying numbers of input messages.) 

6. At any time, of course the Company itself may inspect the present state of 𝐺𝐺 (which is publicly 
visible on the blockchain), and use its own private knowledge (obtained previously from its 
Garbler) to determine (a) the precise (decrypted) input data that was provided to the compu-
tation, the past and present states visited in the computation, (b) whether the computation has 
reached a halting state, and (c) any other intermediate or final outputs.  The Company could 
also provide (in advance, or at will) appropriate keys to obtain some selected part of this in-
formation about the computation to some other selected entity (a “Spectator”), to use for 
some arbitrary intended purpose (e.g., some other cyber-physical system could have been de-
ployed, somewhere out in the world, that uses the output of the computation to automatically 
trigger some real-world action). 

3.1. Assumptions & Limitations 
Here, we briefly summarize some of the key assumptions that we will need to make, in our system 
design, in order to be able to say that we can meet the above requirements, as well as the key limitations 
that will apply to our solution for meeting these requirements. 

Major Assumptions: 

1. Some entity (i.e., the Company) exists that can be trusted to create the garbled machine. 

2. Some method exists to securely distribute access credentials to authorized participants. 

3. The various protocol participants (e.g., input providers, spectators) will not share information 
or otherwise collude with each other in such a way as to compromise the privacy guarantees 
of the system. 

4. The underlying blockchain will remain reliably accessible and will not be compromised (e.g. by 
a 51% attack or a network split) in a way that subverts the reliability guarantees of the system. 

Major Limitations: 

1. Application functionalities must be expressible either as a relatively simple finite state machine, 
or as a computational circuit operating on a moderately small number of bits. 

2. Any given garbled machine instance may only be executed at most once (without potentially 
weakening its privacy properties). 

3. Effectively, all time steps in the machine’s operation must be garbled separately (e.g., all loops 
must be fully unrolled) to avoid weakening the privacy properties. 

4. Our available methods for implementing garbled universal circuits (§9) impose a minimum 
space and time complexity overhead factor that is order log𝑤𝑤, where 𝑤𝑤 is circuit width. 

This concludes our discussion of the overall system-level requirements, including the high-level 
picture of the system architecture and the overall security model, as well as the key assumptions and 
limitations that are inherent to our approach.  In the next section, we survey a variety of example 
applications that the above requirements enable us to support. 

 

 



 

31 

4. EXAMPLE APPLICATIONS 
In this section, we briefly describe some more specific example applications for the GABLE system. 

4.1. Toy Problems 
The following examples are not serious applications, but they illustrate some of the most basic secure 
computing capabilities provided by the GABLE framework. 

4.1.1. Millionaires’ Problem 
The “Millionaires’ Problem” is the original simple “toy” example of an application of secure multiparty 
computation that was given in the seminal paper by Yao [8].  The scenario is as follows:  Two wealthy 
people, who we may refer to as A and B, wish to cooperate to determine whether A is wealthier than 
B, without sharing any information with each other, other than the answer to this question. 

There is a simple 5-state Moore-type finite state machine (Figure 4-1) that provides adequate com-
putational functionality for solving this problem, given prior mutual knowledge between the parties 
of some absolute upper bound 𝐿𝐿 on the number of bits in their possible wealth values.  (For example, 
taking the total wealth on Earth to be roughly 1 quadrillion dollars, we know a priori that 𝐿𝐿 = 50 bits 
ought to be more than adequate to express any given Earthling’s wealth value in dollars.) 

Over each of 𝐿𝐿 time steps, both parties provide (in either order) consecutive bits of their wealth 
values to this machine, least-significant bit first.  This machine keeps track of whether the 𝑡𝑡-bit partial 
numbers seen so far are equal (state sEq), or A’s is larger (state sA), or B’s is larger (state sB).   

sEq (Begin) 

00, 11 
sA 

sB 

10 

01 

syes 

sno 

00, 10, 11 

00, 01, 11 

⊝ @  
𝑡𝑡 = 𝐿𝐿 

 

⊝ @  
𝑡𝑡 = 𝐿𝐿 

⊝ @  
𝑡𝑡 = 𝐿𝐿 

10 01 

Figure 4-1.  State machine for the Millonaires’ Problem.   
Arcs are labeled with respective bit values 𝑎𝑎𝑎𝑎 from the parties AB, provided least-significant bit first over 𝐿𝐿 
time steps.  A third party provides a special final “finish” symbol ⊝ after all 𝐿𝐿 prior steps have completed.  The 
size of this state machine could be further reduced to 4 or (in one scenario) even 2 states, as discussed in the 
text. 



 

32 

Finally, after all 𝐿𝐿 time steps have passed, some outside party (called a Finisher) provides a special 
input token “⊝” (taken to mean “end”) that transitions the machine to a result state, which is either  
syes (meaning yes, A is wealthier than B) or sno (meaning no, A is not wealthier than B).  Both of the 
result states (red) are visible (interpretable) by both A and B, but none of the machine’s prior states 
(green) are visible at all to either A or B.  The GABLE system can easily provide the capability to run 
this machine with these security properties, assuming that there is a trusted Company that can generate 
and deploy the garbled machine. 

Note that the distinct state sEq is, strictly speaking, unnecessary for solving the given problem; it 
could be absorbed into state sB, which would be redefined to mean that B’s partial wealth value is 
greater than or equal to A’s.  With this done, it turns out that the extra states syes, sno could also be 
eliminated, if an outside party instead provides both A and B, after the 𝐿𝐿’th time step, with access 
information that enables them to interpret the meaning of the Machine’s current state (sA or sB).  If 
A and B had this information initially, it would raise a “fairness problem,” discussed in Sec. 5.4.1. 

We implemented a complete demo for the Millionaire’s Problem in GABLE; see §7.2. 

4.1.2. “Dungeon Race” game 
Suppose we are a gaming company that wishes to create competitive games with monetary payouts 
that can be played via smart contracts on the blockchain, so players can be confident that they will get 
paid if they win, without having to trust us or their opponent(s).  Specifically, suppose that we wish to 
create an “Adventure” type game in which the players navigate a virtual dungeon-type maze, and 
whoever finds the hidden treasure first, wins.  The nature of the desired game experience is that each 
player can only (virtually, through text descriptions) perceive their immediate surroundings in the 
maze.  We wish for it to be mathematically impossible for any player (without colluding with other 
players) to analyze the structure of the smart contract to “look ahead” at the results of their possible 
actions to figure out anything at all about the dungeon, besides what they have already seen.  We 
imagine that the company also wants the game to remain playable once started, even if the company 
goes defunct, so the game must operate entirely autonomously.  (Recall how, in Ready Player One [13], 
the brilliant but eccentric James Halliday created a game that would be played after his death to deter-
mine who would inherit his fortune.) 

In our case, the payout to the winner is funded by the participating players themselves.  The overall 
protocol for the Dungeon Race game is as follows:  Some number 𝑚𝑚 (say 𝑚𝑚 = 2) of players who wish 
to compete against each other register their public keys with the company, which then generates a 
random dungeon layout, maps it to a corresponding state machine (or circuit, see §9), and uses a 
GABLE Garbler internally to generate a smart contract implementing an executable garbled machine 
for the game, which is then deployed on a programmable public blockchain, such as Ethereum, say.  
Requisite access information is distributed to the players.  The players then start the game by posting 
a previously agreed stake to the contract.  The rules are that whoever finds the treasure first receives 
the entire payout from all 𝑚𝑚 players, minus a small fee which goes to the company.  The players take 
turns making moves.  There is a “time limit” of some maximum total number ℓ of moves that can be 
made.  If nobody finds the treasure before the time limit expires, then all the stakes revert back to the 
players. 

In an explicit state-machine-based implementation, to keep the size of the state machine manage-
able, we could have a small number 𝐿𝐿 of locations (rooms) in the dungeon that the players can be 
located at.  With 𝑚𝑚 players, there are 𝐿𝐿𝑚𝑚 configurations, so e.g. a 20-room dungeon with 2 players 



 

33 

would need 400 states.  We may also expand on this slightly with a small number of additional bits of 
state, specifying e.g., whether a weak floor has collapsed, a found key has been picked up, a switch that 
opens a secret door has been flipped, etc.  (With 3 extra bits, we’re now at 2400 states.) 

It’s feasible to implement this kind of slightly complicated application using GABLE; although its 
implementation in the explicit state-machine model would be significantly facilitated by the existence 
of a state machine compiler like the one described in §8. 

Alternatively, if a circuit model (§9) rather than a state-machine model is used, then applications 
like this could be made more complex, while reducing their implementation cost. 

4.2. Serious Applications 
The following examples are potentially realistic, more serious applications for the platform that may 
be of interest to enterprise customers (or that may inspire ideas for additional related applications). 

4.2.1. Supply Chain Provenance Tracking 
In this example, the Company wishes to track the progress of an item being produced down a supply 
chain, as different vendors consecutively perform their respective value-add processing steps on the 
item.  We wish for the supply-chain tracking system to be able to continue to function autonomously 
even if the Company goes offline, and its history should be fully auditable.  However, we assume that 
(apart from auditing) there is a confidentiality requirement:  We do not want any outside parties to 
have the ability to interpret the state of the system, and even individual vendors may only be enabled 
to see local supply-chain status information that pertains specifically to them.   

This application functionality can be easily represented in state machine form, as suggested by 
Figure 4-2.  Each vendor could be restricted to only being able to interpret the machine states that 
concern them and supply input symbols representing the actions that are available to them to perform 
and report.  Additional states and transitions may be added to the state machine design as needed to 
expand the flexibility of the model, for example to provide for contingencies, such as the return of 
the item to a prior vendor in the supply chain for repair or additional processing. 

We implemented a complete demonstration application for this simple example; see §7.1. 

4.2.2. Sealed-Bid Auctions 
The Millionaire’s Problem that we considered in §4.1.1, although it was itself frivolous in nature, is in 
fact functionally equivalent to a more practical problem of selecting winning bid(s) in a simple sealed-
bid auction with simultaneous bidding by semi-anonymous parties, and wherein the soundness of the 
procedure for selecting the winning bid(s) can be fully audited after the fact if needed.  The problem 
can be generalized to larger numbers of bidders, although handing this cost-effectively requires using 
the more efficient circuit-based computation model; this application is analyzed in detail in §9.3. 

4.2.3. Transactive Energy 
Transactive energy refers to market-based mechanisms for managing the exchange of energy in a wide-
area electrical grid [14].  Hypothetically, participants in such a market (such as utility companies) may 
wish to engage in automatic electronic negotiation with other participants using bots implementing 
custom negotiation strategies, without revealing their strategies to other participants.  Additionally, it 
may be in the public interest to provide a level playing field for the execution of these negotiation 



 

34 

bots, to prevent larger participants from gaining an unfair advantage through execution of sophistica-
ted, computationally intensive negotiation strategies.  In this scenario, a capability such as GABLE 
could provide a solution.  Each participant deploys their own garbled bot expressing their private 
negotiation strategy; these bots then negotiate with each other on the public blockchain, while hiding 
their negotiation strategies.  Alternatively, a central clearinghouse could accept bots from all partici-
pants and roll them together into a single garbled computation that outputs the results of negotiations.  
In either case, the required protocols remain to be worked out in more detail. 

4.2.4. Data Peering 
This is similar to the previous example, but for the case of peering [15] arrangements between partic-
ipants in a data network, such as autonomous systems (ASs) [16].  In cases where a market is set up 
for automated negotiation between ASs about peering policies, garbled bots may implement negotia-
tion strategies on a level playing field without revealing details about their strategies to other parties, 
as in the transactive energy case. 

 
 

 
 

 

s1w 

s1h 

s2w 

s2h 

s3w 

s3h 

(Begin) 

R1  
T12 R2 T23 R3 

Figure 4-2.  A simple state machine for the supply-chain provenance tracking problem. 
In this case, we have three vendors in the supply chain, labeled 𝑖𝑖 = 1,2,3, and for each there are two states, 
s𝑖𝑖w denoting that the item has been shipped to vendor 𝑖𝑖, who is waiting (“w”) to receive it, and s𝑖𝑖h denoting that 
vendor 𝑖𝑖 is currently holding (“h”) the item.  Vendor 𝑖𝑖 can provide the symbol R𝑖𝑖 to declare that the item has 
been received (“R”), and the symbol T𝑖𝑖

𝑗𝑗 to declare that the item has been shipped and is currently in transit 
(“T”) to vendor 𝑗𝑗.  Additional transitions between states could be added to the machine to account for variances 
in the procedure (such as an item being returned to a prior vendor for repair). 



 

35 

5. TECHNICAL OUTLINE OF THE GABLE SYSTEM DESIGN 
In this section, we outline, at a conceptual level, some key technical aspects of how GABLE works, 
under our present conception for how the system will be designed.  More detailed, concrete encodings 
that we used in our prototype implementation will be described in the next section. 

This section (and the next) focus on our initial version of GABLE, which is based on a simple 
explicit state-machine model of computation.  However, the techniques developed here can also easily 
be extended to support a more efficient circuit model of computation, as described in section 9. 

5.1. State-Machine Formalism 
Our initial approach to GABLE uses the simple finite state machine (FSM) model of computation, in 
the sense of an explicitly represented state transition graph (with nodes representing states, and arcs 
representing transitions).  In this subsection, we briefly present some formal notation for describing 
finite state machines to be garbled. 

The state machine operates in discrete time steps; we index these time steps with non-negative 
integers 𝑡𝑡 ∈ {0, 1, … , ℓ − 1}, where ℓ is the maximum total number of time steps supported by the 
machine.  We can visualize the state machine as comprising a sequence of digital circuits, where each 
circuit executes a given time step, and the output from each circuit (its “resulting state”) feeds into the 
input of the next circuit in the sequence.  Generally, it would also be possible to utilize a different 
circuit on each time step, but for now, we only consider machines in which the circuit, or the state 
update rule, is the same at each time step. 

There is also a set 𝐒𝐒 = {𝑠𝑠1, … , 𝑠𝑠𝑝𝑝} of 𝑝𝑝 possible states that the machine may be in at a given time, 
corresponding to the possible output values that each of these state-update circuits passes to the next 
one in the sequence.  The full set of states may or may not be reachable at each time step. 

Circuit 
for time 
step 0 

Circuit 
for time 
step 1 

Circuit 
for time 
step 2 

… Circuit 
for time 

step ℓ − 1 

𝑆𝑆0 𝑆𝑆1 𝑆𝑆2 𝑆𝑆ℓ−2 𝑆𝑆−1
= 𝑠𝑠init

 
𝑆𝑆ℓ−1 
= 𝑠𝑠fin 

𝑉𝑉1 𝑉𝑉2 

… 

𝑉𝑉𝑚𝑚 𝑉𝑉1 𝑉𝑉2 

… 

𝑉𝑉𝑚𝑚 𝑉𝑉1 𝑉𝑉2 

… 

𝑉𝑉𝑚𝑚 𝑉𝑉1 𝑉𝑉2 

… 

𝑉𝑉𝑚𝑚 

Input variables at successive time steps 𝑡𝑡 

Time step 𝑡𝑡 = 0 Time step 𝑡𝑡 = 1 Time step 𝑡𝑡 = 2 Time step 𝑡𝑡 = ℓ − 1  

Figure 5-1.  Overall picture of a state machine operating for up to 𝓵𝓵 time steps.  
For now, we assume that the state-updating circuitry, including the set of input variables (input lines) that feed 
into it, is the same at each time step 𝑡𝑡 ∈ {0, 1, … , ℓ − 1}.  However, the actual values 𝑣𝑣𝑖𝑖(𝑡𝑡) ∈ 𝐯𝐯𝑖𝑖 provided for 
the input variables may in general differ on different time steps.  In addition to the externally provided input 
lines, there are also state lines 𝑆𝑆𝑡𝑡 (state variables) passing the current state information from each copy of 
the circuit to the next.  The copy of the circuit for time step 𝑡𝑡 takes the value on state line 𝑆𝑆𝑡𝑡−1 as input and 
produces the value on state line 𝑆𝑆𝑡𝑡 as output.  The initial state line 𝑆𝑆−1 could either be a fixed constant 𝑠𝑠init, 
or it may be supplied externally at the time of machine initialization. 



 

36 

For each time step 𝑡𝑡 ∈ {0, 1, … , ℓ − 1}, we can define the output state line 𝑆𝑆𝑡𝑡 as a state variable 
representing the state information that is output from the circuit carrying out step 𝑡𝑡 of the computa-
tion.  For times 𝑡𝑡 < ℓ − 1, this state line feeds into the circuit for time step 𝑡𝑡 + 1; for time 𝑡𝑡 = ℓ − 1, 
this state line 𝑆𝑆ℓ−1 = 𝑆𝑆fin can be considered the final output of the entire machine.  See Figure 5-1.  
We use 𝑠𝑠(𝑡𝑡) ∈ 𝐒𝐒 to refer to the actual machine state resulting from time step 𝑡𝑡 on a particular run. 

Further, we can imagine there is an input state line 𝑆𝑆−1 representing the initial state of the machine, 
which feeds into the first stage of the circuit.  Without loss of generality, we can assume that this 
variable always takes on the value 𝑆𝑆−1 = 𝑠𝑠init = s1; i.e., there is some fixed initial state 𝑠𝑠init = s1 ∈ 𝐒𝐒.  
However, in some applications, it may be desirable to allow 𝑠𝑠init to be provided dynamically, at ma-
chine initialization time. 

Next, assume there is a set 𝐕𝐕 = {𝑉𝑉𝑖𝑖} (for 𝑖𝑖 ∈ {1, … ,𝑚𝑚}) of 𝑚𝑚 different input variables 𝑉𝑉𝑖𝑖 (or input 
lines) that feed in to the state machine (from its external environment) on each time step.  Again, 
although in general, if the circuits at each time step were different, so too could the set 𝐕𝐕 of input 
variables at each time step be different, but currently we are not considering that case, and so we 
assume that the set 𝐕𝐕 of input variables is always the same.  For each of these input variables 𝑉𝑉𝑖𝑖 , there 
is a corresponding set 𝐯𝐯𝑖𝑖 of 𝑛𝑛𝑖𝑖 possible input values, 𝐯𝐯𝑖𝑖 = �𝑣𝑣𝑖𝑖1, … , 𝑣𝑣𝑖𝑖

𝑛𝑛𝑖𝑖� (note here the superscript rep-
resents an additional index, rather than exponentiation).  The (assumed unique) value assigned to input 
variable 𝑉𝑉𝑖𝑖 on time step 𝑡𝑡 can be denoted 𝑣𝑣𝑖𝑖(𝑡𝑡).  The input line delivering the value of input variable 
𝑉𝑉𝑖𝑖 for time step 𝑡𝑡 to the machine can be denoted 𝑉𝑉𝑖𝑖(𝑡𝑡). 

The state machine can now be defined by a set 𝐀𝐀 = {𝑎𝑎0, … , 𝑎𝑎𝑞𝑞−1} of 𝑞𝑞 possible (directed) arcs 
(a.k.a. arrows, directed edges) specifying how each state may transition to the next.  Each arc 𝑎𝑎𝑘𝑘 (for 𝑘𝑘 ∈
{0, … , 𝑞𝑞 − 1}) can be described as an ordered triple 𝑎𝑎𝑘𝑘 = (𝑂𝑂𝑘𝑘 ,𝑪𝑪𝑘𝑘 ,𝐷𝐷𝑘𝑘), where 𝑂𝑂𝑘𝑘 ∈ 𝐒𝐒 is the arc’s 
origin state, 𝐷𝐷𝑘𝑘 ∈ 𝐒𝐒 is the arc’s destination state, and 𝑪𝑪𝑘𝑘 describes the arc’s set of transition conditions, which 
can be defined as a set 𝑪𝑪𝑘𝑘 = {𝑐𝑐𝑔𝑔} of condition objects 𝑐𝑐𝑔𝑔, where the size (cardinality) of 𝑪𝑪𝑘𝑘 always 
satisfies 1 ≤ |𝑪𝑪𝑘𝑘| ≤ |𝐕𝐕| (i.e., in any given condition set 𝑪𝑪𝑘𝑘, there is always at least one condition, and 
there are no more conditions than there are state variables). 

Each specific condition 𝑐𝑐 = 𝑐𝑐𝑔𝑔 can be described as an ordered pair 𝑐𝑐𝑔𝑔 = (𝑖𝑖𝑔𝑔, 𝑗𝑗𝑔𝑔) of indices, where 
𝑖𝑖𝑔𝑔 = 𝑖𝑖 ∈ {1, … ,𝑚𝑚} is the index of some input variable 𝑉𝑉𝑖𝑖 ∈ 𝐕𝐕, and 𝑗𝑗𝑔𝑔 = 𝑗𝑗 = {1, … ,𝑛𝑛𝑖𝑖} indexes a 
possible value 𝑣𝑣𝑖𝑖

𝑗𝑗 ∈ 𝐯𝐯𝑖𝑖 of that variable.  The meaning of the condition 𝑐𝑐 is that input variable 𝑉𝑉𝑖𝑖 must 
take the value 𝑣𝑣𝑖𝑖

𝑗𝑗 in order for this arrow to be followed; i.e., it represents a requirement that 𝑉𝑉𝑖𝑖 = 𝑣𝑣𝑖𝑖
𝑗𝑗.  

If all the conditions 𝑐𝑐𝑔𝑔 ∈ 𝑪𝑪𝑘𝑘 in the entire condition set are met, then the arrow will be followed, and 
the resulting state will be 𝐷𝐷𝑘𝑘; otherwise this particular arrow will not apply.  See Figure 5-2. 

We generally assume that for each arc, its condition set 𝑪𝑪𝑘𝑘 is internally consistent, meaning that no 
variable index 𝑖𝑖 appears in two different conditions 𝑐𝑐𝑔𝑔1 , 𝑐𝑐𝑔𝑔2 ∈ 𝑪𝑪𝑘𝑘 (i.e., with different value indices 
𝑗𝑗𝑔𝑔1 ≠ 𝑗𝑗𝑔𝑔2 , since these two conditions would then not normally be considered to be simultaneously 
satisfiable, and the arc would be useless to include).2  We may also want to require that each condition 
set 𝑪𝑪𝑘𝑘 be complete, meaning that |𝑪𝑪𝑘𝑘| = |𝐕𝐕|; i.e., the condition set includes a condition for every 

                                                 
2 Interestingly, however, it would actually be possible in our scheme to allow multiple different input values to be fed into 

a given input variable on a single time step and have this trigger associated arcs in a meaningful way, depending on the 
input model.  However, we will not pursue that option in detail in this document. 



 

37 

variable.  (However, as we will show later, it’s still possible to utilize a given condition set under some 
state-machine execution methods, even if this is not the case.)   

Further, we may optionally want to require that the machine be deterministic, meaning that no two 
possible complete assignments of values to variables could ever satisfy the condition sets 𝑪𝑪𝑘𝑘1 ,𝑪𝑪𝑘𝑘2 of 
two different arcs 𝑎𝑎𝑘𝑘1 ,𝑎𝑎𝑘𝑘2 having the same origin state 𝑂𝑂𝑘𝑘1 = 𝑂𝑂𝑘𝑘2 but different destination states 
𝐷𝐷𝑘𝑘1 ≠ 𝐷𝐷𝑘𝑘2 , since then the resulting state could not be uniquely determined from the set of satisfied 
transition conditions. 

In addition, we may also want to require that, for any given state 𝑠𝑠 ∈ 𝐒𝐒, the set of all condition 
sets on arcs outgoing from 𝑠𝑠, which we may refer to in aggregate as the out-conditions of 𝑠𝑠, and denote  

 
𝐎𝐎𝐎𝐎(𝑠𝑠) = {𝑪𝑪  |  ∃ 𝑎𝑎 = (𝑂𝑂,𝑪𝑪,𝐷𝐷) ∈ 𝐀𝐀: 𝑂𝑂 = 𝑠𝑠 }, (1) 

must be a complete set of condition sets, which are each themselves individually complete as well, so 
that every possible assignment of values to input variables appears as the condition set for some arc 
outgoing from 𝑠𝑠.  In this case, the total number of outgoing arcs from each state, in a deterministic 
machine, would be given by 

 

|𝐎𝐎𝐎𝐎(𝑠𝑠)| = �𝑛𝑛𝑖𝑖

𝑚𝑚

𝑖𝑖=1

, (2) 

that is, the product, over all the input variables, of their numbers of alternate values.  So, for example, 
given that there are 𝑚𝑚 different input variables, if each of them has 2 possible values, then this would 
imply that there must be exactly 2𝑚𝑚 different arcs outgoing from each state, one for each possible 
assignment of values to all of the variables.  However, incomplete out-conditions are not always a fatal 
problem; for example, in some applications, the condition sets that are not explicitly included in 𝐎𝐎𝐎𝐎(𝑠𝑠) 
may be ones that ought to never arise.  (As a contingency, the semantics of the machine operation can 
be defined in such a way that it halts, or remains in the same state, or transitions automatically to some 
explicitly-specified exception state, in case none of the current state’s out-conditions apply at the time 
that the next step is taken.) 

In the example state machine in Figure 5-3, states sInit and sReset have complete out-conditions, 
while states sPass and sFail have no out-conditions—this can serve as one way of representing that 
they are final (or halting) states.  

Figure 5-2.  An arc in a state machine.   
Each arc or arrow 𝑎𝑎𝑘𝑘 in the state machine can be described as an ordered triple 𝑎𝑎𝑘𝑘 = (𝑂𝑂𝑘𝑘 ,𝑪𝑪𝑘𝑘 ,𝐷𝐷𝑘𝑘), where 
𝑂𝑂𝑘𝑘 ,𝐷𝐷𝑘𝑘 ∈ 𝐒𝐒 are states called the origin state and the destination state of the arc, together with a set 𝑪𝑪𝑘𝑘 =
{𝑐𝑐1, 𝑐𝑐2, … } of up to |𝐕𝐕| transition conditions, each of which specifies that some particular input variable 𝑉𝑉 must 
be assigned to some given input value 𝑣𝑣, that is, 𝑉𝑉 = 𝑣𝑣. 

Origin 
state 𝑂𝑂𝑘𝑘 

Desti-
nation 

state 𝐷𝐷𝑘𝑘 

Transition conditions 𝑪𝑪𝑘𝑘 



 

38 

For some applications, it may also be desirable to allow some of the input variables to optionally 
be left unassigned on a given cycle of operation (e.g., if no value has been provided by a given input 
source yet, by the time at which the step will be executed).  This may be accomplished by including a 
special value ⊥𝑖𝑖 meaning unassigned in the value set 𝐯𝐯𝑖𝑖 for input variable 𝑉𝑉𝑖𝑖 , and utilizing that value by 
default on time steps when no other value has been provided for 𝑉𝑉𝑖𝑖 .  Alternatively, if arcs are allowed 
to have incomplete condition sets, it may sometimes be possible to determine that a given arc’s trav-
ersal conditions have been met even if not all of the input variables in the full set 𝐕𝐕 have been assigned. 

We could include additional output lines in the above model, but for the time being, we will refrain 
from doing so, to improve the simplicity of the model.  This is not a fatal restriction, however, since, 
if an additional output is needed for any of the time steps, in principle it could always just be included 
in the resulting state.  Later, in sec. 5.3, we will see some ways to do this. 

5.2. Garbled State Machine Encoding 
In this subsection, we describe a particular method for encoding or garbling an arbitrary state machine, 
as defined above, in such a way that the requirements described in section 3 may be met (apart from 
a few caveats addressed in sec. 5.4).  That is, the machine can be deployed on a programmable block-
chain, and executed publicly on that blockchain, yet without publicly revealing any information about 
the input values that were provided by the data sources on each cycle, or about the machine’s function 
or output (either its resulting state, or any other output) on each clock cycle. 

The specific garbling technique that we will describe below depends on the ready availability (with-
in the target programmable blockchain’s smart-contract language) of some cryptographic hash func-
tion, denoted ℎ(⋅).  Fortunately, a number of existing programmable blockchain systems (including 
the popular Ethereum system) do already include hashes as built-in primitive functions; specifically, 
both the 256-bit SHA-2 hash function, and also a hash function in the Keccak family (a family of hash 
functions that also includes SHA-3) are available primitives on the Ethereum platform. 

sInit sReset sPass 

sFail 

𝐴𝐴 = 1, 
𝐵𝐵 = 1 𝐴𝐴 = 0,𝐵𝐵 = 1 

𝐴𝐴 = 1,𝐵𝐵 = 0 

(Begin) 

𝐴𝐴 = 0, 
𝐵𝐵 = 0 

𝐴𝐴 = 0,𝐵𝐵 = 1 

𝐴𝐴 = 1,𝐵𝐵 = 0 

Figure 5-3.  Complete state machine example.   
This machine’s state set is 𝐒𝐒 = {sInit, sPass, sFail, sReset}, and there are two input variables 𝑉𝑉1 = 𝐴𝐴,𝑉𝑉2 = 𝐵𝐵, with 
respective input value sets 𝐯𝐯1 = {0𝐴𝐴, 1𝐴𝐴} and 𝐯𝐯2 = {0𝐵𝐵 , 1𝐵𝐵}, where the subscript on each input value indicates 
the associated input variable.  Arcs are labeled with their condition sets 𝑪𝑪𝑘𝑘, written in a simple 𝑉𝑉 = 𝑣𝑣 (variable 
= value) notation, rather than the equivalent 𝑉𝑉 = 𝑣𝑣𝑉𝑉 or 𝑐𝑐 = (𝑖𝑖, 𝑗𝑗) notation.  The machine begins in the state 
𝑆𝑆−1 = sInit.  States sPass, sFail are halting states (they have no outgoing arcs). 



 

39 

This technique also depends on the Garbler’s ability (within the Company’s security domain) to 
produce cryptographic keys consisting of (securely generated and cryptographically strong) random bit 
strings (which will be the same length as the output of the hash function ℎ) and distribute them se-
curely to the various input sources and spectators that may participate in the computation. 

Specifically, at some point prior to the start of the computation, for each possible time step index 
𝑡𝑡 ∈ {0, 1, … , ℓ − 1}, where ℓ is the maximum length of the garbled computation in time steps that 
we wish to support (as the Garbler), we do the following:  For each possible value 𝑣𝑣𝑖𝑖

𝑗𝑗 ∈ 𝐕𝐕𝑖𝑖 of each 
input variable 𝑉𝑉𝑖𝑖 , we generate an 𝑛𝑛-bit random key, denoted 𝐾𝐾(𝑣𝑣𝑖𝑖

𝑗𝑗 , 𝑡𝑡), where 𝑛𝑛 is the number of bits 
in the output of ℎ.  We may then (securely) distribute this key to whichever entity or entities upon 
which we wish to confer the specific capability to provide the value 𝑣𝑣𝑖𝑖

𝑗𝑗 for input variable 𝑉𝑉𝑖𝑖 to the 
Machine on time step 𝑡𝑡.   

An optimization of this key-distribution procedure which requires much less overhead to send 
and store the input keys, which applies when the input variables 𝑉𝑉𝑖𝑖 are associated with corresponding 
input providers, is to generate and distribute a single random 𝑛𝑛-bit participant key 𝐾𝐾𝑖𝑖 to that provider, 
and then we can let each input key 𝐾𝐾�𝑣𝑣𝑖𝑖

𝑗𝑗 , 𝑡𝑡� be generated deterministically from the participant key 
𝐾𝐾𝑖𝑖 and the parameters 𝑗𝑗, 𝑡𝑡 using the hash function ℎ(⋅), e.g. as 

 
𝐾𝐾�𝑣𝑣𝑖𝑖

𝑗𝑗 , 𝑡𝑡� = ℎ(ℎ(𝐾𝐾𝑖𝑖 + 𝑗𝑗) + 𝑡𝑡), (3) 

(where “+” here could be byte-string concatenation, or any non-information-losing function) so that 
each input key will be unpredictable, and the value 𝑣𝑣𝑖𝑖

𝑗𝑗 that it represents will be indecipherable, to any 
entity not possessing the associated participant key 𝐾𝐾𝑖𝑖. 

In addition to these input keys, for each time step 𝑡𝑡 ∈ {−1, 0, 1, … , ℓ − 1}, and for each possible 
state 𝑠𝑠 ∈ S, the garbler also generates an 𝑛𝑛-bit random key, denoted 𝐾𝐾(𝑠𝑠, 𝑡𝑡), which will constitute our 
garbled representation of the assertion 𝑆𝑆𝑡𝑡 = 𝑠𝑠, i.e., denoting that the resulting state of the machine 
output from time step 𝑡𝑡 is state 𝑠𝑠.  (Except, recall, 𝑆𝑆−1 has a special meaning; it is the initial state.)  
Throughout any given time step 𝑡𝑡 of the Machine’s execution, the garbled representation of the ma-
chine’s state resulting from the previous time step, 𝐾𝐾cur = 𝐾𝐾(𝑠𝑠(𝑡𝑡 − 1), 𝑡𝑡 − 1), is publicly viewable. 

Then, the protocol for providing the input value 𝑣𝑣𝑖𝑖
𝑗𝑗 for input variable 𝑉𝑉𝑖𝑖 as an input to the machine 

on time step 𝑡𝑡 ∈ {0, … , ℓ − 1} will be as follows: 

1. Assume, to start, that there is some entity (input source) that possesses the key 𝐾𝐾(𝑣𝑣𝑖𝑖
𝑗𝑗 , 𝑡𝑡) 

(however it was generated and distributed).  It is possible that this same key could be held 
by multiple parties, in which case any of them could do the following. 

2. The entity should wait until the Machine has begun gathering inputs for time step #t.  This 
can be determined by inspecting a publicly readable current time step index maintained by 
the Machine, or (if such is not provided) by counting state changes.  (However, the latter 
approach requires more effort to avoid possible concurrency issues.) 

3. The entity reads the publicly viewable current-state key 𝐾𝐾cur from the Machine. 



 

40 

4. The entity privately (within its own security domain) computes a provision key 𝑝𝑝𝑡𝑡
𝑖𝑖,𝑗𝑗 specifi-

cally for the purpose of providing the data value 𝑣𝑣𝑖𝑖
𝑗𝑗 to update the machine in step 𝑡𝑡 given 

that it was in state 𝑠𝑠(𝑡𝑡 − 1) at the start of the time step; this key is computed as follows: 

 
𝑝𝑝𝑡𝑡
𝑖𝑖,𝑗𝑗 = ℎ �𝐾𝐾cur ⊕ 𝐾𝐾�𝑣𝑣𝑖𝑖

𝑗𝑗 , 𝑡𝑡��. (4) 

This transformation is necessary to prevent certain types of replay attacks; see §5.4.3. 

5. (Optional) If the deployed Machine instance requires/allows PKI-based authentication of 
input providers, then the entity should/may digitally sign this provision key using a private 
key held by the provider, where the corresponding public key is known to the Machine as 
identifying an entity authorized to supply keys for the present input variable and time step.3  
Note that this signature effectively comprises an optional second-factor form of authent-
ication, since it is not strictly necessary if keys are only distributed to authorized parties in 
the first place, and if key management is sound.  However, requiring this additional step 
opens the possibility that individual entities’ PKI certificates could be updated or revoked 
sometime after the original set of keys for the garbled machine are distributed. 

6. The entity then transmits the (signed or unsigned) provision key to the Machine by invo-
king a suitable method in the smart contract’s API.  For example, in the prototype imple-
mentation discussed in §6 and Appendices C & D, the provideInput() method is 
called. 

So long as the above procedure is followed, and an appropriate PKI signature is provided if required, 
and the message is received at a time when the Machine is indeed still waiting to receive a value (or 
values) for input variable 𝑉𝑉𝑖𝑖 for step 𝑡𝑡 of its execution, then this event (carrying out this procedure) 
constitutes this input source providing the input value 𝑣𝑣𝑖𝑖

𝑗𝑗 on input line 𝑉𝑉𝑖𝑖 for time step 𝑡𝑡. 

With the above model of input provision in place, the state machine itself can now be encoded by 
producing a garbled representation of its set 𝐀𝐀 ∈ {𝑎𝑎0, … , 𝑎𝑎𝑞𝑞−1} of arcs, as follows.  This encoding is 
designed in such a way that it will not publicly reveal any information whatsoever about the meanings 
of the input values provided, or of the resulting output state.  At most, general viewers of the comp-
utation can only see that some encoded inputs were provided by some input sources, and that the 
machine arrived at some encoded new state as a result.  Since this same behavior applies on every time 
step, it provides no meaningful information about the progress of the computation, other than the 
number of steps that have been executed. 

For each time step 𝑡𝑡 ∈ {0, … , ℓ − 1}, we will produce an independent garbled representation of 
the state-updating circuit that applies at time 𝑡𝑡, even when our assumption holds that the actual circuit 
for each time step is the same.  This prevents adversaries from correlating patterns of execution of 
the machine across multiple time steps. 

First, each individual arc 𝑎𝑎 = (𝑂𝑂,𝑪𝑪,𝐷𝐷) ∈ 𝐀𝐀 will be encoded as follows (see Figure 5-4).  Let 𝑪𝑪 =
{𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑟𝑟} be the arc’s set of transition conditions, with 𝑟𝑟 = |𝑪𝑪|.  First, we assemble an arc identifier  

 

                                                 
3 In Ethereum, as in typical blockchains, all message transactions are signed by default using the public key associated with 

the sender’s account.  In Solidity, authentication only takes checking to see if msg.sender is on a given whitelist. 



 

41 

 

 

𝐼𝐼 = 𝐼𝐼𝑎𝑎 = 𝐾𝐾(𝑂𝑂, 𝑡𝑡 − 1) + �𝑝𝑝𝑡𝑡
𝑖𝑖𝑔𝑔,𝑗𝑗𝑔𝑔

𝑟𝑟

𝑔𝑔=1

, (5) 

where   

Plaintext source 
Color code: 

Held privately 

Revealed in run 

Public garbled data 

Fixed public info 

Fixed public func. 

Private function 
Arc iden- 
tifier 𝐼𝐼𝑎𝑎 →  

Figure 5-4.  Overall illustration of arc-garbling algorithm.   
The Garbler associates cryptographically strong random keys to all the states and input assignments contrib-
uting to given arc on a given time step.  The origin state and input provision keys are combined by XOR (or 
other Combinator) and then hashed to XOR-mask the arc’s destination state key. 



 

42 

 
𝑝𝑝𝑡𝑡
𝑖𝑖𝑔𝑔,𝑗𝑗𝑔𝑔 = ℎ �𝐾𝐾(𝑂𝑂, 𝑡𝑡 − 1) ⊕𝐾𝐾�𝑣𝑣𝑖𝑖𝑔𝑔

𝑗𝑗𝑔𝑔 , 𝑡𝑡�� (6) 

is the corresponding input provision key for providing input 𝑣𝑣𝑖𝑖𝑔𝑔
𝑗𝑗𝑔𝑔 on time step 𝑡𝑡 when the current state 

is the origin state 𝑂𝑂, and where addition (and summation) in eq. 5 stand for some pre-selected assoc-
iative, commutative, information-preserving method of combining bit strings, which we will call the 
Combinator.   

The Combinator could be implemented in several possible ways.  E.g., the bit strings could first 
be sorted lexicographically, or placed into a standard order based on the variable indices 𝑖𝑖𝑔𝑔, in cases 
when these are available, and then simply concatenated together.  Alternatively, they could be inter-
preted as integers and then added together numerically (or XOR’d); although this technically loses 
some information (in the rare case when two different subsets of keys happen to have the same sum/ 
XOR), it will only yield collisions with an extremely small probability.  The important thing is that 𝐼𝐼 
should utilize enough of the random information contained in the full set of keys that was used to 
construct it so that it has an extremely low probability of being conflated with an arc identifier con-
structed without knowing all of that data. 

Now, using this arc identifier 𝐼𝐼, we will produce two encrypted data entries 𝐸𝐸next and 𝐸𝐸valid, which 
will be keyed off of respective entry identifiers 𝐼𝐼next and 𝐼𝐼valid.  Each of these entry identifiers is derived 
from the arc identifier 𝐼𝐼 in some fairly arbitrary (but non-information-losing) fashion, for example, by 
combining an extra field identifier (e.g., the ASCII codes for ‘n’ or ‘v’, or some alternative, more obfus-
catory constants) with the arc identifier 𝐼𝐼. 

The encryption method for both data entries will then be the same; given any entry identifier 𝐼𝐼𝑒𝑒 
(where 𝑒𝑒 specifies either the ‘next’ or ‘valid’ data entry of a specific arc 𝑎𝑎), and any 𝑛𝑛-bit “plaintext” 
value 𝑥𝑥 to be encrypted, the corresponding ciphertext 𝑦𝑦 to be used for the data entry is given by the 
following encoding: 

 
𝑦𝑦 = enc[𝐼𝐼𝑒𝑒 , 𝑥𝑥] = ℎ(𝐼𝐼𝑒𝑒) ⨁ 𝑥𝑥, (7) 

where ℎ(⋅) is our cryptographic hash function (which produces an 𝑛𝑛-bit hash) and ⊕ represents a 
bitwise exclusive-OR operation.  Note that effectively, this is a “one-time pad” [17] encryption of 𝑥𝑥, 
where the random bit string used for the pad is obtained by hashing the entry identifier 𝐼𝐼𝑒𝑒—assuming 
here that the given identifier 𝐼𝐼𝑒𝑒 will not be used more than once.  Decryption of 𝑦𝑦 to obtain 𝑥𝑥 can 
only be accomplished if that exact entry identifier 𝐼𝐼𝑒𝑒 can be obtained, which is only possible for an 
entity that possesses all the keys which go into the calculation of the arc identifier 𝐼𝐼. 

Now, this encryption function enc[⋅,⋅] (eq. 7) is then used to compute both encrypted data entries 
for the arc: 

 
𝐸𝐸next = enc[𝐼𝐼next,𝐾𝐾(𝐷𝐷, 𝑡𝑡)], 
𝐸𝐸valid = enc[𝐼𝐼valid, v], 

(8) 
(9) 

where 𝐷𝐷, recall, denotes this arc’s destination state, 𝐾𝐾(𝐷𝐷, 𝑡𝑡) is that state’s garbled encoding (a.k.a. its 
“key”) at the present time step, and v represents some arbitrary fixed (or at least, recognizable) 𝑛𝑛-bit 



 

43 

“magic cookie” string.  For example, v = 0𝑛𝑛 (a string simply consisting of 𝑛𝑛 zero bits) can be used, 
or we could use a (padded) ASCII representation of the English word “valid.”  Alternatively, for 
slightly more obscurity, we could instead use a variable, arc-dependent value, such as 𝑣𝑣 = ℎ(𝐼𝐼). 

The encoding 𝐸𝐸(𝑎𝑎, 𝑡𝑡) of the entire arc 𝑎𝑎 for time step 𝑡𝑡 is then simply the pair of encoded data 
entries: 

 
𝐸𝐸(𝑎𝑎, 𝑡𝑡) = (𝐸𝐸next,𝐸𝐸valid). (10) 

Alternatively, the encrypted pair of entries could also be produced in a single step by simply XOR-
masking both entries 𝐾𝐾(𝐷𝐷, 𝑡𝑡), v at once with a suitably longer hash of 𝐼𝐼𝑎𝑎.  (Shown in Figure 5-4.) 

To encode the entire set 𝐀𝐀 = {𝑎𝑎0, … ,𝑎𝑎𝑞𝑞−1} of arcs for the time step 𝑡𝑡, we then simply provide 
the full set 𝑬𝑬(𝑡𝑡) = {𝐸𝐸(𝑎𝑎0, 𝑡𝑡), … ,𝐸𝐸(𝑎𝑎𝑞𝑞−1, 𝑡𝑡)} of the corresponding encoded arcs, but expressed in a 
randomized order, to ensure that no meaningful information about the machine’s structure remains 
implicit in the arc order. 

The complete description of the garbled finite state machine 𝐺𝐺 over all ℓ of the possible time steps 
𝑡𝑡 ∈ {0,1, … , ℓ − 1} then consists of the sequence 𝐺𝐺 = (𝑬𝑬(0),𝑬𝑬(1), … ,𝑬𝑬(ℓ − 1)) of the garbled 
descriptions of the individual time steps, in temporal order.  It is possible to randomize the order of 
the time steps as well, which we’ll discuss in more detail in the next subsection (§5.3) below, but this 
is not strictly necessary to meet our security requirements. 

5.3. Garbled State Machine Execution 
Executing a garbled finite state machine 𝐺𝐺 which has been assembled via the above construction, in a 
way that meets our privacy requirements (except, see §5.4), is now extremely simple.  The entire gar-
bled machine 𝐺𝐺 is contained within some smart contract/executable program, which also includes a 
generic garbled machine interpreter Exec (called an Executor).  This smart contract, which we denote 
Exec[𝐺𝐺], is then (at some point before its execution will need to start) published on a programmable 
blockchain (such as Ethereum’s). 

First, we assume that the encoded form 𝐾𝐾(𝑠𝑠init,−1) of the initial state 𝑠𝑠init of the machine before 
the start of time step 0 is already available, as part of Exec[𝐺𝐺].  Alternatively, it can be provided, in a 
separate, special initialization step, by an entity called a Starter that has been authorized to start 𝐺𝐺 
running in some particular state 𝑠𝑠 ∈ 𝐒𝐒.  (Different entities could be authorized to start the machine 
up in different initial states.)   

Then, to execute each of the normal (i.e., post-initialization) time steps 𝑡𝑡 ∈ {0,1, … , ℓ − 1}, in 
numerical order, we can carry out the following protocol. 

For each time step 𝑡𝑡, during the input-gathering phase of that time step, some number of external 
entities (input sources) holding input keys 𝐾𝐾(𝑣𝑣𝑖𝑖

𝑗𝑗 , 𝑡𝑡) for some of the possible values 𝑣𝑣𝑖𝑖
𝑗𝑗 ∈ 𝐯𝐯𝑖𝑖 of some 

of the possible input variables 𝑉𝑉𝑖𝑖 ∈ 𝐕𝐕 for that time step asynchronously transmit (possibly digitally 
signed) messages to the Exec[𝐺𝐺] smart contract, containing corresponding provision keys 𝑝𝑝𝑡𝑡

𝑖𝑖,𝑗𝑗 for the 
input values 𝑣𝑣𝑖𝑖

𝑗𝑗 that they wish to supply.  The Executor can ignore such messages if they were not 
signed by the private key holder for some appropriately authorized public key (the set of which can 
be hard-coded into the contract).  Alternatively, we might not require a signature. 



 

44 

Depending on the input model being used, we can then use one of the following methods (among 
others) to decide when to go to the next, state-updating phase of the Executor: 

1. Single-shot update.  This method only works for machines all of whose arcs’ transition condition 
sets contain only a single condition (that is, a single variable=value assignment).  In this method, 
as soon as we receive any single (properly-signed) input value, we look for an arc that matches 
it (as per the arc-matching procedure below), and if it is found, we go to the state-updating 
phase; otherwise, we discard the input value and either halt permanently, or continue waiting 
for valid inputs (the Executor’s behavior could be defined either way).  Additional specializa-
tions of single-shot updating are possible; for example, we could require input providers to 
provide inputs in round-robin order or at least forbid any single input provider from providing 
inputs two steps in a row, to help prevent lookahead. 

2. Gather all inputs.  This method only works reliably when all the input providers will, together, 
during each time step, reliably provide all the input values that are needed to satisfy the cond-
ition set for some arc.  In this method, we continue gathering encoded input values, and adding 
them, as they are received (but in an order-insensitive way), to a candidate arc identifier 𝐼𝐼′.  As 
soon as this candidate arc identifier matches any of the encoded arcs of 𝐺𝐺, according to the 
arc-matching procedure below, we go to the state-updating phase.  With this method, if some of 
the input providers decline (or are unable) to cooperate and fail to provide some needed input 
values as expected, it would be possible for the Executor to hang indefinitely.  However, this 
potential weakness can be mitigated via a number of methods, discussed below. 

3. Gather all inputs, with timeout.  This method is like gather all inputs above, except that the smart 
contract can be programmed to halt (terminating with no hope of recovery) if one of the arcs 
is not matched within some specified timeout.  Similarly, a timeout can also be applied to the 
single-shot update method. (Note that, depending on the smart contract platform, implemen-
ting this feature may require trusted external parties to supply time messages.) 

4. Gather all inputs, with timeout and infill.  This method requires that Exec[𝐺𝐺] publicly shows the 
number 𝑚𝑚 of input variables, and that input providers publicly reveal which variables they are 
providing values for.  This therefore violates our security requirements from Sec. 3, but can 
be acceptable in contexts with looser requirements.  In this method, we keep track (publicly) 
within the Executor of which variable indices 𝑖𝑖 ∈ {1, … ,𝑚𝑚} have had values provided for 
them so far, and if no value is provided for some variables before the timeout, we assign a 
special value ⊥𝑖𝑖 (meaning “unassigned”), whose encoding is shown publicly within the Exec-
utor code, to each of the as-yet-unassigned variables 𝑉𝑉𝑖𝑖 .  We then look for an arc matching the 
arc identifier including the infilled values.  More complicated variations on this method could 
hide a larger amount of this information up front, by requiring some external parties (such as 
other input sources) to supply these default values for the missing variables.  

5. Gather N out of M inputs.  In this method, which is somewhat similar to the previous one, as 
soon as a prespecified number 𝑁𝑁 of distinct input values has been provided, where 𝑁𝑁 is less 
than the total number of variables, 𝑁𝑁 < 𝑀𝑀 = 𝑚𝑚, we can either fill in the remaining variables 
with default “unassigned” values (as above), or just try to find an arc that matches just the 
subset of input values that have been received so far. 

6. Check all subsets.  In this method, we maintain a set 𝑲𝑲 of all the input provision keys 𝑝𝑝𝑡𝑡
𝑖𝑖,𝑗𝑗 that 

have been received so far.  When receiving each new provision key 𝑝𝑝 = 𝑝𝑝𝑡𝑡
𝑖𝑖,𝑗𝑗 , we first try com-

bining it with each possible subset 𝒌𝒌 ⊆ 𝑲𝑲 of the already-received keys, looking for a matching 



 

45 

arc.  If we find a match with an encrypted arc, we go to the state-updating phase.  If we are 
unsuccessful, then we update the set 𝑲𝑲 by adding 𝑝𝑝 into it, 𝑲𝑲 ≔ 𝑲𝑲∪ {𝑝𝑝}, and continue wai-
ting to receive more input values.  This way, if there is any arc whose condition set matches 
any subset of the input values received so far, that arc will be taken, as soon as possible. 

Arc-matching procedure.  Regardless of which method is used in the input-gathering phase, a 
candidate arc identifier 𝐼𝐼′ is constructed, as in eq. 5 above, from the encoded input state 𝐾𝐾(𝑆𝑆𝑡𝑡−1), in 
combination with some subset 𝒌𝒌 ⊆ 𝑲𝑲 of the input provision keys 𝑝𝑝𝑡𝑡

𝑖𝑖,𝑗𝑗 that have been received so far. 
(The choice of input-gathering method only determines which of the constructible candidate arc 
identifiers are considered for matching against the encoded arcs for the given time step t.) 

To determine whether a given arc identifier 𝐼𝐼′ matches any of the encoded arcs 𝐸𝐸 ∈ 𝑬𝑬(𝑡𝑡) in the 
set 𝑬𝑬(𝑡𝑡) of encrypted arcs for the current time step, we conceptually4 attempt the following for each 
of the encoded arcs 𝐸𝐸, broken down as 𝐸𝐸 = (𝐸𝐸next,𝐸𝐸valid).   

First, we derive a candidate entry identifier 𝐼𝐼valid′  for the ‘valid’ field from the arc identifier 𝐼𝐼’ in 
the usual way (e.g., combining a byte encoding ASCII(‘v’) with it).  Then, using that as our decryption 
key, we call enc[𝐼𝐼valid′ ,𝐸𝐸valid], which does a trial decryption of 𝐸𝐸valid (this same enc function works 
for decryption as well as encryption if the entry identifier is correct, because 𝐼𝐼𝑒𝑒⨁𝐼𝐼𝑒𝑒 = 0 for all 𝐼𝐼𝑒𝑒).  If 
the result is the designated special constant ‘valid’ identifier string v (= 0𝑛𝑛, say), then the decryption 
worked, which means (with probability 1 − 2−𝑛𝑛) that the arc identifier 𝐼𝐼’ matches that of the specific 
encoded arc 𝐸𝐸 = (𝐸𝐸next,𝐸𝐸valid) that we are currently looking at. 

At this point, we can then validly decrypt the encrypted ‘next state’ field 𝐸𝐸next by generating the 
appropriate entry identifier 𝐼𝐼next′  for it, e.g., with 𝐼𝐼next′ = 𝐼𝐼′ + ASCII(‘n’), and then use this 𝐼𝐼next′  as 
our decryption key and call enc[𝐼𝐼next′ ,𝐸𝐸next]; the result of this is then the “plaintext” (albeit still gar-
bled) version of the encoded destination state, namely 𝐾𝐾(𝐷𝐷, 𝑡𝑡).  (Note that this still does not reveal 
any information about 𝐷𝐷 itself.)  At this point in time (meaning, any time after the most recent input 
was supplied), we can say that this particular encrypted arc 𝐸𝐸, including its garbled destination state 
𝐾𝐾(𝐷𝐷, 𝑡𝑡), have been unlocked, since their unencrypted (albeit still garbled) representations can now be 
inferred by anyone inspecting the blockchain, by following the above procedure. 

If, in a specific input situation, two different encrypted arcs 𝐸𝐸1,𝐸𝐸2 ∈ 𝑬𝑬(𝑡𝑡) (or more) can be 
matched against available candidate arc identifier(s), and these two arcs yield multiple different garbled 
destination states, e.g., two different values 𝐾𝐾(𝐷𝐷1, 𝑡𝑡) ≠ 𝐾𝐾(𝐷𝐷2, 𝑡𝑡), then the machine is nondeterministic, 
and the semantics can either be that the machine halts (treating this as an error), or alternatively, that 
it selects one of the indicated destination states at random (which would require further defining a 
method for assigning probabilities to the different destinations and then pseudo-randomly selecting a 
particular outcome).  For now, we will set aside this possibility of nondeterministic/stochastic machine 
behavior and assume that all the matching arcs in any given (non-error) input situation consistently 
identify just a single encrypted destination state 𝐾𝐾(𝐷𝐷, 𝑡𝑡). 

                                                 
4 The average time to successfully match an arc that is present in 𝑬𝑬(𝑡𝑡) can easily be reduced from Θ(𝑞𝑞) to Θ(1) by storing 

arcs in a hash table, indexed by hashing the arc identifier.  Similarly, Bloom filters [1] can be utilized to reduce the 
expected time cost for failed arc lookups to a negligible level. (The more standard “point-and-permute” method for fast 
garbled table lookups, also mentioned in footnote 5 on p. 74, cannot be applied here without protocol changes, since 
our input keys are hashed, and further, even with protocol changes, the number of point bits utilized would reveal an 
upper bound on the number of alternative values for each input field.)   



 

46 

Now, in the state-updating phase, we simply take the garbled destination state 𝐾𝐾(𝐷𝐷, 𝑡𝑡) of the arc 
that was matched, and use it as the garbled resulting state 𝐾𝐾(𝑠𝑠(𝑡𝑡)) that is produced (output) on line 
𝑆𝑆𝑡𝑡 in time step 𝑡𝑡 of the computation.  At this point, we can then increment the time step counter, 𝑡𝑡 ≔
𝑡𝑡 + 1, and repeat the above procedure to execute the encrypted circuit 𝑬𝑬(𝑡𝑡) for the new value of the 
time step 𝑡𝑡. 

If we wish to obfuscate the fact that there even exists a time-step variable 𝑡𝑡 in the machine whose 
value is progressively increasing, and/or the maximum number ℓ of time steps supported within 𝐺𝐺, 
or the complexity of the garbled circuits for individual time steps (in cases where they differ), we can 
do this by (for example) simply combining all the encrypted-arc sets 𝑬𝑬(0),𝑬𝑬(1), … ,𝑬𝑬(ℓ − 1) for the 
different steps of the computation together into one large encrypted-arc set 𝑬𝑬, 

 

𝑬𝑬 = �𝑬𝑬(𝑡𝑡)
ℓ−1

𝑡𝑡=0

, (11) 

which is then stored as part of the smart contract Exec[𝐺𝐺] in a completely randomized order.  This 
same set 𝑬𝑬 of encrypted arcs can then be used on every execution cycle, and then no explicit time-
step identifier is needed at all.  This works because the fact that the states and input values were garbled 
differently for each time step ensures that on any step, we can only match the arcs in 𝑬𝑬 that came 
from the set 𝑬𝑬(𝑡𝑡) for the current time step.   

Naively, one might expect that combining arc sets in this way would make the execution of each 
step ℓ × more time-consuming, since we have ℓ times as many arcs to try to match.  However, arcs 
can easily be stored in a hash table configuration keyed off the arc identifier (as was noted in footnote 
4 on p. 45), and if this is done, then there is no loss in performance from combining arc sets. 

An advantage of combining arc sets is that it hides some information about the number ℓ of time 
steps, as well as the number 𝑞𝑞 = |𝐀𝐀| of arcs in the state machine, revealing only an upper bound ℓ𝑞𝑞�  
on their product ℓ𝑞𝑞 (namely, the total number of encrypted arcs in 𝑬𝑬).  (It’s only an upper bound 
since the set 𝑬𝑬 of arcs could be padded with extra dummy arcs that will never match anything.)   

In any event, the only necessarily publicly visible information resulting from the execution of each 
time step is then the garbled value 𝐾𝐾(𝑠𝑠, 𝑡𝑡) of the current state 𝑠𝑠 (and of states previously visited).   
This code will be meaningless to outside observers, while having perfectly clear implications to any 
entity upon which the Company (which originally generated all the state keys, in its Garbler) has con-
ferred the ability to (partially or fully) decrypt that encrypted state, using any of several methods which 
we will now discuss.  Using these methods, the Company can easily provide different entities with the 
ability to infer different specific output information from the machine’s public behavior. 

More specifically, consider any meaningful logical proposition 𝑃𝑃(𝑠𝑠, 𝑡𝑡), which may be any arbitrary 
truth-valued function of the machine state 𝑠𝑠 ∈ 𝐒𝐒 and the time-step index 𝑡𝑡 ∈ {0, … , ℓ − 1}.  This 
proposition is then satisfied in some corresponding subset 𝑷𝑷 ⊆ 𝐒𝐒 × {0, … , ℓ − 1} of the full set 𝐒𝐒 ×
{0, … , ℓ − 1}  of all ordered pairs (𝑠𝑠, 𝑡𝑡) consisting of a possible machine state together with a time-
step index.  The set 𝑷𝑷 can then be rendered in a somewhat privacy-preserving way by replacing each 
of the ordered pairs (𝑠𝑠, 𝑡𝑡) with a hash of its encoded form, ℎ(𝐾𝐾(𝑠𝑠, 𝑡𝑡)), and then randomizing the 
order of the set elements; let 𝑯𝑯 denote the resulting set of all hashed, encoded elements of 𝑷𝑷.  Then, 
if we wish to confer upon some Spectator the ability to recognize when the machine’s state after some 



 

47 

time step has come to satisfy the proposition 𝑃𝑃(𝑠𝑠, 𝑡𝑡), we can simply deliver to them the set 𝑯𝑯, and 
they can simply check, whenever the machine arrives at a new garbled state 𝐾𝐾(𝑠𝑠(𝑡𝑡)), whether 
ℎ(𝐾𝐾(𝑠𝑠(𝑡𝑡))) ∈ 𝑯𝑯.  If so, then the proposition 𝑃𝑃(𝑠𝑠(𝑡𝑡), 𝑡𝑡) holds for the current machine state 𝑠𝑠(𝑡𝑡).   

This method can be straightforwardly (if inefficiently) extended to also confer the ability to infer 
any given arbitrary function 𝑓𝑓(𝑠𝑠, 𝑡𝑡) of the current state and current time upon any spectator, through 
binary representation of the function’s output, and rendering of each bit of the result as a proposition, 
in the above manner.   

Much more efficient output encodings are also possible; for example, the spectator can combine 
the current encrypted state 𝐾𝐾(𝑠𝑠(𝑡𝑡)) together with a “reader key” 𝐾𝐾𝑅𝑅 identifying a reading authority 𝑅𝑅 
and then hashed, then the result can be XOR’d together with each of a set M = {𝑚𝑚𝑏𝑏} of coded output 
messages 𝑚𝑚𝑏𝑏 which are distributed to the spectator and which optionally (for nonrepudiability) can 
be made publicly available as part of a digitally-signed package (e.g., in the contract itself).  The coded 
message(s) 𝑚𝑚𝑏𝑏 that correspond(s) to the current state can then yield plaintext data with any desired 
content:   

 
ℎ(𝐾𝐾(𝑠𝑠(𝑡𝑡)) + 𝐾𝐾𝑅𝑅) ⊕𝑚𝑚𝑏𝑏 ⇒ (Plaintext output from 𝑆𝑆𝑡𝑡  viewable by reader 𝑅𝑅) (12) 

The correct message(s) 𝑚𝑚𝑏𝑏 can be identified by, e.g., inclusion of a magic cookie value, or by a lack of 
nonprintable ASCII characters. The output messages can furthermore be any desired length, if an 
arbitrary-length hash function is used here, or if more than one coded message corresponds to the 
current state.  Note that malleability of these coded output messages is not a concern as long as they 
are distributed via an authenticated channel (for example, by including them in the digitally signed 
smart contract). 

Thus, arbitrary Moore-type finite state machines (in which the output depends only on the current 
state), with specific output lines feeding to specific Spectators, can be constructed via methods like 
the above. 

For a Mealy-type finite state machine, in which output information is associated with transitions, 
so that not all of the machine’s output information needs to be implied by the current state (which 
can be useful, since it can allow the number of states to be made smaller), we would need to modify 
our machine encoding to represent the additional outputs for each arc separately.  Doing this is very 
straightforward but will be addressed in detail at a later time. 

5.4. Risks and Vulnerabilities 
An account of some known or potential risks, vulnerabilities, and weaknesses associated with the 
above system follows, along with a discussion of some known or potential strategies for ameliorating 
or mitigating these concerns. 

5.4.1. Lookahead (a.k.a. Fairness) Problem 
One clear flaw in the protocol, as presently envisioned, is that the input provider who provides the 
last input needed to trigger the execution of a given time step can inspect the state of the smart contract 
to “look ahead” and see what the result would be (to the extent that it can be interpreted by them), and 
accordingly withhold or modify their provided input.  This problem arises quite generally in all MPC 
protocols, whenever the parties to the protocol might not be considered completely trustworthy.  



 

48 

Since it confers what might be considered an unfair advantage to the last participant in any such 
protocol, it is referred to as the “fairness problem” in the MPC literature. 

Amelioration/mitigation strategies:  One approach towards ameliorating this risk would be to 
have a trusted external input provider who provides a coded “proceed” symbol ⊚ (similar to the 
“end” symbol ⊝ that we used in §4.1.1) that “clocks in” the previously-received inputs from the other 
providers, and yields the transition details.  For robustness, several different entities can redundantly 
all have this capability delegated to them.  A remaining vulnerability is that, if these “clocking” provi-
ders or Steppers are not, in fact, completely trustworthy, they might choose to change their behavior 
depending on the outcome that would be revealed as well.  On the other hand, if these third-party 
participants are completely trusted, then why is the entire system needed at all?  One could just let a 
fully trusted third-party participant execute the entire desired computation internally to themselves.   

We do not yet know a general, completely satisfactory solution to this dilemma.  It’s an example 
of the general Byzantine fault tolerance problem, but the usual blockchain-based solutions to that 
problem don’t preserve privacy.   

In fact, for a computation such as ours that is taking place on a public blockchain, it seems that 
the only way to avoid the lookahead problem in general, without using fully-trusted third parties, is to 
simply enforce the following constraint:  For each input provider, for each state-updating event which 
can be triggered by that provider, involving an arc 𝐴𝐴 and destination state 𝑆𝑆, we explicitly preclude 
that specific input provider from obtaining any interpretable information whatsoever from 𝐴𝐴 or 𝑆𝑆.  
This can be done by simply not giving that provider any of the output keys that would be needed to 
spectate on those outputs.  Note that this implies that the general public also cannot spectate on those 
outputs.  However, it’s always possible to have some outputs which are public, others which can only 
be seen by input providers, and others which can only be seen by designated spectators other than the 
most recent input provider. 

Note that it’s still possible, under this constraint, to have extended computations with multiple 
input providers in which at least some of the outputs that are generated as the computation progresses 
are (eventually) readable by all providers:  For each provider, you can simply delay the readability of 
that output information from the viewpoint of that provider until after one of the other providers has 
subsequently made a move (supplied an input).  As long as you don’t have a long string of consecutive 
moves made by a single provider, that provider will be able to see some output from his moves in a 
fairly short period of time (as long as all the other providers have not stopped providing inputs in the 
meantime).  In any case, this seems to be the only general class of solutions not requiring any fully 
trusted providers.  Note that it can, however, be defeated if the providers collude with each other to 
look ahead, but there’s no way to prevent that, anyway—the best we can ever hope for, in a public 
Machine, if the providers are not completely controlled by the Company, is only to prevent lookahead 
if the providers don’t collude with each other. 

The only remaining limitation of the above approach would be if we have a scenario where, say, 
the very last step in the computation is required to reveal, publicly, some information that all of the 
input providers have some disincentive to publicly reveal, for some reason.  In this case, it becomes 
necessary to still invoke a third party which is trusted to “pull the lever,” metaphorically speaking, as 
would be needed to publicly reveal the answer.  One means of doing this (besides the “Finisher” 
approach taken in §4.1.1) would be if that party supplies a key in a message to the smart contract that 
unlocks a sealed commitment embedded in the code, revealing publicly the output key that is required 
in order for anyone to be able to interpret the final state.  This only requires trusting the third party to 



 

49 

send that “final reveal” message at the requisite time and does not require any parties to trust the 
message’s content (since it is verified by successfully unlocking the commitment). 

Finally, we should point out that, even in cases when outputs are not visible and there is no fairness 
issue, an ability to look ahead (even retroactively, from a past state) and examine even the garbled states 
that would result from different inputs can, in some cases, result in a reduction of functional privacy; 
this issue and methods to address it are addressed in §§5.4.2–5.4.3 below.  

5.4.2. Reconvergent Arcs Problem 
We saw in our original requirements in §3 that in general we wish for the participants in the protocol 
to be able to infer nothing about the structure of the original state machine 𝐹𝐹 from the garbled ma-
chine 𝐺𝐺, except for a limit on the size of 𝐹𝐹.  However, there is one case in which the garbling method 
described in §5.2 falls short of meeting this requirement, and that is in the case where two different 
arcs from a given origin state could be immediately triggered by two different input values that could 
both be provided by a given input provider at the current (or a past) time step that would both lead 
to the same destination state 𝑠𝑠.  In this case, the randomized representations 𝐾𝐾(𝑠𝑠, 𝑡𝑡) of that state 
resulting from decrypting both arcs would be the same, and so, the input provider, inspecting the 
garbled machine representation 𝐺𝐺 any time after the origin state and the prior inputs on step 𝑡𝑡 have 
been unlocked, could infer that both inputs yielded the same state in the original machine 𝐹𝐹. 

However, there are some simple ways in which this problem can be avoided, in the case of single-
step reconvergence.  One way would be to simply duplicate each state in the machine that has con-
vergent arcs impinging on it from a given origin state, so each of those arcs goes to a different copy 
of the state.  Another way would be to perform each state transition in two steps:  First, the arc to be 
traversed is selected as usual, and the machine transitions to a unique intermediate state (which can be 
visualized as sitting in the middle of the arc).  Then, another participant (a Stepper) provides a coded 
“go” token ⊚𝒗𝒗 which varies depending on the set 𝒗𝒗 of this step’s input values (this is necessary to 
prevent the reconvergence from being retrospectively inferred); once this token is received, the ma-
chine then completes the transition to the ultimate destination state.  These two methods impose 
different complexity overheads on the garbled machine representation and on the execution protocol.  
Which method has the least overhead depends on the details of the situation. 

5.4.3. Reconvergent Paths Problem 
In §5.4.2 above, we alluded to the fact that an input provider could reconsider his past inputs and look 
at what would have happened if he had changed one of his inputs on a past time step, but all other 
inputs (by himself and other parties) on that and subsequent time steps (up to the present) stayed the 
same.  This could be viewed as a form of replay attack that would allow multiple input sequences that 
eventually reconverge onto the same state to be identified, if not for the fact that the state-dependence 
of the input provision keys in our algorithm ensures that other input providers’ inputs can’t be replayed 
for any state sequence except for the one that occurred in the actual run of the Machine.  Another 
solution, which we adopt in the circuit-based version of our algorithm in §9, would be to require a 
separate Unlocker participant to decode each actual input key provided before it can be used.  (This is 
similar to the Stepper approach discussed in §5.4.2 above.)  However, we avoided adopting that parti-
cular approach in our implementations of the state-machine model, because it adds complexity (in 
terms of extra rounds of interaction) to the protocol. 



 

50 

5.4.4. Collusion Problem 
Of course, the primary weakness of the entire class of methods relating to the approach described in 
this report is that, if multiple different participants in the protocol should happen to collude with and/ 
or share keys with each other (or with common outside parties), then they (or any entities that end up 
obtaining sufficient keys from multiple participants) can infer additional properties of the function 
being computed, and thereby compromise the functional privacy guarantees of the system.  The main 
method by which the Company could try to mitigate this weakness would be if it takes care not to 
facilitate participants’ even finding out each others’ identities, locations, or contact information.   

However, given that protocol participants could always advertise their roles to each other surrep-
titiously using unknown or “black market” forums, it seems difficult in general to guarantee that col-
lusion between participants could never possibly arise without the knowledge of the Company.  Thus, 
these methods may primarily be useful in contexts where there is at least limited trust in or control of 
the participants by the Company, or where an absolutely perfect guarantee of functional privacy is not 
strictly required. 

 

 

 
 



 

51 

6. TECHNICAL DETAILS OF THE PROTOTYPE IMPLEMENTATION 
In this section, we provide concrete technical details of the various representations, encodings, and 
protocol messages utilized in the existing prototype implementation of GABLE (based on Ethereum). 

6.1. Prototype Implementation of a Garbler in Python 
Appendix B gives the complete Python 3 code (both without and with comments) for a simple re-
ference implementation garbler.py of a Garbler, which translates a given finite state machine 𝐹𝐹 into 
a garbled description 𝐺𝐺 of that machine, suitable for execution in the context of an appropriate 
Executor, such as the one described in the next subsection (6.2) below. 

In this implementation, the initial finite state machine 𝐹𝐹 to be garbled (the one from Figure 5-3) 
is specified in a JSON-format file that appears as follows: 

[["SInit", {"A": "1", "B": "1"}, "SPass"],  
 ["SInit", {"A": "0", "B": "0"}, "SFail"],  
 ["SInit", {"A": "0", "B": "1"}, "SReset"],  
 ["SInit", {"A": "1", "B": "0"}, "SReset"],  
 ["SReset", {"A": "0", "B": "1"}, "SInit"],  
 ["SReset", {"A": "1", "B": "0"}, "SInit"],  
 ["SReset", {"A": "0", "B": "0"}, "SFail"],  
 ["SReset", {"A": "1", "B": "1"}, "SFail"]] 

This gives a list 𝐀𝐀 of arcs, where each arc 𝑎𝑎 ∈ 𝐀𝐀 is represented as a list (𝑂𝑂,𝑪𝑪,𝐷𝐷) of three elements: 

1. A string which is a label identifying the arc’s origin state 𝑂𝑂. 

2. A representation of the arc’s condition set 𝑪𝑪, consisting of a map from strings labeling input 
variables 𝑉𝑉 to strings labeling their assigned values 𝑣𝑣.  Thus, "A": "1" represents 𝐴𝐴 = 1𝐴𝐴 for 
some input variable 𝐴𝐴.  

3. A string which labels the arc’s destination state 𝐷𝐷. 

In this version of the Garbler, the machine’s initial state 𝑠𝑠init is always the one labeled SInit.  The 
garbler is invoked using the following command line template: 

$ ./garbler.py [-h|--help] [--seed seed] [--time_steps nsteps] circuit 

where the options enclosed in brackets [ ] are optional command-line arguments.  The -h or --help 
option displays a help message; next, --seed seed sets the seed of the pseudo-random number gen-
erator to the given string seed to allow repeatability (if not provided, results will be nondeterministic); 
next, --time_steps nsteps sets the maximum number ℓ of supported time steps to the given integer 
nsteps, which defaults to 10.  Finally, the sole required argument circuit is the name of the input file, 
in the format above. 

The output of the Garbler then consists of the following files: 

• init.gc – The random 256-bit code for the initial state 𝑠𝑠init.  It is in JSON format, consisting 
of a bracketed list containing one string of 64 hex digits. 

• 𝑡𝑡.gc – For each time step number 𝑡𝑡 ∈ {0, … , ℓ − 1}, this is the garbled circuit 𝑬𝑬(𝑡𝑡) for that 
time step, in JSON format as a list of encrypted arcs, each of which is a list of two elements, 



 

52 

which are 64 hex digit strings for the encrypted fields 𝐸𝐸next,𝐸𝐸valid of the arc.  For example, 
for a machine with 8 arcs such as the one in Figure 5-3, we might have: 

[["4aa23a389f984ece6b8150c42df2565c64182c42b2eeab69ae664bd18c1879d8",    
  "df8e363587e796300c9ed5456d556f0d9de3327424c397a57245ef98d0c8cc12"],   
 ["8a05d6860d83d186f77ae2f9823b805ae631013b4a2b41e67ad532074d85fb58",      
  "5e1a6b5fdeb9c1f82d12323b465a7ad1e8fc402eb44e4d84f27746b79685fa97"],   
 ["673f63ca364c684a27b2d2dc6ded8a48896a9759f0321903ebcc71e81d837cbe",     
  "b086ddfdc4996e26f6115aa070b3764305cc6aab732e9f03105b5d1f08136a44"],   
 ["4a564f18a70f4ef1e110ea9b2e1d361ee649eda4218fa59b27897d9f5bd8bb85",  
  "76897d38a68036d4d9675cac09aec6c26fad35bb380e97aad4c136d7fbe9eeab"],  
 ["8384df99bcc56c2df2e5eb68b1894e5d252af2f9fe7056d7b12bd98e69ecb631",  
  "148885e2bd0c6b9c9633689c750536c0c168aa8867d813368fa1b5c2cb0f6cf4"],  
 ["adc27bca1e5346ead211fe864f6f4da96e4ff86369e50980eaad3376e1941f6d",  
  "55bd3550456ae59687806a18c8936d9f3a23c8ebb950e223e4b61100e2b99441"],  
 ["95cc011586e47e0a708a104fca8667333cd7e9738108d4160714322059087e90",  
  "f8bff4ebb20d4a563364c45b5d4b728256e0434e2926ab2a76b3a0e1ae53f1c6"],  
 ["c03c0374f8d0f7d96d453f4e7416488a655c04015f84e61640c246af3560da1e",  
  "f9d9fea073589c643a06d224861329c45e02626a1b2e5e782ee625dcaaa27bd2"]] 

(This is the actual content of file 0.gc for the present Garbler on the above input with seed 
‘xyz’.) 

• 𝑡𝑡-𝑙𝑙𝑛𝑛.keys – For each time step number 𝑡𝑡 ∈ {0, … , ℓ − 1}, and each line name 𝑙𝑙𝑛𝑛, this file 
(in JSON format) gives the map from value labels to 64-hex-digit value codes (“keys”) for that 
line.  The line names include the labels of all the input variables 𝑉𝑉, as well as two special line 
names _in_states and _out_states, which denote the input and output state variables 𝑆𝑆𝑡𝑡−1 
and 𝑆𝑆𝑡𝑡 respectively.  For 0 ≤ 𝑡𝑡 ≤ ℓ − 2, the file 𝑡𝑡-_out_states.keys is identical to the file 
(𝑡𝑡 + 1)-_in_states.keys, since both reflect the set of keys {𝐾𝐾(𝑠𝑠, 𝑡𝑡) | 𝑠𝑠 ∈ 𝐒𝐒}.  For example, 
the following is an instance of the file 0-_in_states.keys for the Figure 5-3 machine, spe-
cifying the possible coded initial states 𝐾𝐾(𝑠𝑠,−1): 

{"SFail": "5c8b28ab72dfec5dd643f8d9eaf9d841f6bc36176fa3353e87a737438e3be1fe",  
 "SInit": "7128b98ce5a2a8cce5f8db6fc52cbf6c1e7b20b6122e8168650b067d1d194fb6",  
 "SPass": "2f7214f79f2ceb951b7b6977b40cd11ba42dc00111ddd1bf62026ff82ac99e09",  
 "SReset": "38b947a283b970b069a7ce1682ef0de19c45119cf0b1dbfb4c2ab69ea0cd8694"} 

In a real deployment scenario, the keys for the input variables would be distributed to input Providers, 
and hashed versions of the keys needed to interpret the state variables (not generated in the prototype 
Garbler implementation) would be distributed to any Spectators as appropriate. 

Meanwhile, the garbled circuit files *.gc (representing the garbled Machine 𝐺𝐺) would be processed 
into an executable form Exec[𝐺𝐺] (such as the one discussed in the next section), which is then de-
ployed on a suitable blockchain. 

6.2. Prototype Implementation of an Executor in Solidity 
Appendix C gives the complete Solidity code (both without and with comments) for a simple example 
of a smart contract ExecutableMachine comprising an executable implementation Exec[𝐺𝐺] of an 
Executor that is interpreting a hard-coded representation of a garbled version 𝐺𝐺 of the state-machine 
function 𝐹𝐹 represented in Figure 5-3.  In this (very simple) implementation, we use a variation on the 
gather-all-inputs input method but include no authentication of input providers (leaving us open to a 
spam-based DOS attack).  However, those limitations could be straightforwardly ameliorated; we are 
just keeping this example simple for expository purposes. 



 

53 

In this code, an encrypted arc 𝐸𝐸 = (𝐸𝐸next,𝐸𝐸valid) is represented with a simple data structure: 
struct EncryptedArc { 
    uint256 encNext; 
    uint256 encValid; 
} 

containing the 𝑛𝑛 = 256-bit encoded fields 𝐸𝐸next = encNext and 𝐸𝐸valid = encValid of a given arc.   

For a given time step 𝑡𝑡 and (randomized) arc index 𝑘𝑘 ∈ {0, … , 𝑞𝑞 − 1}, we use the procedure de-
scribed in Sec. 6.1 above to generate its encrypted representation 𝐸𝐸(𝑎𝑎𝑘𝑘 , 𝑡𝑡), and then simply hard-code 
that data into a corresponding statement within ExecutableMachine’s constructor, for example as 
follows: 

arcs[𝑡𝑡][𝑘𝑘] = EncryptedArc(0x4aa23a389f984ece6b8150c42df2565c64182c42b2eeab69ae664bd18c1879d8, 
                          0xdf8e363587e796300c9ed5456d556f0d9de3327424c397a57245ef98d0c8cc12); 

where 𝑡𝑡, 𝑘𝑘 here stand in for the corresponding literal integer constants.  See subappendices C.1 and 
C.2.  (Example data for only one time step, 𝑡𝑡 = 0, is included in the first listing, for brevity.) 

Similarly, the 256-bit code for the initial state 𝑠𝑠init can be provided in a corresponding initializer 
for one of the contract’s constant state variables, like so: 

uint256 constant sInit = 0x7128b98ce5a2a8cce5f8db6fc52cbf6c1e7b20b6122e8168650b067d1d194fb6; 

and then another, publicly accessible state variable curState, for keeping track of the coded current 
state 𝐾𝐾cur = 𝐾𝐾(𝑆𝑆𝑡𝑡−1, 𝑡𝑡 − 1), is initialized to sInit. 

We then allow input providers to provide inputs to ExecutableMachine through a public function 
provideInput(uint8 varIndex, uint256 value) 

where varIndex = 𝑖𝑖, the index of the input variable 𝑉𝑉𝑖𝑖 whose value is being provided, and value is 
the 𝑛𝑛 = 256-bit input provision key 𝑝𝑝𝑡𝑡

𝑖𝑖,𝑗𝑗 that represents value 𝑣𝑣𝑖𝑖
𝑗𝑗 being provided for input variable 𝑉𝑉𝑖𝑖 

for the current time step 𝑡𝑡 and current garbled machine state curState =  𝐾𝐾cur.  Provision keys for 
different input assignments are then combined together (using ⊕, bitwise XOR, as the Combinator 
function), and (once values for all of them have been provided) are then used, in an internal function 
executeStep(), to compute the new value of the encoded current machine state curState in the 
manner that was described in Sec. 5.3 above.  Spectators can invoke the curState() public getter 
function to obtain the new current state, from which they can then infer authorized output informa-
tion as per the procedure we discussed in Sec. 5.3.  See the listings in Appendix C for further details. 

6.3. Testing the Prototype Implementation 
To test the Solidity code for the prototype Executor on a development blockchain, we used the Truffle 
suite of Ethereum development tools [18].  Appendix D gives a complete procedure and test script 
for taking the garbled version of the machine from Figure 5-3 through the following example sequence 
of execution steps: 

• The machine starts in state SInit (𝑠𝑠Init) at time 𝑡𝑡 = 0. 
• Time step #0: Input assignments 𝐴𝐴 = 0, 𝐵𝐵 = 1 take the machine to state SReset (𝑠𝑠Reset). 
• Time step #1: Input assignments 𝐴𝐴 = 1, 𝐵𝐵 = 0 take the machine back to state SInit. 
• Time step #2: Input assignments 𝐴𝐴 = 1, 𝐵𝐵 = 1 take the machine to state SPass (𝑠𝑠Pass), 

which is a final state, since it has no successors. 



 

54 

• At this point, the test script queries the machine for its (coded) current state, to make sure that 
it has arrived in the correct state. 

We carried out this test within a simple sandboxed environment (a development chain running on a 
single firewalled host), and it was successful. 

More extensive demos are discussed in the next section. 

 
 

 



 

55 

7. DEMO APPLICATIONS 
Since the start of calendar year 2019, we successfully implemented two different simple but complete 
demonstration applications, which were deployed on a test network within a virtual sandbox (emulyt-
ics-type) environment for blockchain experiments developed at Sandia called FIREWHEEL [19].  Both 
demos were fully tested and work precisely as intended. 

The two demo applications that have been developed so far are: 

1. Supply-Chain Provenance Tracking Demo (based on the state machine in §4.2.1). 

2. Millionaires’ Problem Demo (based on a state machine similar to the one in §4.1.1). 

We also briefly considered developing a demo for the Dungeon Race game example discussed in 
§4.1.2, but that one was deemed too complex for hand-development, which motivated the preliminary 
exploration of a state machine compiler concept, which will be discussed in §8. 

However, our current plan, moving forward, is to first develop a circuit-based implementation of 
GABLE such as is described in §9, and then a variety of much more ambitious applications can be 
developed much more feasibly on top of that platform.   

A working name for the early circuit-based version of GABLE is GOOSE (which stands for 
Garbled Online Obfuscated Secure Evaluation), and a preliminary implementation of GOOSE is 
being prototyped by our collaborators at Georgia Tech, and is currently undergoing early testing and 
further development.  A separate report will describe the GOOSE prototype once it has been comp-
leted. 

Some additional details regarding the two demo applications already implemented follows.  How 
to set up and run the demos is documented in much more detail in a separate document whose most 
recent version, as of this writing, has the filename “GABLE demo instructions 0v12.docx.” 

7.1. Supply-Chain Provenance Tracking Demo 
As mentioned above, this demo is based on the state machine that is illustrated in Figure 4-2 in §4.2.1.  
A variety of scripts are used to set up, build and deploy the demo in our test environment, which is a 
sandboxed virtual network including 4 main virtual host nodes, each running an Ethereum client 
(geth) and configured as peers on an emulated private Ethereum test net: 

• Node #0: Master node. Deploys garbled smart contract to network. 

• Node #1: Runs a vendor client for Vendor #1 (of 3). 

• Node #2: Runs a vendor client for Vendor #2 (of 3). 

• Node #3: Runs a vendor client for Vendor #3 (of 3). 

There are also two additional virtual nodes running a local DNS server and a blockchain explorer.  
Presently the demo just displays diagnostic text output on each node summarizing what is happening 
at that node.  As an example, Figure 7-1 below shows the diagnostic output from Node #1 in a sample 
run.  Note that, for purposes of this demo, appropriate spectator authorities were distributed to the 
respective vendors that allow them to interpret only the machine states pertaining to them specifically. 



 

56 

The gas cost to run this demo was measured and is shown in Table 7-1, and pie-charted in Figure 
7-2.  As of March 13, 2020, given a sample average gas price of 9 gwei/gas on the mainnet, and an 
Ether price of US$128.09/ETH, the total cost comes to US$2.78.  Note that of the total, approxim-

Figure 7-1.  Sample output from supply-chain demo. 
This shows the output from the vendor client running on one of the vendor nodes (node #1).  Note that the 
vendor is only able to interpret the machine states that pertain to it specifically. 



 

57 

ately 15% is Truffle framework overhead (relating to the Migrations contract), ~73% is the deploy-
ment of the ExecutableMachine contract containing all of the garbled arc data, and on average, each 
of the 5 vendor transactions (updating the machine state) takes only about 2.6% of the total. 

Table 7-1.  Gas Cost for Vendor Demo Transactions (in order of occurrence) 

Description 
Block 
Height 

Gas  
Required 

Cost in ETH 
@ 9 Gwei/gas 
(avg. as of 
3/13/20) 

Cost in USD 
@ US$128.09 / 
ETH (market 
as of 3/13/20) 

Deploy Truffle Migrations contract 687 284,908 2.5642 mETH $0.3284 
Initial transaction to Migrations contract 689 42,034 0.3783 mETH $0.0485 
ExecutableMachine contract deployed 691 1,756,030 15.8043 mETH $2.0244 
Record deployment to Migrations contract 693 27,034 0.2433 mETH $0.0312 
Vendor 1 sends “R” symbol 773 73,351 0.6602 mETH $0.0846 
Vendor 1 sends “T” symbol 786 57,466 0.5172 mETH $0.0662 
Vendor 2 sends “R” symbol 796 60,121 0.5411 mETH $0.0693 
Vendor 2 sends “T” symbol 809 60,057 0.5405 mETH $0.0692 
Vendor 3 sends “R” symbol 819 58,287 0.5246 mETH $0.0672 
TOTAL  2,419,288 21.7736 mETH $2.7890 

Figure 7-2.  Pie chart of gas cost distribution for the supply-chain demo. 
Data from Table 7-1 above. 



 

58 

7.2. Millionaires’ Problem Demo 
This demo is based loosely on the toy application discussed in §4.1.1, except that, instead of using the 
state machine displayed in Figure 4-1, we used a different state machine designed for an input model 
in which input providers take turns providing consecutive bits of their respective binary inputs.  This 
was done to simplify the process of reconvergent arc elimination discussed in §5.4.2.   

To explain further: With only one input provider moving per time step, elimination of reconver-
gent arcs requires at most splitting a given destination state into 2 states; whereas, with two input 
providers who may move in either order, splitting a destination state into 3 states would be required 
in some cases.  See Figure 7-3 for the new state machine. 

For purposes of this demo, each participant is given a limited reader authority that allows them to 
interpret (before the final state is reached) only whether it is their turn to move in the current state or 
not.  On its own turn, each participant provides 1 bit at a time of its wealth value, as shown in Figure 
7-4 and Figure 7-5.  In this example, wealth values are 4 bits long, so after 8 turns (4 for each player), 
input collection is complete, and the Finisher sends the “finish” symbol “⊝” (represented as “F” in 
this demo, see Figure 7-6) which causes a transition to a final state, Sag (player A is richer than B) or 
Sal (player A is not richer than B); the final state is then readable by all participants. 

Figure 7-3.  State machine for Millionare’s Problem with a round-robin input model. 
This is a modified version of the Millionaire’s Problem state machine from Figure 4-1, where the input model 
has been changed to round-robin (input providers take turns supplying inputs), and a transformation to elimi-
nate reconvergent arcs has been applied to enhance functional privacy, as discussed in §5.4.2. 



 

59 

An experiment was done to characterize how the bytecode size and gas cost for the Millionaire’s 
Problem demo varies as a function of the number of bits in the wealth values (Figure 7-7), for numbers 
of bits ranging from 1 to 5, except that the contract for the 5-bit case could not actually be deployed 
as a single contract due to a transaction size limit of 32,768 bytes in our local geth, as presently 
configured.   

To enable larger application instances to be deployed, regardless of any contract size limits, we 
confirmed that a given ExecutableMachine smart contract can successfully be broken into several 
contracts, a master contract along with any number of additional contracts which store the garbled 

Figure 7-4.  Sample output from first 6 time steps of the Millionaire’s Problem demo. 
In this demo, each input provider provides successive bits of its 4-bit wealth value on its turn.  Here we see 
participant A (provider 1) supplying the wealth value US$13 = 11012, least-significant bit first.  The output 
transcript continues in Figure 7-5 on the next page. 



 

60 

arc data.  We used this method to successfully test Millionaire’s Problem instances up to 32 bits, which 
would have cost 75,185,098 gas (~677 mETH, US$86.67) to deploy on the mainnet as of 3/13/’20. 

7.3. Remarks on Red-Teaming 
After implementing some working demos, some thought was given as to whether it would be worth-
while to have a “red team” at Sandia attempt to compromise the protocol.  Several technical discus-
sions occurred with Sandia red team experts, discussing various tradeoffs, and thinking through a 

Figure 7-6.  Sample output from last 5 time steps of Finisher in the Millionaire’s Problem demo. 
After all 8 regular turns, the Finisher sends the finish symbol ‘F’ and then the final result becomes readable. 

Figure 7-5.  Sample output from last 3 time steps of the Millionaire’s Problem demo. 
This continues the transcript from the perspective of Player A (participant 1).  After all 8 regular turns (0-7) 
have been completed, the Finisher sends the finish symbol (see Figure 7-6 below) on time step 𝑡𝑡 = 8 and then 
the final result available after step 8 becomes readable by all parties. 



 

61 

meaningful assessment scenario whereby the red team would attempt to reverse-engineer the func-
tional purpose of an executing GABLE contract given varying amounts of key/label information.   

The decision was made to not proceed with actually performing this assessment due to a variety 
of factors, the most important of which being that real GABLE deployments will be done in the 
context of additional infrastructure, i.e., the process by which the Garbler distributes access keys, the 
endpoint security of the nodes participating in the protocol, and any supporting dApp infrastructure.  
A red team assessment of a real deployment would likely prioritize weaknesses in this surrounding 
technology over the core protocol itself, which has a relatively minimal surface area.   

An intermediate approach was ultimately taken for anecdotally characterizing the functional priv-
acy of deployed GABLE contracts.  Specifically, we analyzed GABLE-produced smart contracts with 
the ERAYS Ethereum reverse-engineering toolkit [20].  We observed that (as expected per our design), 
contracts for differing state machines are structurally identical (compare Figs. 7-8 & 7-9).  We have 
not yet taken the logical next step of observing dynamic program traces of different state machines to 
ensure that the state/transition sequences do not exhibit obvious artifacts of their functional pur-
pose—but they should not, per the design of our protocol. 

 
  

10,586

16,506

22,441

28,361

34,281y = 5924.5x + 4661.5
R² = 1

0
5,000

10,000
15,000
20,000
25,000
30,000
35,000
40,000

1 2 3 4 5

By
te

co
de

 S
ize

 (b
yt

es
)

Input Bits

Bytecode Size

3,525,471

5,524,762

7,527,498

9,526,903

y = 2.00E+06x + 1.52E+06
R² = 1.00E+00

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

1 2 3 4

Ga
s C

os
t o

f D
ep

lo
ym

en
t

Input Bits

Deployment Gas Cost

Figure 7-7.  Bytecode size and deployment gas cost for the Millionaire’s Problem demo. 
The chart on the left shows the size of the compiled bytecode for the ExecutableMachine smart contract in 
bytes as a function of the number of input bits; the chart on the right shows the gas cost to deploy the contract.  
As expected, the scaling relation for both functions is exactly linear.  At current gas and ETH prices as of this 
writing (March 20, 2020) the 9,526,903 gas needed to deploy the 4-bit demo would cost about US$2.56. 



 

62 

 
 

  

Figure 7-8.  ERAYS analysis of the GABLE contract for the supply-chain demo. 
(Left) State transition diagram for the supply-chain demo, from Figure 4-2; (Right) Output from ERAYS analysis 
of the corresponding smart contract bytecode.  Compare with Figure 7-9. 



 

63 

 
 

 

Figure 7-9.  ERAYS analysis of the GABLE contract for the Millionaire’s Problem demo. 
(Left) State transition diagram for the Millionaire’s Problem demo, from Figure 7-3; (Right) Output from ERAYS 
analysis of the corresponding smart contract bytecode.  Compare with Figure 7-8. 



 

64 

8. STATE-MACHINE COMPILER CONCEPT 
In early 2019, a fair bit of time was spent doing some exploratory development work pursuant to the 
goal of implementing a state machine compiler, which would be capable of automatically transforming 
high-level state machine descriptions written in the Python programming language into corresponding 
executable garbled contracts.  The original vision for this compiler was that it would be flexible enough 
to support many of the variations on the protocol discussed in this document (different input models, 
output models, etc.) while also providing automatic mechanisms to mitigate the weaknesses previously 
discussed in §5.4.  Some of the concepts behind the compiler are discussed below.   

At present, development work on this compiler remains incomplete, due to resource constraints, and 
also because a higher priority is now being placed in our project on the development of a different, 
more powerful computation model, such as the one described in §9—which, if that effort is successful, 
could render our present, state-machine-based approach somewhat obsolete.  However, for archival 
purposes, we nevertheless describe the present state of the compiler concept below. 

8.1. Compilation Stages 
Figure 8-1 depicts the sequence of stages in the compilation 
and deployment process that takes an application from the 
source code into a garbled machine running on a blockchain.  
The various steps in this process are described below. 

We start out by writing out a functional description of the 
application’s behavior as a Python script or module (.py file) 
(orange) utilizing a certain library of sub-packages collected 
under the top-level package name app_compiler.  This lib-
rary provides a variety of base classes and compiler compon-
ents that are used in the compilation process.   When execu-
ted, the application module (or a separate top-level script) 
kicks off the compilation process. 

The concept behind this compiler is that the source code 
for the application defines the core functionality of the appli-
cation in a state-updating method that provides the logic to 
update the machine state in terms of ordinary state variables.  
In the first step of the compilation process, called functional 
compilation, the compiler traverses the entire tree of possible 
state transitions (starting from the initial state), identifying re-
curring nodes and merging them as it goes along to form the 
state machine graph.  This is called the abstract state machine 
(light blue).  It is in a raw form, not yet ready for garbling. 

The next step in the compilation procedure is the process 
of concretization, in which we take the abstract state machine produced in the previous step and trans-
form it in several respects to produce a concrete state machine (gray) that is suitable for garbling.  Impor-
tant functions accomplished as part of the concretization process include the following: 

1. Automatic unrolling.  This refers to a state machine transformation that ensures that no 
individual state can be encountered more than once in any possible run of the machine.  
One straightforward way to do this is to include a state variable that counts the number 

Functional Description of 
Application Behavior (Python) 

Abstract State Machine 

Concrete State Machine 

Garbled State Machine 

Executable Machine 
(Solidity Contract) 

Deployed  
Machine 

Functional compilation 

Concretization 

Garbling 

Packaging 

Deployment 

Figure 8-1.  Stages of compilation. 
These are described in the text. 



 

65 

of steps of execution.  A method utilizing fewer states in some cases would split off mut-
ated versions of only those states that would otherwise create a graph cycle. 

2. Reconvergent arc splitting. This refers to a state machine transformation in which we 
look for cases where two (or more) outgoing arcs from a given node point to the same 
destination node—this is the reconvergent arc problem mentioned in §5.4.2. In such cases, we 
can simply create new, mutated version(s) of the destination node. 

3. Output delaying. This refers to a state machine transformation in which we take an out-
put that would normally be visible right away (as an output from the state transition, or 
the destination state), and instead store it in a hidden part of the state, and arrange for it 
to be visible as an output from the next transition or state.  In certain input models, this 
transformation mitigates the lookahead problem discussed in §5.4.1, by preventing the input 
provider from being able to see the result of their input until after another participant has 
made a move. 

In the third major step of the compilation process, garbling, we simply garble the concrete state 
machine, as per an appropriate procedure such as the one described in §5.2.  The result of this process 
is generally a set of files (red), including ones that contain appropriate access authorities for distribu-
tion to application participants.  Also included is a file that describes the garbled machine 𝐺𝐺. 

The fourth step, packaging, involves transforming the garbled machine description 𝐺𝐺 into an exec-
utable form (dark blue) Exec[𝐺𝐺] which is ready to be deployed on a (public or permissioned) block-
chain.  In this step, we could alternatively target a variety of other back-end smart-contract platforms 
(besides Ethereum). 

Finally, the fifth step is deployment, in which the smart contract for the executable machine is actu-
ally deployed to a specific distributed smart-contract blockchain, and meanwhile, the keys to access 
the machine are securely distributed to authorized participants.  At this point, the machine is ready to 
use. 

8.2. Software Architecture 
At present, the preliminary (and very incomplete) experimental code base for the compiler is organized 
into a number of packages, which are sub-packages of the top-level app_compiler package.  The list 
of packages is shown in Figure 8-2.  Some further description of their content and status follows. 

8.2.1. Access Package 
The access/ package collects modules having to do with access information and accessor authorities.  
Currently, it includes the following modules: 

• accessInformation.py – Defines a class for objects that gather together all authoriza-
tions needed to access inputs and outputs of a given garbled machine. 

• authority.py – Defines a base class for authorities (sets of access authorizations), and 
subclasses for special classes of authorities (e.g., ones for use by the general public, the 
Garbler, or the union of all defined protocol participants). 

• readerAuthority.py – Defines subclasses of the Authority class for various types of 
read-only access to the garbled machine. 



 

66 

• starterAuthority.py – Defines subclasses of Authority for enabling an entity to 
initially start up the garbled machine in any of a designated set of initial states. 

• writerAuthority.py – Defines subclasses of Authority for enabling various types of 
write-only access to the garbled machine. 

8.2.2. Crypto Package 
The crypto/ package collects modules defining various types of cryptographic primitives to be used 
in the expanded GABLE system, including hash functions, commitments, and encrypted data entries.  
It is presently intended to include the following modules: 

• commitment.py – Defines classes for cryptographic commitments. 

• entryEncrypter.py – Generates encrypted representations of data entries (identified by 
entry identifiers). 

• hashFunction.py – Classes for hash functions which may be used in the garbling pro-
cess. 

8.2.3. Functionality Package 
For our purposes, a complete functionality characterizes an application’s functional behavior, I/O meth-
ods, access authorities and participants.  The functionality/ package collects associated modules, 
including the following: 

• application.py – An application object gathers together all information associated with 
a particular GABLE application throughout the compilation process. 

• behavior.py – Defines an application’s functional behavior, through specification of as-
sociated information such as its initial abstract state. 

Figure 8-2.  Compiler packages. 
Major sub-packages of the top-level app_compiler package in the present (incomplete) compiler code base. 



 

67 

• functionality.py – Base class for defining an application’s overall functionality.  This 
includes a specification of the application’s I/O variables & methods, access authorities, 
participants, and functional behavior. 

• inputMethod.py – Defines classes for defining input methods, which specify the proto-
col to be used for providing inputs to the application and updating its state. 

• outputMethod.py – Defines classes for defining output methods, which specify the pro-
tocol for obtaining outputs from the application. 

8.2.4. Garbler Package 
The garbler/ package collects modules defining various aspects of the Garbler stage of compilation, 
including the following: 

• garbledArc.py – Defines classes for garbled representations of a TransitionArc in a 
finite state machine. 

• garbledFunctionality.py – Defines a class for encapsulating a garbled version of an 
entire application Functionality. 

• garbledInputValue.py – Defines classes for objects representing garbled versions of 
InputValue objects.  This includes input value keys as well as input provision keys. 

• garbledMachine.py – Defines classes for representing a garbled version of a particular 
(concrete) finite state machine. 

• garbledOutputKey.py – Defines classes for representing a garbled version of an output 
key that can be used to un-garble garbled output messages. 

• garbledOutputMessage.py – Defines classes for representing garbled versions of out-
put messages. 

• garbledState.py – Defines classes for garbled representations of an individual state in 
a finite state machine. 

8.2.5. I/O Package 
The io/ package collects modules associated with machine input and output, including the following: 

• bitVariable.py – Defines classes for working with binary-valued input variables. 

• bitVariableType.py – Defines a type object for binary-valued input variables. 

• inputSymbol.py – Defines a class for symbolic tokens representing specific input values. 

• inputValue.py – Defines a class for “input value” objects, which assign a specific input 
token to a specific input variable. 

• inputValueSet.py – Defines classes for representing partial (or complete) variable as-
signments.  Note that some kinds of input value sets could actually assign multiple differ-
ent symbols to a single input variable, as alluded to in footnote 2 on p. 36.   

• inputVariable.py – Defines classes for representing individual input variables for a 
given application. 



 

68 

• inputVariableType.py – Defines classes for representing the type of a given input var-
iable.  A type specifies the set of allowed input symbols, and whether multiple symbols 
may be supplied for a given input variable within a given machine cycle. 

• lineVariable.py – Defines classes for line variables; here a “line” is a concept that in-
cludes both input and output variables, and possibly also a “previous state” variable. 

• lineVariableType.py – Defines classes for specifying the type of a line variable.  These 
are base classes from which to derive input variable types, output variable types, etc. 

• outputMessage.py – Defines classes for representing plaintext messages to be produced 
as output from a given machine. 

• outputs.py – Defines classes for gathering together all of the output messages that may 
be produced by a given machine. 

• outputVariable.py – Defines classes for representing an individual output channel 
from a machine. 

• outputVariableType.py – Defines classes for representing the type of a given output 
variable. 

• standardSymbols.py – Defines objects for a number of predefined standard symbolic 
tokens, such as the ones designated 0 (binary zero), 1 (binary one), ■ (end), ⊥ (undefined), 
⊚ (go to next state), and ⊝ (produce final output & halt). 

8.2.6. Machine Package 
The machine/ package collects modules for representing finite state machines, both abstract and 
concrete versions.  This includes the following modules: 

• abstractMachineArc.py – Defines classes for representing state-transition arcs in an ab-
stract finite state machine. 

• abstractMachineState.py – Defines classes for representing state-machine states in an 
abstract finite state machine. 

• concreteMachineArc.py – Defines classes for representing state-transition arcs in a con-
crete finite state machine. 

• concreteMachineState.py – Defines classes for representing state-machine states in a con-
crete state machine. 

• condition.py – Defines classes for representing a transition condition that is attached to an 
arc in a finite state machine.   

• internalVariable.py – Defines classes for representing individual internal state variables 
within a state machine. 

• machineState.py – Defines base classes for representing individual machine states in a finite 
state machine; both abstract and concrete machine states are derived from these. 

• reconvArcSet.py – Defines classes for representing a specific reconvergent set of arcs with-
in a given abstract finite state machine.  (These get resolved in the concretization stage.) 



 

69 

• stateMachine.py – Defines base classes for representing finite state machines; both abstract 
and concrete state machines are derived from these. 

• stateNode.py – Defines base classes for representing individual nodes in a state transition 
graph, representing a given state of a given finite state machine.  Both abstract and concrete 
machine states are derived from these. 

• transitionArc.py – Defines base classes for representing an individual arc in a state trans-
ition graph, representing a given transition within a given finite state machine.  Both abstract 
and concrete machine arcs are derived from these. 

8.2.7. Participants Package 
The participants/ package collects modules for representing various types of entities that may play 
a role in applications of the GABLE system.  This includes the following: 

• accessor.py – Defines base classes for participants that may access (read from and/or write 
to) the machine. 

• bitWriter.py – Defines a class for writers that are associated to a specific binary input var-
iable. 

• finisher.py – Defines a class for special type of writer upon which is conferred the authority 
to end the machine’s operation, causing it to produce its final outputs (if any) and halt. 

• participant.py – Defines base classes for describing all protocol participants.  Also defines 
subclasses for a variety of special types of participants. 

• reader.py – Defines a class of participant that has read-only access to a given machine. 

• starter.py – Defines classes for a special type of participant that is authorized to start up 
the machine in any of one or more designated initial states. 

• writer.py – Defines a class of participant that has write-only access to the machine. 

8.2.8. Stagers Package 
The stagers/ package collects modules implementing entities that execute the various steps in the 
compilation process.  These include: 

• deployer.py – Implements an entity that can deploy a given ExecutableMachine to a de-
signated distributed computing platform. 

• functionalCompiler.py – Implements an entity that can convert a given application func-
tionality from its source form to an abstract finite state machine representation. 

• garbler.py – Implements an entity that can generate the garbled representation of a given 
application functionality, given its concrete state machine representation. 

• packager.py – Implements an entity that can package a garbled machine into the form of an 
executable machine that is ready to deploy to a given type of distributed computing platform. 

• concretizer.py – Implements an entity that can transform an abstract finite state machine 
into a concrete finite state machine that is ready for garbling. 



 

70 

8.2.9. Stages Package 
The stages/ package collects modules defining classes that are used for representing applications in 
various stages of compilation.  These include: 

• deployedMachine.py – Defines classes that represent a given deployed machine instance, 
and that can track the information necessary to access it. 

• executableMachine.py – Defines classes that can be used to represent a garbled machine 
together with an Executor (garbled-machine interpreter) targeted to operate on a specific set 
of distributed computing platforms. 

The other 4 stages (abstract machine, concrete machine, garbled machine, functionality) are presently 
defined in other packages.   

At some point, it may be desirable to implement a master compiler application that is capable of 
taking the target application from any stage of compilation to any specified later stage. 

8.2.10. Testing Package 
The _testing/ package is intended to collect together modules defining a set of automated unit tests 
which may be used for regression testing, etc.  At present, this package contains just a single module 
called _runUnitTests.py, which runs all of the unit tests. 

 

 
 

 



 

71 

9. A MORE EFFICIENT COMPUTATION MODEL 
As we mention elsewhere in this document, the original state-machine model of computation utilized 
in GABLE is not efficient for carrying out general computational tasks.  This is true for the simple 
reason that, for an arbitrary computation operating on a 𝑤𝑤-bit memory, there are in general up to 2𝑤𝑤 
possible states of the machine (at least—note, this ignores any additional control state that may exist 
separately from the memory).  Thus, even for a fairly simple computation, the size of an explicit state-
machine representation of a desired algorithm can very quickly become completely intractable. 

A more efficient model of computation is the circuit model.  In the circuit model, rather than having 
just one monolithic internal state, you have an array of internal state variables, each with some limited 
number of allowed values; a simple approach that suffices is to use only binary (2-state) state variables, 
or bits.  Then, each step of the computation consists of computing new values for some subset of the 
state variables in the system, each as a function of some limited number of state variables on the 
previous time step.  The functions computing new values of state variables can generically be called 
gates; special cases, for binary state variables, are the classic Boolean gates (such as NOT, AND, OR, 
XOR, NAND, NOR, etc.).  Even just 2-input NAND gates by themselves (or NOR gates) are suffi-
cient for universal computing.  In a generic picture of the circuit model, a computation can be repre-
sented as shown in Figure 9-1 (compare with Figure 5-1).  This can also be viewed as one giant state 
machine, or, alternatively, as 𝑤𝑤 small state machines in parallel, with interconnects between them. 

Gate for 
i.s.v. #1 
at step 0 

… 𝑆𝑆−11  

𝑉𝑉01 
… 

𝑉𝑉0𝑚𝑚 

Input variables at successive time steps 𝑡𝑡 

Time step 𝑡𝑡 = 0 

Interconnects for tim
e step #

0 

𝑆𝑆01 

Gate for 
i.s.v. #2 
at step 0 

𝑆𝑆−12  𝑆𝑆02 

Gate for 
i.s.v. #𝑤𝑤 
at step 0 

𝑆𝑆−1𝑤𝑤  𝑆𝑆0𝑤𝑤 

…
 

Gate for 
i.s.v. #1 
at step 1 

… 

Interconnects for tim
e step #

1 

𝑆𝑆11 

Gate for 
i.s.v. #2 
at step 1 

𝑆𝑆12 

Gate for 
i.s.v. #𝑤𝑤 
at step 1 

𝑆𝑆1𝑤𝑤 

…
 

Time step 𝑡𝑡 = 1 

… 

… 

Gate for 
i.s.v. #1 
at step 
ℓ − 1 

… 

Interconnects for tim
e step #ℓ

−
1 

 

𝑆𝑆ℓ−11  

𝑆𝑆ℓ−12  

𝑆𝑆ℓ−1𝑤𝑤  

…
 

Time step 𝑡𝑡 = ℓ − 1 

Gate for 
i.s.v. #2 
at step 
ℓ − 1 

Gate for 
i.s.v. #𝑤𝑤 
at step 
ℓ − 1 

𝑆𝑆ℓ−21  

𝑆𝑆ℓ−2𝑁𝑁  

𝑆𝑆ℓ−22  

𝑉𝑉1
1 𝑉𝑉1

𝑚𝑚 𝑉𝑉ℓ−1
1  𝑉𝑉ℓ−1

𝑚𝑚  

Figure 9-1.  A circuit computation operating for up to 𝓵𝓵 layers of logic / time steps.   
At each time step we have at most 𝑚𝑚 ≤ 𝑤𝑤 input variables; the gate inputs get assigned from these and the 
previous step’s internal state variables by the interconnect network.  Unlike in Figure 5-1, now we assume 
that the state-updating circuitry (including the interconnect configuration, and the identities of the gates) may 
be different on each time step.  Any desired circuit computation can be embedded into this structure, assum-
ing the depth ℓ and width 𝑤𝑤 are sufficient.  In the text, we discuss how the entire circuit structure may be 
obfuscated. 



 

72 

The structure of Figure 9-1 already hints at how a circuit-based computation may be obfuscated.  
The evaluation of any given target gate can be treated exactly like the evaluation of a state update step 
in §5, except that the input lines are now all internal state variables, rather than all but one of them 
being external input variables.  Apart from this, each gate can be garbled in exactly the same manner 
as a state transition table in §5; in both cases, we are using the same underlying technology of garbled 
lookup tables.  Gates can be evaluated (by any party) as soon as their inputs are known.  

However, note that one important difference is that, in this new picture, the input variables and 
internal state variables will get routed to gate inputs by the interconnect network, which can be com-
posed generically as (for example) a Thompson generalized connector network [3] as shown in Figure 
9-2, composed of 2-input, 2-output routing elements.  Each of the internal blocks (blue) shown in the 
routing element (bottom of figure) is a garbled gate, like any other, except that, in the very first layer 
of routing elements only, there is a special third input (red) to each routing unit called “activate” that 

𝐿𝐿𝑡𝑡−12𝑖𝑖−1 

𝐿𝐿𝑡𝑡−12𝑖𝑖  

Routing elements 
for first layer only 
require additional 
“activate” inputs 
to prevent 
lookahead 

𝑎𝑎𝑖𝑖  

Figure 9-2.  Generalized connector network, and a routing element in this interconnect fabric.   
(Top) An 𝑁𝑁 = 2𝑛𝑛-input Thompson network [3], with 4𝑛𝑛 − 3 layers of 𝑁𝑁/2 routing units each, is capable of 
assigning each of its 𝑁𝑁 outputs from any of its 𝑁𝑁 input lines; half of this network is used for signal splitting 
(fanout), and the other half is used for permuting the order of signals.  (Bottom) Each unit’s function is simply 
to assign each output from one or the other input; however, logic could be incorporated within here as well.  
Each block within the unit is a selector gate which can be evaluated in the same way as the gates in the top-
level diagram (Figure 9-1), with one exception: In the first layer of routing units only, a third “activate” key 𝑎𝑎𝑖𝑖 
is needed, unique to each routing element, which is computed by a protocol participant (called the “Unlocker”) 
which was not involved in providing normal inputs for the current time step.  The activate key is computed by 
the Unlocker using the formula 𝑎𝑎𝑖𝑖 = ℎ�𝐾𝐾(𝐿𝐿𝑡𝑡−12𝑖𝑖−1) ⊕𝐾𝐾(𝐿𝐿𝑡𝑡−12𝑖𝑖 ) ⊕  𝑘𝑘𝑡𝑡�, where 𝐿𝐿𝑡𝑡−1

𝑗𝑗  denotes one of the 𝑁𝑁 input 
lines, which may be either an externally-provided input variable, or an internal state variable (with these input 
lines, all together, being indexed by an integer 𝑗𝑗, which may be written as 𝑗𝑗 = 2𝑖𝑖 − 1 or 𝑗𝑗 = 2𝑖𝑖 for some integer 
𝑖𝑖, where 1 ≤ 𝑖𝑖 ≤ 𝑤𝑤 = 𝑁𝑁/2), and 𝑘𝑘𝑡𝑡 is a key needed to start time step 𝑡𝑡.  See Figure 9-3 below for some 
additional discussion of this algorithm. 



 

73 

must be fed with a special key 𝑎𝑎𝑖𝑖 which is computed by hashing the two inputs to the element together 
with a special key 𝑘𝑘𝑡𝑡 needed to “unlock” the evaluation of the present time step.  The purpose of this 
key is solely to (effectively) decrypt the input values provided, and thereby prevent input providers 
from looking ahead at the response of the circuit to different input values.  Ideally, the time-step key 
should be held (and the corresponding activate keys provided) by an input provider that was not 
involved in providing inputs to the current time step, and that is not able to spectate on outputs from 
the present time step either, in order to prevent any possible lookahead issues.   

The idea here is that all that this particular protocol participant (called the “Unlocker”) can possibly 
do wrong is to simply fail to provide the proper activate keys needed to initiate evaluation of this time 
step.  To provide redundancy, there can be multiple unlocker entities upon whom are conferred the 
ability to provide the first-layer “activate” inputs for any given time step, to reduce the chance that the 
failure of any one such entity to fulfill its designated role will compromise the ability of the whole 
computation to function. 

Alternatively, if we wish for only designated general input providers to be able to act as unlockers, 
while still preventing lookahead, this can be accomplished as follows:  At each time step 𝑡𝑡, only a 
certain pre-designated subset of the available input providers are permitted to provide inputs for that 
time step, and only (all or a subset of) the remaining input providers are given the unlock key for that 
time step.  If input providers do not collude, this protocol then suffices to prevent lookahead. 

The above construction effectively comprises an implementation of universal circuits (UC), that is, 
circuits that can embed arbitrary Boolean circuits, and further, our garbled execution method totally 
obscures the underlying target circuit’s structure and functionality.  Please note that in this implemen-
tation of UC, no separate programming input is required at all; rather, the circuit is configured at compile 
time, through the choice of truth tables.  This is sufficient for privacy due to the general unintelligibility 
of the truth tables and data values in the garbled circuit, given that lookahead is being prevented. 

To outline a complete protocol for execution of these garbled universal circuits: 

1. As usual, the Garbler precomputes the smart contract that encodes the garbled machine 
and distributes the necessary access keys to input providers and output spectators.  Initial 
garbled states for the 𝑤𝑤 internal state variables can be provided in the smart contract itself, 
or in a separate step by a special Initializer participant. 

2. For each time step 𝑡𝑡 ∈ 0, 1, … , ℓ − 1, we carry out the following three execution phases: 

a. Input-gathering phase.  Input keys are gathered from general input providers for the 
current time step according to the input model being used.  Input lines that are 
not needed can be left at some hard-coded default value such as ⊥𝑖𝑖 (“undefined”).  
At some point, input gathering is deemed complete, and we progress to the… 

b. Activation phase.  At this point, no more inputs may be accepted.  Any unlockers on 
the network that hold the unlock key 𝑘𝑘𝑡𝑡 for the current time step may, at this time, 
compute the 𝑤𝑤 activation keys 𝑎𝑎𝑖𝑖 for all of the gates in the first layer of the inter-
connect fabric for the current time step.  See Figure 9-3 below. Note that once all 
these keys have been computed, the entire circuit for the present time step may be 
evaluated (even privately by the unlocker), which is why it’s important, to prevent 
lookahead, that the unlocker not be allowed to spectate on any outputs from the 
current time step.  In any case, if any unlocker is complying with the protocol, it 
will provide all 𝑤𝑤 of the required activation keys to the machine. 



 

74 

c. Evaluation phase.  Now, the smart contract evaluates the entire circuit for the current 
time step; the final effect of this is to update the values of all 𝑤𝑤 = 𝑁𝑁/2 of its 
internal state variables, with their new values being the outputs from the final level 
of 𝑤𝑤 two-input gates.  These variables can then be potentially inspected by spect-
ators as per their conferred reader authorities.  However, note that the evaluation 
of the circuit itself is completely inscrutable to all participants in the protocol (ex-
cept the Garbler), and reveals nothing whatsoever about the structure or function 
of the current logic layer.  When the update phase is complete, we increment the 
time step counter, and commence the input gathering phase for the next time step. 

A more detailed picture of the algorithm for garbling the first layer of routing elements is shown 
in Figure 9-3 above.  Here, we illustrate (a) an arbitrary routing element in the first (leftmost) layer of 
routing elements shown in the top part of Figure 9-2; each selector gate within this element may be 
configured to select either the top (indexed 2𝑖𝑖 − 1) or bottom (indexed 2𝑖𝑖) input line from a pair of 
adjacent input lines, each of which could be either an output from the previous time step or an exter-
nally supplied input line.  Either selection implies a particular logical truth table (b) corresponding to 
the routing element’s function.  The entries of this truth table can be encoded by random keys in the 
usual fashion (c), except that, to prevent lookahead, we also require an additional, third input key 𝑎𝑎𝑖𝑖 
in each row, which, during the activation phase, is computed from the routing element’s inputs and 
the time-step unlock key 𝑘𝑘𝑡𝑡 held by the unlocker, and provided to the online executor.  Once the 

Figure 9-3.  Algorithm for garbling selector gates in the first layer of the interconnect fabric.    
(a) A routing element from the first layer of the interconnect fabric, same as shown in the bottom part of Figure 
9-2, except that here we have also indicated that each selector gate is configured to assign its output line 𝐿𝐿𝑡𝑡,0

𝑗𝑗  
(where 0 indexes the first layer of the universal circuit) from the opposite input line, 𝐿𝐿𝑡𝑡−1

4𝑖𝑖−1−𝑗𝑗. (b) The truth table 
for this particular routing function, in plain-text logical notation. (c) The encoded representation of the truth 
table, utilizing the random keys assigned to each line value. Note the inclusion of a third input key, the 
activation key, which is unique to each row; during the activation phase (step 2b in the text), it is computed 
offline by the unlocker and provided to the machine. (d) Each row of the truth table is garbled using the 
illustrated algorithm, which is similar to the one used for garbling arcs in the state machine model; compare 
Figure 5-4.  Note that evaluation of the garbled circuit reveals no information about the function computed by 
the truth table.  All other gates in the multi-layer universal circuit for evaluating the target circuit layer for the 
current time step are garbled and evaluated in the same manner, except that activation keys are not required 
after the initial layer. 



 

75 

activation key has been provided, the usual algorithm (d) unlocks the encrypted truth-table row and 
the encoded output symbols can be retrieved.5  The same procedure also suffices to then cascade 
results through the entire 4𝑛𝑛 − 2 levels of the universal circuit (consisting of the 4𝑛𝑛 − 3 level deep 
Thompson network, followed by 1 level of general application logic—although actually that one could 
also be merged into the last layer of the Thompson network), except that the activation keys are no 
longer needed for any layer after the first.  Note that the response of the universal circuit to alternative 
input values cannot be probed by any participant, since the corresponding activation keys are not 
available.  Thus, the output of every gate in the universal circuit simply looks like a random bit vector 
and cannot be further interpreted by any party (except by participants holding appropriate spectator 
keys).  As with state machine arcs, the stored order of the truth table rows for each application gate 
or routing element should also be randomized. [4] 

The above design suffices to achieve our goal (garbled universal circuits with only logarithmic 
overhead), but it can be further simplified.  First, although the above procedure subjects all line vari-
ables 𝐿𝐿𝑡𝑡−1𝑗𝑗  coming into a given step of the computation to an “activation” process (carried out by the 
unlocker) before they can be utilized in evaluating the garbled universal circuit, actually it is only ne-
cessary to activate the externally-supplied input values to this process, to prevent input providers from 
looking ahead (“trying out” different values for a given variable, as it were) and thereby learning some-
thing about the u.c.’s routing topology or the application layer function.  Figure 9-4 illustrates a satis-
factory procedure for this more limited activation.  Here, the 𝑚𝑚 externally-supplied input variables, 
where 𝑚𝑚 ≤ 𝑤𝑤, are fed to the upper inputs of corresponding first-layer routing elements, after subjec-
ting them to “activation” or decryption by the Unlocker for purposes of evaluating the garbled truth 
tables for the selector gates in the routing element. 

The above construction assumes that, in the most general class of applications, meaningful new 
input values that were a priori unknown could impinge on the circuit at any time during its evaluation 
(i.e., at the time step corresponding to any layer of target logic).  This provides a capability for partici-
pants to react to outputs (that they have spectator keys for) from previous time steps, providing a 
possibility for interactive computations to take place.  However, for many applications, this feature 
may not be required, and the only meaningful inputs could all arrive at time 𝑡𝑡 = 0.  In this case, there 
are different options for how the remainder of the circuit layers could be evaluated: 

1. We could have special external input providers called Steppers provide special Proceed  (“⊚”) 
tokens to a designated input line (e.g., 𝑉𝑉𝑡𝑡1) on each time step 𝑡𝑡 > 0, with this token then 
decrypted by an Unlocker in the usual fashion, kicking off the evaluation of the u.c. for 
time step #𝑡𝑡, with any actual logical value corresponding to the token (say “1”) ignored 
by the circuit. All other input lines can just be assigned hard-coded default values in the 
contract such as ⊥𝑖𝑖 (“undefined”).  Thus, all ℓ − 1 stages of execution after the first are 
driven forwards by an alternating sequence of “proceed, decode” actions by the Step-
pers/Unlockers. 

2. Alternatively, given just a simple change to the Executor, we can simply skip input-gath-
ering phases altogether for every time step 𝑡𝑡 > 0, and run through all ℓ logic layers / time 
steps in one long continuous pass after the inputs to time step 𝑡𝑡 = 0 are supplied.  This is 
fine and it incurs no loss of privacy, since the application of the Unlockers to the originally 

                                                 
5 There is a further optimization to this algorithm wherein the final bits of the line encodings for 0 and 1 logical values are 

ensured to be different and are used together to select the appropriate truth table row; the “valid” field is then not 
required. This “point-and-permute” technique was introduced by Kolesnikov and Schneider in 2008 [4]. 



 

76 

supplied inputs ensures that no alternate evaluation of the circuit can be probed; thus, 
every layer in the circuit remains unintelligible throughout the evaluation process. 

The above ideas, of course, barely scratch the surface of the very wide variety of universal-circuit-
based secure computing schemes that are possible; for example, see [21] for a more sophisticated 
scheme which may provide simpler constructions in practical cases, and which can likely be adapted 
for use in our framework. 

Figure 9-4.  Simplified algorithm for garbling selector gates in first layer of interconnect fabric.    
This version takes advantage of the fact that only the externally-supplied inputs, not the internal states, need 
to be activated by the Unlocker. (a) Here we see a detail of the interface between two adjacent time steps, 
step #(𝑡𝑡 − 1) and step #𝑡𝑡.  Internal state lines 𝑆𝑆𝑡𝑡−1𝑖𝑖 , where 1 ≤ 𝑖𝑖 ≤ 𝑤𝑤, carry the garbled internal state variables 
output from time step 𝑡𝑡 − 1 to the lower input lines 𝐿𝐿𝑡𝑡−12𝑖𝑖  of the first layer of selector gates.  Meanwhile, the 
input variables 𝑉𝑉𝑡𝑡𝑖𝑖 for the current time step, 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚 ≤ 𝑤𝑤, feed the upper input lines 𝐿𝐿𝑡𝑡−12𝑖𝑖−1, except that (b) 
we pass their garbled values through an Unlocker, which effectively “decrypts” or activates them for use in 
the selector gates.  This is done using the formula 𝑑𝑑𝑡𝑡

𝑖𝑖,𝑗𝑗 = ℎ(𝑘𝑘𝑡𝑡
𝑖𝑖,𝑗𝑗⨁ 𝑘𝑘𝑡𝑡), where 𝑘𝑘𝑡𝑡

𝑖𝑖,𝑗𝑗 =  𝐾𝐾(𝑣𝑣𝑖𝑖
𝑗𝑗 , 𝑡𝑡), and 𝑘𝑘𝑡𝑡 is a time-

step unlock key as before. (c) In this example, the plain-text truth table for both selector gates’ function is the 
same as in Figure 9-3, and the garbled version (d) is also the same, except that the separate activation input 
𝑎𝑎𝑖𝑖 is no longer needed since the external input is already decoded.   



 

77 

9.1. Cost Analysis 
A simple analysis was undertaken to estimate what the cost would be to deploy garbled universal 
circuits on Ethereum for evaluating several arbitrary examples of application circuits using the method 
described above.  The EMP (Efficient Multi-Party) computation toolkit (EMP-TOOL)6 was used to 
synthesize a circuit for the two-bit Millionaire’s Problem, and additional circuits were obtained from 
Nigel Smart’s repository7 at Katholieke Universiteit Leuven.  Results are shown in the table below. 

Table 9-1.  Deployment Cost Estimates for Circuit Examples 
Cost figures assume 1 Gwei per gas and Ether price of US$184.62/ETH sampled on April 23, 2020. 

  
The first section of the table, “Data for Original Circuit,” gives some raw data such as logic gate 

counts for the original circuit netlists.  (These circuits are not necessarily well optimized, but this is 
just to give us a starting point for analysis.)   

To generate the data in the next table section, “Layered Circuit Data,” we wrote a simple tool to 
map each gate to the earliest possible logic layer and report the resulting circuit depth and maximum 
circuit width (in gates).  No attempt was made to apply any logic transformations or other optimiza-
tions of the layer assignment to help minimize circuit width or depth.  The charts in Figure 9-6 and 
Figure 9-5 outline the circuit structure for a couple of the examples (AES and SHA-256). 

The “Universal Circuit Data” part of Table 9-1 was calculated as follows.  The adjusted circuit 
width 𝑤𝑤 rounds up the width to the nearest power of 2.  The number of Thompson network layers is 
4 lg 2𝑤𝑤 + 3, and the number of routing elements per Thompson network is that times the adjusted 
width 𝑤𝑤.  The total number of routing elements is simply that times the depth of the application 
circuit.  The UC overhead factor shows the factor of increase in the total number of gates (assuming 
here that all application gates are absorbed into the final routing layer for each time step). 

                                                 
6 See https://github.com/emp-toolkit/emp-tool. 
7 See https://homes.esat.kuleuven.be/~nsmart/MPC/old-circuits. html. 

https://github.com/emp-toolkit/emp-tool
https://homes.esat.kuleuven.be/%7Ensmart/MPC/old-circuits.%20html


 

78 

Finally, “Cost Estimates” are obtained as follows.  If point-and-permute [4] is used to index truth 
table rows, each routing element requires storing an array of eight 256-bit words, which requires ap-
proximately 200,000 gas units, according to our empirical results from our test deployments of state 
machines for various Millionaire’s Problem examples as reported in §7.2.  The estimated gas cost in 
the table is that required to deploy just the storage contracts (in millions of gas units) and ignores the 
cost for the Executor code itself, which is generally small in comparison (only around 1 million gas).  
Finally, the gas cost was converted to ETH and US dollars using price data sampled on April 23rd, 
2020 (specifically, assuming paying only 1 Gwei/gas, at an Ether price of US$184.62 per ETH). 

Figure 9-6.  Profile of circuit width versus logic layer for the AES example circuit.    
The traces show (blue) the number of regular logic gates (NOT/AND/XOR), (orange) 
the number of buffer gates (i.e., unchanging internal state variables), and (gray) the 
total number of circuit elements of both types, as a function of the logic-layer depth in 
the circuit.  Simple circuit transformations might reduce the cost of this example some-
what, but probably not by more than a factor of ~2–3×.  

Figure 9-5.  Profile of circuit width versus logic layer for the SHA-256 circuit.    
This particular circuit algorithm is memory-intensive, with the number of active gates 
at each logic layer being only a small fraction of the total circuit width.  Simple trans-
formations probably cannot reduce the cost of this example by much more than ~2×.  



 

79 

Although these are just rough calculations, and the circuits are not well optimized, a preliminary 
conclusion from this analysis is that the practical cost of this method, while at least not exponential, 
remains substantial for applications of a complexity requiring, say, general 32-bit integer arithmetic.  
However, a number of further optimizations can be explored which would improve the situation: 

1. For some application contexts, the original target circuits could be much better optimized 
to minimize cost.  For example, supposing that the input bits for a 32-bit add were supplied 
one at a time (like in our state machine for the Millionaire’s Problem), and the addition is 
done serially, and if output bits are read out one at a time as well, then the circuit width, 
and therefore the overhead factor for the Thompson network, could be made much 
smaller. 

2. The mapping of the circuit onto layers could also be designed to minimize cost.8 

3. It should also be possible (although it would likely require a substantial research effort) to 
migrate a greater amount of application logic (i.e., more than one layer) into the Thompson 
network, thereby reducing the number of computation steps required to embed the origi-
nal application circuit. 

4. Finally, more efficient universal circuit constructions could be explored. 

It should be noted that the kinds of applications represented by the above circuits are not really ones 
that would be appropriate to run on GABLE to begin with.  See §9.3 for a more realistic scenario. 

9.2. Cost Comparison vs. Garbled Circuits without Functional Privacy 
It’s important to point out that almost all the cost of the examples above comes from our requirement 
for functional privacy, which forces us to take pains to obscure the circuit itself (gates and topology), 
as well as the data.  This incurs substantial overhead for our universal circuit embedding.  For an 
application that only requires data privacy, we can do much better.  If the techniques described in [4] 
are used to eliminate NOT and XOR gates, and the number of AND gates is minimized, then the 
estimated costs to deploy just the garbled AND gate data are shown in Table 9-2 (OR gates are not 
shown because they were converted to ANDs).  Note that by abandoning the functional privacy re-
quirement, both the size of the garbled representations of these example circuits and the cost of de-
ploying them to the blockchain are reduced by factors ranging from 40× to over 300,000×. 

Table 9-2.  Deployment Cost Estimates for Circuit Examples without Functional Privacy 
Cost figures assume 1 Gwei per gas and Ether price of US$184.62/ETH sampled on April 23, 2020. 

 

                                                 
8 For example, one can iterate through circuit widths (above the minimum) that are powers of 2, then minimize circuit 

depth for the given width, then choose the solution that offers the lowest overall cost. 



 

80 

9.3. Cost Comparison vs. State Machines for Auction Problem 
One application that is simple enough (in relation to its utility) for blockchain-based garbled universal 
circuits to be viable is that of determining the winner(s) in a simple auction scenario (which we briefly 
mentioned in §4.2.2) with 𝐵𝐵 participants (bidders).  Whoever submits the highest bid wins, and there 
can be multiple winners in case of a tie. 

If all bid values are 𝐿𝐿 bits long, and if each participant supplies individual bits of their bid one at a 
time, most-significant bit (MSB) first, on consecutive time steps, then this can be accomplished using 
a state-updating circuit having 𝐵𝐵 bits worth of internal state (i.e. a circuit of width 𝑤𝑤 = 𝐵𝐵 binary state 
variables between stages, or a monolithic state machine with 𝑝𝑝 = 2𝐵𝐵 − 1 states, where the −1 is there 
because a state with no winners is impossible, and can be omitted), using the following algorithm: 

Call the internal state variables 𝑊𝑊𝑖𝑖 , for 𝑖𝑖 = 0, … ,𝐵𝐵 − 1.  Variable 𝑊𝑊𝑖𝑖 will indicate the truth value 
of the proposition, “Bidder #𝑖𝑖 could still be a winner, given the partial bids seen so far.”  Initially, we 
assign 𝑊𝑊𝑖𝑖 ≔ 1 (i.e., True) for all 𝑖𝑖; before we have seen any input bits, any player could still win. 

On each time step 𝑡𝑡, for 𝑡𝑡 = 0, … , 𝐿𝐿 − 1, each participant supplies input value 𝑣𝑣𝑖𝑖(𝑡𝑡) comprising 
bit #(𝐿𝐿 − 1) − 𝑡𝑡 of their bid; that is, the bit in the 2(𝐿𝐿−1)−𝑡𝑡s place.  At this point, one of two things 
may happen: 

1. If there is any participant 𝑖𝑖 such that both 𝑊𝑊𝑖𝑖 = 1 and 𝑣𝑣𝑖𝑖(𝑡𝑡) = 1, then the state bits of all 
participants 𝑖𝑖 get updated as per 𝑊𝑊𝑖𝑖 ≔ 𝑊𝑊𝑖𝑖 ⋅ 𝑣𝑣𝑖𝑖(𝑡𝑡), where “⋅” accomplishes logical AND. 

2. Otherwise, the state is unchanged. 

In either case, we then proceed to the next time step.  See Figure 9-7 below for pseudocode. 
This algorithm works because, since we are processing bits in big-endian order, as soon as any 

player neglects to supply a “1” bit on some cycle when some other potential winner has, that player is 
immediately eliminated from the set of possible winners (since even if they supplied “1” for all 
remaining bits, it wouldn’t make up for not supplying “1” on this round). 

At the end of the algorithm, a Finisher can advance us to a new state in which we reveal to each 
participant only whether they themselves specifically were among the set of winners or not. 

Figure 9-7.  Pseudocode for bitwise multi-bidder auction algorithm.    
See text for discussion.   



 

81 

An explicit state-machine implementation of this algorithm will necessarily have high complexity 
due to the need for at least 2𝐵𝐵 − 1 internal states; further, each state will have 2𝐵𝐵 outgoing arcs, to 
reflect the number of possible input configurations on each cycle.  Thus, there will be 22𝐵𝐵 − 2𝐵𝐵 arcs 
for each time step.  Note this ignores any additional complexity overhead required for reconvergent 
arc elimination, although that problem can be avoided easily by adding Unlockers to the protocol as 
we described for the circuit model earlier in §9. 

Table 9-3.  Complexity and Cost of Monolithic State Machines for Simple Auctions 
Cost figures assume 1 Gwei per gas and Ether price of US$184.62/ETH sampled on April 23, 2020. 

 Complexity of Explicit State Machine for Multi-Bidder Auction 

Bidders 
States/ 

cycle 

Arcs 
per 

state Arcs per cycle 
Contract data 

words per cycle 
Gas/cycle 
(millions) Cost/cycle (USD) 

Cost/ bidder/ bit 
(USD) 

2             3              4                           12                          24                         0.6   $                   0.10   $                0.05  
3             7              8                           56                        112                         2.8   $                   0.48   $                0.16  
4          15           16                         240                        480                       12.0   $                   2.07   $                0.52  
5          31           32                         992                     1,984                       49.6   $                   8.58   $                1.72  
6          63           64                      4,032                     8,064                     201.6   $                 34.85   $                5.81  
7        127         128                    16,256                   32,512                     812.8   $               140.52   $              20.07  
8        255         256                    65,280                 130,560                  3,264.0   $               564.31   $              70.54  
9        511         512                  261,632                 523,264                13,081.6   $           2,261.68   $            251.30  

10     1,023      1,024               1,047,552             2,095,104                52,377.6   $           9,055.56   $            905.56  
11     2,047      2,048               4,192,256             8,384,512             209,612.8   $         36,239.96   $         3,294.54  
12     4,095      4,096            16,773,120           33,546,240             838,656.0   $       144,995.24   $       12,082.94  
13     8,191      8,192            67,100,672         134,201,344          3,355,033.6   $       580,051.76   $       44,619.37  
14   16,383    16,384          268,419,072         536,838,144        13,420,953.6   $    2,320,348.67   $     165,739.19  
15   32,767    32,768       1,073,709,056      2,147,418,112        53,685,452.8   $    9,281,677.93   $     618,778.53  
16   65,535    65,536       4,294,901,760      8,589,803,520      214,745,088.0   $  37,127,278.26   $ 2,320,454.89  

In contrast, a GUC (Garbled Universal Circuit) implementation of the same state machine can be 
much more compact.  Each step of the algorithm requires the following logic operations: 

1. 𝐵𝐵 AND gates, to check each participant for the condition 𝑊𝑊𝑖𝑖 = 1 and 𝑣𝑣𝑖𝑖(𝑡𝑡) = 1. 

2. (𝐵𝐵 − 1) OR gates, to see if the above condition was true for any participant. 

3. Another 𝐵𝐵 AND gates (with one input negated), to allow each participant’s state bit 𝑊𝑊𝑖𝑖 to 
pass through unchanged if none of the possible winners supplied a ‘1’ bit. 

4. Another 𝐵𝐵 OR gates, to combine results from 1 and 3. 

See Figure 9-8 for a sketch of the circuit for the 3-bidder case.  Thus, we need a total of 4𝐵𝐵 − 1 two-
input gates.  It seems unlikely that these can all be moved into the Thompson network.  For now, we 
will just assume conservatively that each layer of the circuit will require a separate GUC step 
(Thompson net).  Table 9-4 below shows the cost to deploy the garbled data for this machine.  Note 
that the cost per bidder per bit is less than US$30 in all cases up to 16 participants. 

We can compare results between Table 9-3 and Table 9-4.  See the chart in Figure 9-9 on p. 83. 

For perspective, Table 9-5 estimates the cost for running auctions on garbled universal circuits for 
larger numbers of bidders.  Note that the cost per bidder per bit scales up only polylogarithmically, 
and even for very large auctions with thousands of bidders is still under US$150.00. 



 

82 

In summary, for certain problems such as simple simultaneous auctions (as in §4.2.2) in which the 
cost to run the computation can be amortized over potentially large numbers of users, the universal 
garbled circuits approach can be reasonably feasible. 

 

Table 9-4.  Complexity and Cost of Garbled Universal Circuits for Small Auctions 
Cost figures assume 1 Gwei per gas and Ether price of US$184.62/ETH sampled on April 23, 2020. 

Bidders 

B-way 
NOR 

comp. 
steps 

NOR 
circ. 

width 

Tot. 
circuit 
width 

(gates) 

Adj. 
circ. 

width 
(gates) 

Rout'g 
layers/ 
comp. 

step 

Rout'g 
elems./ 

comp. 
step 

Comp. 
steps/ 

app. 
cycle 

256-bit 
words/ 

app. 
cycle 

Gas/ 
app. 

cycle 
(millions) 

Cost/ app. 
cycle 

(USD) 

Cost/ 
bidder/ 

bit 
(USD) 

2 1 1          5           8         13        104          4        3,328          83.2   $     15.36   $    7.68  

3 2 1          7           8         13        104          5        4,160        104.0   $     19.20   $    6.40  

4 2 2        10         16         17        272          5      10,880        272.0   $     50.22   $  12.55  

5 3 2        12         16         17        272          6      13,056        326.4   $     60.26   $  12.05  

6 3 3        15         16         17        272          6      13,056        326.4   $     60.26   $  10.04  

7 3 3        17         32         21        672          6      32,256        806.4   $   148.88   $  21.27  

8 3 4        20         32         21        672          6      32,256        806.4   $   148.88   $  18.61  

9 4 4        22         32         21        672          7      37,632        940.8   $   173.69   $  19.30  

10 4 5        25         32         21        672          7      37,632        940.8   $   173.69   $  17.37  

11 4 5        27         32         21        672          7      37,632        940.8   $   173.69   $  15.79  

12 4 6        30         32         21        672          7      37,632        940.8   $   173.69   $  14.47  

13 4 6        32         32         21        672          7      37,632        940.8   $   173.69   $  13.36  

14 4 7        35         64         25    1,600          7      89,600     2,240.0   $   413.55   $  29.54  

15 4 7        37         64         25    1,600          7      89,600     2,240.0   $   413.55   $  27.57  

16 4 8        40         64         25    1,600          7      89,600     2,240.0   $   413.55   $  25.85  

 

Figure 9-8.  Application circuit example for multi-bidder auction algorithm for 𝑩𝑩 = 𝟑𝟑 bidders.    
The 𝐵𝐵-input NOR gate at center can be transformed into a depth-⌈lg𝐵𝐵⌉ binary tree of 𝐵𝐵 − 1 two-input OR 
gates, with the output feeding bubbled inputs of the AND gates in the next layer.   



 

83 

Table 9-5.  Complexity and Cost of Garbled Universal Circuits for Large Auctions 
Cost figures assume 1 Gwei per gas and Ether price of US$184.62/ETH sampled on April 23, 2020. 

 Complexity of Garbled Universal Circuit for Multi-Bidder Auctions (Larger Auction Sizes) 

Bidders 

Total 
circuit 
width 

(gates) 

Adj. 
circ. 

width 
(gates) 

Rout'g 
layers/ 
comp. 

step 

Rout'g 
elems./ 

comp. step 

Comp. 
steps/ 

app. 
cycle 

256-bit 
words/  

app. cycle 

Gas/  
app. cycle 
(millions) 

Cost/  
app. cycle 

(USD) 

Cost/ 
bidder/ 

bit (USD) 

32          80         128         29           3,712          8           237,568           5,939.2   $       1,096.50   $   34.27  

64        160         256         33           8,448          9           608,256         15,206.4   $       2,807.41   $   43.87  

128        320         512         37         18,944        10        1,515,520         37,888.0   $       6,994.88   $   54.65  

256        640     1,024         41         41,984        11        3,694,592         92,364.8   $     17,052.39   $   66.61  

512     1,280     2,048         45         92,160        12        8,847,360       221,184.0   $     40,834.99   $   79.76  

1024     2,560     4,096         49       200,704        13      20,873,216       521,830.4   $     96,340.33   $   94.08  

2048     5,120     8,192         53       434,176        14      48,627,712    1,215,692.8   $   224,441.20   $ 109.59  

4096  10,240   16,384         57       933,888        15   112,066,560    2,801,664.0   $   517,243.21   $ 126.28  

8192  20,480   32,768         61    1,998,848        16   255,852,544    6,396,313.6   $1,180,887.42   $ 144.15  

9.4. Conclusions on Cost 
Some final remarks to conclude our overall discussion of cost in this section:  We acknowledge that 
of course, the expected real-world Ethereum gas cost for some of the examples illustrated in §9.1 & 
§9.3 above are exorbitantly large. Our presentation of these estimated costs should not be taken to 

Figure 9-9.  Semi-logarithmic chart comparing costs of FSM vs. GUC approaches for auctions. 
The horizontal axis shows the number of bidders 𝐵𝐵; the log-scale vertical axis shows the estimated cost in 
dollars to deploy the auction contract, per bit in the length of the bid values.  For example, if we wanted to 
support bid prices up to $1,000,000, with a $1,000 price granularity, we would need 10 bits in the bid values, 
and the total cost to operate the auction would be 10× the level shown.  E.g., if there were 10 bidders, the 
total cost to run the auction in garbled fashion on Ethereum would be $96,700 if we had to use the state 
machine model, but only $1,737 in the universal circuit model, for a cost savings of 98.2%. 



 

84 

suggest or imply that corresponding deployments would necessarily be recommended. Rather, for 
practicality considerations, we propose that potential users engage in the following thought process: 
For any multi-party application requiring functional privacy, one should consider the overhead cost 
of deploying (agreeing upon, purchasing, networking, maintaining, etc.) a dedicated, resilient popula-
tion of compute nodes (whether cloud-based, or physical) upon which to perform the desired 
computation, and weigh that against the cost of using an approach like GABLE’s.   

For cases in which SMC features are desired but our approach is exorbitantly expensive, a more 
prudent near-term choice (in lieu of possible further improvements in SMC and garbled smart contract 
efficiency if R&D in this area continues) will likely rather be to procure and deploy physical compute 
nodes running a state-of-the-art, non-blockchain-based SMC protocol, assuming that the “per-cycle 
cost” of traditional SMC (largely consisting of power/cooling) is significantly lower than the cycle cost 
of blockchain-based deployments, even when accounting for the amortized cost of any initial capital 
investment in the compute infrastructure. 

However, our approach may nevertheless have advantages over the “deploy your own infrastruc-
ture” approach in areas such as disaster resilience/survivability (e.g., Ethereum is extremely survivable, 
whereas the survivability of “deploy your own” depends on the resources invested in redundant data-
centers, etc.) and transparency (our approach should make certain post-haste verifiability approaches 
more believable, due to the immutability of the Ethereum blockchain). As further efficiency improve-
ments are applied to our, and related, approaches, a wider range of applications under such schemes 
may eventually become more competitive with “deploy your own” SMC infrastructure, and may come 
to look increasingly attractive under requirements for sufficiently high survivability, etc.  

 



 

85 

10. RELATED WORK 
In this section, we briefly review a sample of the relevant work in several subfields of cryptography 
that relate to secure computation, and compare and contrast the overall setup (in terms of the overall 
security model and requirements) and features achieved by our framework with those of the existing 
work in those fields.  Please note that we are not here attempting to carry out a comprehensive review 
of each subfield that we mention. 

10.1. Secure Multi-Party Computation 
The study of Secure Multi-party Computation (SMC, or more often MPC) began with the seminal work 
of Yao [8] in 1982, in which he considered the example of two parties indexed 𝑖𝑖 = 1,2, each of which 
knows a number 𝑥𝑥𝑖𝑖 , and the parties wish to jointly determine whether 𝑥𝑥1 < 𝑥𝑥2 without revealing to 
each other any other information about the numbers held.  This is the “Millionaires’ Problem,” which 
we already saw a version of in Sec. 4.1.1.  It is straightforwardly generalizable to a case with 𝑁𝑁 ≥ 2 
parties, and any arbitrary computable function 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑁𝑁) of the data held by each party.   

In general, MPC refers to any such secure computation setup in which a group of parties who do 
not necessarily fully trust each other are nevertheless able to compute such a function 𝑓𝑓 of their re-
spective inputs and mutually learn the output, without learning anything else about each other’s inputs. 

Secure Multi-party Computation does not require a trusted central authority to collect inputs, per-
form calculations, or distribute outputs.  Computation is performed by one or more of the cooperating 
parties.  Thus, the influence of dishonest parties is a concern.  A “secure” MPC scheme ensures that 
a dishonest actor cannot affect the outcome of the scheme in a way which cannot be done in a sup-
ervised scenario with a trusted central authority [22]. This security model is known as the ideal/real 
simulation paradigm. 

Yao’s solutions to the Millionaires’ Problem [8] are similar to key exchange schemes, where two 
parties exchange information dependent on private values (but not revealing any information about 
those values) in order to end up with a shared secret. One of these solutions depends on the use of one-
way functions, functions which are easy to compute but whose inputs are difficult to recover. One-way 
functions, also used in key exchange schemes, provide for privacy between parties as well as defense 
against unauthorized parties intercepting transactions.  Standard cryptographic hash functions, such 
as the ℎ(⋅) function invoked in our GABLE framework (§5.2) are examples of functions that are, at 
least, widely believed to be one-way. 

Since [8], Yao also introduced garbled circuits [23], which provide a way to address SMC for general 
functions, not just specific computations like whether 𝑥𝑥1 < 𝑥𝑥2 as in the Millionaires’ Problem.  In one 
version, Alice acts as the executor of the scheme.  For a given gate, she generates two keys for each 
input and output wire, and builds a garbled computation table, where the keys associated with the 
possible outputs are encrypted with the keys for the corresponding inputs.  To share information and 
mutually calculate the outcome, a key-exchange-like transaction is performed. This can be facilitated 
by oblivious transfer [24].  Our technique described in this report (§§5.2-5.3) for generating and interpre-
ting garbled state machines is similar to, and descended from Yao’s garbled circuit methods.  Our 
technique for garbling universal circuits, described in §9, is even more closely related. 

Additional methods for computing arbitrary functions using SMC have been developed over the 
years, attempting to address security against malicious adversaries (e.g., [25], [26]).  SMC can be applied 
in situations where the user of a computational tool does not want to reveal personal data to the 
service provider (this essentially the use case that we wish to be solved with all of the techniques 



 

86 

described in this section).  Research in SMC is being used in a variety of applications, including secure 
databases [27], machine learning on cloud services [28], and data mining [29]. 

The similarities between our setup and the standard ones for SMC include: 

1. The result of the computation can be arranged to become common knowledge among all the 
input providers, while not also becoming available to arbitrary outside parties.  In our ap-
proach, this can be done, for example, by giving each of the input providers a key that unlocks 
a commitment in the smart contract as to what is the unique spectator key that allows obtaining 
the mutually visible output of the computation.  

2. In the process of running the Machine, no information whatsoever about the input values 
provided by each participant is revealed to any of the other participants, other than what is 
directly implied by whatever result from the computation is revealed to each participant. 

There are a few differences, however, between our problem definition, and traditional ones for SMC: 

1. In our setup, the input providers are not necessarily enabled to learn the result of the computa-
tion (but meanwhile, other parties can be, and the Company itself, at minimum, is).  Normally 
in SMC, the purpose of the computation is solely to provide mutual knowledge of the comp-
utational result to the participants.  In our setup, we can, if we wish, enable the input providers 
to also learn the result of the computation, but we do not have to do so. 

2. In our setup, the input providers are not necessarily even made aware of the nature of the com-
putation that is being performed.  Normally in SMC, the input providers are cooperating to 
compute a function that is known to them.  In our setup, the input providers are indeed still 
cooperating to compute a function, but (in our base protocol, where they only receive a subset 
of keys) it is impossible for them to know exactly what function is being computed.  They 
must just trust that the overall function being computed has whatever properties they expect—
although it’s possible for the computation to be verified later; see §10.5.  (However, they can, 
at least, obtain mutual information about whatever computational result they are all given.)   

Note that, however, it would be possible to allow the input providers to learn what the 
computation is by simply giving them the entire garbled circuit including all I/O keys, but in 
that case, they could infer the other providers’ input values as well, and so the whole system 
would then no longer be providing an SMC setup, per se.  In this case, the whole system would 
then effectively be more closely akin to a sort of authenticated VPN between the input prov-
iders, one that allows them to privately execute whatever protocol the Machine facilitates with-
out arbitrary outside parties snooping. 

3. In our setup, the entity that originally ran the Garbler (the Company) is enabled to read all 
inputs and outputs from the computation (at least, if that entity can view the protocol messages 
exchanged), and it also is the only entity that knows for certain what computation the Machine 
actually does (assuming that the full garbled circuit is not given out to the other participants).  
Normally in typical SMC setups, only the input providers can know what their individual in-
puts were, but they all clearly know what computation they are cooperating to carry out.  Other 
parties not involved in the protocol would not necessarily be enabled to learn the inputs, the 
outputs, or what computation is being performed. 

10.2. Homomorphic Encryption 
Homomorphic encryption (HE) is a paradigm for secure computation in which a computation can be 
performed on encrypted data to produce the correct encrypted result, without having to decrypt the 



 

87 

input data.  Its most general and powerful variant is fully homomorphic encryption (FHE), in which the 
computation that is performed may be any arbitrary computation.  Craig Gentry proposed a scheme 
for FHE based on lattices in 2009 [9], which we describe in more detail below. 

10.2.1. Brief Review of FHE 
The term homomorphic here comes from the field of abstract algebra, in which a homomorphism is a func-
tion 𝑓𝑓:𝑋𝑋 → 𝑌𝑌 which preserves a binary operation. For example, if addition is the binary operation of 
interest in both 𝑋𝑋 and 𝑌𝑌, then 𝑓𝑓(𝑎𝑎 + 𝑎𝑎) = 𝑓𝑓(𝑎𝑎) + 𝑓𝑓(𝑎𝑎) for 𝑎𝑎, 𝑎𝑎 in 𝑋𝑋.  In the context of encryption, 
it can be beneficial to have an encryption function which is homomorphic with respect to arithmetic 
operations. If this is the case, then we can perform operations on encrypted data, which when de-
crypted, will result in the same operations on plaintext data.  A classic use case for this kind of en-
cryption is cloud computing. A client storing encrypted data on the cloud can request the server to 
perform a computation on the data without revealing the plaintext. The client can then decrypt the 
manipulated data and receive the plaintext with the same operations applied. 

RSA encryption [30], a popular public-key cryptosystem, provides one example of a function 
which is homomorphic with respect to multiplication.  Say we are encrypting messages 𝑎𝑎, 𝑎𝑎  with the 
RSA encryption function 𝐸𝐸, defined by 𝐸𝐸(𝑚𝑚) = 𝑚𝑚𝑒𝑒 mod 𝑁𝑁  for arbitrary message 𝑚𝑚, public key 𝑒𝑒, 
and modulus 𝑁𝑁. Then  

𝐸𝐸(𝑎𝑎 ∙ 𝑎𝑎) = (𝑎𝑎 ∙ 𝑎𝑎)𝑒𝑒 mod 𝑁𝑁 = 𝑎𝑎𝑒𝑒 ∙ 𝑎𝑎𝑒𝑒 mod 𝑁𝑁 =  (𝑎𝑎𝑒𝑒 mod 𝑁𝑁)  ∙  (𝑎𝑎𝑒𝑒 mod 𝑁𝑁) =  𝐸𝐸(𝑎𝑎) ∙ 𝐸𝐸(𝑎𝑎). 

Similarly, decryption is also homomorphic with respect to multiplication. Thus, one can perform mul-
tiplication on encrypted data which corresponds to multiplication on the plaintext, without needing 
to decrypt the data.  

There are other encryption functions which are homomorphic with respect to addition (e.g., [31]).  
The “holy grail” of cryptography [32] is described by some to be a “fully homomorphic” encryption 
function which is homomorphic with respect to both multiplication and addition. This would allow 
for arbitrary mathematical operations on encrypted data (evaluation of arbitrary circuits) to preserve 
the structure of operations on plaintexts. 

Initial research produced cryptographic functions homomorphic with respect to both addition 
and multiplication, but which do not allow for an arbitrary number of each operation (e.g., [33]). This 
kind of scheme is known as somewhat homomorphic encryption (SWHE). Gentry [9] introduced a 
framework for FHE with arbitrary operations using lattice-based cryptography, and a technique called 
bootstrapping. Here we give a broad overview of Gentry’s method.  

In lattice-based encryption, a ciphertext is an element of a polynomial ring of the form 𝑐𝑐 =  𝑎𝑎𝑠𝑠 +
 𝑒𝑒, where 𝑒𝑒 is an “error vector” with small coefficients. Encryption is homomorphic with respect to 
multiplication and addition, which take place in this polynomial ring. However, lattice-based encryp-
tion is SWHE, because the error vector 𝑒𝑒 gets larger with each additional addition and multiplication 
on encrypted data, which leads to decryption errors (the error term must be small in order for approx-
imation of the plaintext to succeed with high probability). Gentry aims to “refresh” the ciphertext 
periodically to create a new ciphertext which has a shorter error vector but still decrypts correctly. The 
basic setup for this is as follows. Here, the notation 𝐸𝐸(𝑘𝑘,𝑚𝑚) indicates encryption of a message 𝑚𝑚 
using key 𝑘𝑘, while 𝐷𝐷(𝑘𝑘, 𝑐𝑐) is decryption of a ciphertext 𝑐𝑐 using key 𝑘𝑘. In homomorphic encryption, 
if a scheme can evaluate a circuit on ciphertexts homomorphically, the result will decrypt to the same 
circuit applied to plaintext data. In other words, if evaluating a circuit 𝐶𝐶 on ciphertext vector 𝜓𝜓 =



 

88 

𝐸𝐸(𝑝𝑝𝑘𝑘,𝑚𝑚) produces 𝜓𝜓′, then 𝐶𝐶(𝑚𝑚) =  𝐷𝐷(𝑠𝑠𝑘𝑘,𝜓𝜓′). In bootstrapping, we evaluate the (somewhat modi-
fied) decryption circuit on ciphertexts. We start with a public-secret key pair 𝑝𝑝𝑘𝑘1, 𝑠𝑠𝑘𝑘1, a plaintext 𝜋𝜋, 
and ciphertext 𝜓𝜓1 = 𝐸𝐸(𝑝𝑝𝑘𝑘1,𝜋𝜋). This ciphertext has some error vector 𝑥𝑥1, which we want to refresh. 
With a newly generated public-private key pair 𝑝𝑝𝑘𝑘2, 𝑠𝑠𝑘𝑘2, calculate 𝑠𝑠𝑘𝑘1′ =  𝐸𝐸(𝑝𝑝𝑘𝑘2, 𝑠𝑠𝑘𝑘1) and 𝜓𝜓1′ =
𝐸𝐸(𝑝𝑝𝑘𝑘2,𝜓𝜓1). Then evaluate the decryption circuit 𝐷𝐷 on ciphertexts (𝑠𝑠𝑘𝑘1′ ,𝜓𝜓1′ ) to produce another 
ciphertext 𝜓𝜓2. This has its own error vector 𝑥𝑥2. Then, by the properties of homomorphic encryption, 
the decryption circuit applied to (𝑠𝑠𝑘𝑘1,𝜓𝜓1) (i.e., the plaintext 𝜋𝜋) should be equal to 𝐷𝐷(𝑠𝑠𝑘𝑘2,𝜓𝜓2). As 
long as the error vector 𝑥𝑥2 on the “refreshed” ciphertext 𝜓𝜓2 is smaller than the original 𝑥𝑥1, we have 
removed some noise from the ciphertext. 

Research since the publication of Gentry’s theoretically practical FHE scheme has focused on 
increasing the efficiency and improving practical implementations of FHE. 

10.2.2. Comparison with FHE 
Our approach in GABLE can be considered to provide a method, albeit (in the state-machine model) 
a very inefficient one, for satisfying some of the security requirements of FHE.  The inefficiency arises 
from the fact that the explicit state-machine model of computation requires an exponentially large 
amount of space to represent the state graph, compared to computation models of standard power, 
such as RAM machines [34].  Thus, that approach would not be feasible for homomorphically encryp-
ting general computations of larger sizes.  However, for very simple computations, it does indeed 
provide full encryption of inputs, intermediate states, and outputs; and also, at no point in the comp-
utation process does a “plain-text” representation of any meaningful information about the computa-
tional state need to be revealed (to protocol nodes that are actually performing the computation).  So, 
our method provides a security feature similar to FHE, in that respect. 

Further, in a universal circuits (u.c.) based implementation of GABLE such as described in §9, the 
exponential inefficiency goes away, and is replaced by a merely logarithmic multiplicative overhead fac-
tor.  This level of overhead may be considered competitive with other methods for some applications 
of FHE. 

However, our setup also differs from FHE in the sense that we have an extra entity, separate from 
the one that provided the input (namely, the “Company” entity which originally ran the Garbler) that 
would have the ability to decrypt the input, intermediate states, and output of the computational pro-
cess.  It can also delegate the ability to decrypt subsets of this information to other parties.  Thus, the 
overall security model here is rather different from the one usually considered in FHE, in which only 
the entity supplying the input would have the ability to decrypt the input, the intermediate states and 
the output. 

10.3. Indistinguishability Obfuscation 
Indistinguishability obfuscation (IO) (cf., e.g., [10]) is a secure-computation paradigm in which executable 
program representations are obfuscated, or transformed unintelligibly to such an extreme extent that it 
becomes impossible to tell which of the similarly-sized circuits for computing a given function was the 
one that was obfuscated—in other words, the representation reveals nothing about the algorithm 
other than its size, and the overall input-output relation that it computes (which can be sampled by 
running the obfuscated program).  Furthermore, given that the only information that can be inferred 
about the original program or circuit is its input-output relation, and that the I/O relation itself can 
only be determined by running the program on sample inputs, it therefore becomes impossible to 
predict what the output of the program would be on inputs that it has not been run on yet—at least, 



 

89 

to the extent that there exists some program of the given size that could produce a given possible 
output.  (As we consider more complex functions, at some point it would become impossible to rep-
resent them with an obfuscated circuit of a given size—although verifying whether this is the case 
would generally be uncomputable.) 

In more detail:  In IO, an obfuscator takes a circuit or program and produces a functionally equi-
valent circuit which is “unintelligible.” Functionally equivalent means that the obfuscator computes 
the same function as the original circuit, producing identical input-output pairs. It is the details of the 
computation which are hidden. IO could be used to protect software, for example, by obscuring the 
program at work, and preventing unauthorized functional modification of the software. (Since the 
obfuscated version of the program is unintelligible, any attempt to modify it will break it completely.) 

A related concept is that of reusable garbled circuits [35], which allows for the use of a garbled 
circuit on more than one input. In the traditional garbled circuit model, which we mentioned in §10.1, 
encoding more than one input vector for a garbled circuit weakens its security.  (The same is true if 
multiple input sequences are provided to the garbled state machines we describe in §5.)  In contrast, 
if a multi-use garbled circuit is constructed, it can act as an obfuscated circuit, where the inputs are 
encoded by the data owner (these encoded inputs are known as “tokens”). 

IO started to become more practical when [36], [10] introduced a possible method of tying 
together functional encryption and obfuscation to obtain reachable security assumptions.  Since then, 
research has included applying IO to problems in cryptography [37], such as deniable encryption [38]. 

Our method, as with the classic (non-reusable) garbled circuits from which it is derived, does not, 
strictly speaking, implement IO.  One reason for this is that it would be theoretically possible (albeit 
infeasibly time-consuming) for an attacker to simply enumerate all possible input keys, run them 
through the Machine to find all valid state sequences, and thereby map out the complete garbled state 
graph.  This could then be directly distinguished from other similarly sized but topologically distinct 
state graphs that compute the same function, i.e., that happen to be equivalent in the sense that they 
arrive at the same final output state for all possible input streams. 

Even on a more practical level, if input providers collude with each other (e.g., by sharing input 
keys), they could, relatively quickly, map out the possible behaviors of the Machine over the set of 
valid input values that they possess.  In such a scenario, determining the full machine behavior would 
be relatively feasible, requiring a number of runs only on the order of the complexity of the state 
machine. (At most only one run is needed per arc that exists in the machine, to traverse that arc.) 

However, if input providers do not collude, there is no practical way that a single input provider 
can, by themselves, map out the possible behaviors of the machine.  Even after having seen sample 
inputs from another provider for a single run, there is no way to infer what the behavior of the machine 
would have been if any of the other providers’ inputs had been different.  So, this property of our 
scheme can be considered to provide a (very limited) form of IO.  However, if multiple runs with 
different input sequences can be observed, then it becomes possible again for an input provider to 
infer structural information about the state machine (e.g., that a given machine state can be reached by 
either of two different paths).   

Unfortunately, there is, in general, no way that the Company can know that the input providers 
(if they are arbitrary entities who could communicate with each other) are not colluding with each other 
secretly to de-obfuscate the Machine, so, the above observation only provides a very weak and limited 
form of IO, which only applies if the input providers are under strict control and/or can be completely 
blocked from communicating with each other via any channels other than by sending messages to a 



 

90 

(single) actual deployed instance of the Machine on a specific published blockchain—since, only in 
that case, if the providers did attempt to collude to de-obfuscate the Machine behavior (by, for 
example, providing inputs to additional copies of the Machine which they themselves re-deployed on 
the same blockchain), the Company would, at least, be able to see this happening on that chain. 

10.4. Functional Encryption 
Functional encryption (FE) [39], [40], [11] is a paradigm for secure computation in which a participant is 
enabled to learn (in plaintext) only a selected function of some encrypted data, but nothing else about 
the unencrypted form of the data. 

10.4.1. Brief Review of FE 
In a typical functional encryption scheme, a central authority (which could be an authorized user) 
holds a master secret key 𝑚𝑚𝑘𝑘 and public key 𝑝𝑝𝑘𝑘 pair. The authority can use 𝑚𝑚𝑘𝑘 to generate a secret 
key 𝑠𝑠𝑘𝑘𝐹𝐹 which corresponds to some function 𝐹𝐹.  This function can be applied to a plaintext message 
𝑚𝑚. Using 𝑝𝑝𝑘𝑘, the authority encrypts the plaintext to produce a ciphertext 𝑐𝑐. Any entity which holds 
𝑠𝑠𝑘𝑘𝐹𝐹 can decrypt 𝑐𝑐 to reveal the result 𝐹𝐹(𝑚𝑚) of the function applied to 𝑚𝑚.  

For example, public-key encryption can be considered a very simple example of FE. The secret 
key corresponding to 𝑝𝑝𝑘𝑘 can decrypt 𝑐𝑐 to reveal the full plaintext message. In this case, the secret key 
corresponds to the function 𝐹𝐹(𝑥𝑥)  =  𝑥𝑥.  Another example is in cloud computing.  A client stores 
encrypted data on a cloud service and wishes the cloud to perform some calculation on the data with-
out decrypting it (this is a typical use case for homomorphic encryption).  Using FE, the client may 
distribute a key 𝑠𝑠𝑘𝑘𝐹𝐹 to the cloud which corresponds to a function 𝐹𝐹(𝑥𝑥) of all data 𝑥𝑥 which satisfies a 
certain condition (example referenced in [41]). 

The functionality of an FE scheme can be randomized, where a random sample from an output 
distribution is selected [42], [43]. As an example, this can be useful if a financial institution wants to 
give an auditor a random sample of financial records, without revealing all customers’ data and without 
cherry-picking the accounts to present for audit. 

The notion of FE has been extended to allow for functions of n plaintexts given n ciphertexts. 
This is called multi-input functional encryption (MIFE) [44]. The output in this scheme may utilize 
the same secret key. A similar notion is multi-client functional encryption (MCFE), in which multiple 
parties may each produce a ciphertext, and the set of ciphertexts are decrypted to a function of the 
plaintexts [44]. Recently, research has taken place to extend MCFE to a decentralized model, where 
there is not a single authority holding the master secret key [45]. 

10.4.2. Comparison with FE 
Our scheme does allow for a form of functional encryption, at least of small datasets in multi-party 
settings.  For example, with two input providers, who are given respective sets of input keys, and who 
take turns providing inputs to the Machine over the course of a single run, an arbitrary function of 
the final state can be made available to one of the providers, by simply giving that provider a spectator 
key, which they can hash together with the final state ID to unmask an arbitrary output string as-
sociated with the final state, which can be provided (in XOR-masked form) in the Exec[𝐺𝐺] code.  The 
main limitation of this approach to functional encryption, in the state-machine approach, is simply 
our usual limitation, namely that the worst-case space complexity of that particular method grows 
exponentially with the number of bits of machine state, so that only very simple functions of very small 



 

91 

amounts of encrypted input data are feasible to compute in that way.  However, if a circuit model is 
used instead, as we described in §9, then this limitation goes away, and more complex functions on 
larger encrypted datasets become feasible. 

10.5. Verifiable Computation 
Verifiable computation or verifiable computing [12] refers to computation for which the correctness of the 
computation can be verified by a party other than the one that originally performed the computation.  
Any blockchain-based computation is inherently verifiable, in the trivial sense that any node that ac-
cepts a block that includes a given smart contract transaction is supposed to be able to verify that the 
transaction was properly executed, as per the instructions in the literal bytecode for the contract—this 
can, in general, be done by simply re-executing the transaction code in the node’s own local space.   

In our case, this trivial verifiability property holds as well, although part of the point of our scheme 
is that the meaning of the executed computation need not be discernable to parties other than the 
Company that ran the Garbler originally.  However, that party can indeed interpret the computation 
recorded on the blockchain and verify that it correctly reflects the intended execution of the original 
state machine 𝐹𝐹.  Further, the Company can give any other party the ability to carry out this same 
verification process, by, for example, giving them the complete output of the Garbler.   

Alternatively, if the originally-posted smart contract that was executed was digitally signed by the 
Company, together with commitments to public output keys which are unsealed (by the Company or 
their delegate, such as a Finisher) upon program completion, then this gives a way for users to at least 
verify that the result of the computation indeed correctly reflects the Company’s prior intent, without 
necessarily giving away the state machine’s detailed function. 

 
 

 
 

 



 

92 

11. CONCLUSIONS AND FUTURE WORK 
In this document, we have described the conceptual technical principles behind, and a detailed, work-
ing prototype implementation and multiple demos of, the GABLE system for autonomously executing 
garbled versions of simple finite state machines (and in the future, more complex circuits) on public 
programmable blockchains, such as Ethereum, to obtain a high degree of reliability, availability, and 
trust.  Further, the design of GABLE provides extremely strong privacy guarantees:  Assuming only 
that (1) participants do not release their delegated keys, or otherwise collude to defeat the system, and 
(2) that the hashes and random keys utilized satisfy standard cryptographic assumptions, it is impossible 
for any unauthorized parties to feasibly obtain any meaningful prior information whatsoever about 
the target application’s functionality, apart from an upper bound on its complexity, and no meaningful 
information during or after its execution either, except that its state was updated at certain times in 
response to (undecipherable) inputs from parties which may be associated with certain public keys (if 
such are used to sign input messages).  Nevertheless, authorized parties may obtain any outputs from 
the machine (at any point in its execution) that the Machine’s creator wishes to enable them to obtain. 

Our framework combines certain security features of several related secure computing paradigms, 
such as homomorphic encryption (operating on encrypted data), indistinguishability obfuscation (hi-
ding of algorithmic details), and secure multiparty computation (mutual privacy of inputs between 
participants, no need for a trusted third party after setup, ability to produce shared knowledge of 
output).  In addition, it is reasonably computationally efficient both to generate and to interpret the 
garbled machine, either as a function of the explicit state machine’s complexity, or, in a future circuit-
based version, as a function of circuit complexity.  The main limitation of the existing state-machine 
based prototype is simply that explicit state machines, themselves, do not comprise a space-efficient 
representation of computation to begin with, since a general computation operating on an 𝑛𝑛-bit me-
mory requires Θ(2𝑛𝑛) states to represent in a fully explicit state-machine form, in the worst case.  How-
ever, for computations with very limited memory requirements (operating on a small handful of bits, 
say), the existing method is quite feasible, and further, it is straightforward to extend our methods to 
handle somewhat more complex computations using a circuit-based approach, as described in §9. 

Some useful and/or interesting directions for future work include: 

1. Prototyping the circuit-based version of the system described in §9, or some related approach 
offering similar features. (The latter has already begun in the GOOSE effort mentioned in §7.) 

2. Exploring a wider variety of input models in prototype implementations. 

3. Creating more sophisticated compilation frameworks to facilitate translating higher-level ap-
plication codes into garbled machine instances (beyond what had been envisioned in §8). 

4. Implementing some more substantial example applications (such as the Dungeon Race game 
example that we discussed briefly in Sec. 4.1.2). 

We welcome public feedback on the material in this report, and we look forward to continuing to 
share the ideas explored in this project with the wider research community in future publications. 
 
 

 
 

 



 

93 

REFERENCES 
 

[1]  Wikipedia, "Bloom filter," 14 March 2020. [Online]. Available: 
https://en.wikipedia.org/wiki/Bloom_filter. [Accessed 5 April 2020]. 

[2]  Wikipedia, "Cyber-physical system," 1 April 2020. [Online]. Available: 
https://en.wikipedia.org/wiki/Cyber-physical_system. [Accessed 5 April 2020]. 

[3]  C. D. Thompson, "Generalized Connection Networks for Parallel Processor 
Intercommunication," Pittsburgh, PA, 1977. 

[4]  V. Kolesnikov and T. Schneider, "Improved garbled circuit: Free XOR gates and applications," 
in Automata, Languages and Programming: 35th International Colloquium (ICALP 2008), Reykjavik, 
Iceland, July 7-11, 2008, Proceedings, Berlin, Heidelberg, 2008.  

[5]  Wikipedia, "Replay attack," 14 March 2020. [Online]. Available: 
https://en.wikipedia.org/wiki/Replay_attack. [Accessed 5 April 2020]. 

[6]  Wikipedia, "Secure multi-party computation," 7 October 2018. [Online]. Available: 
https://en.wikipedia.org/wiki/Secure_multi-party_computation. [Accessed 15 October 2018]. 

[7]  D. Evans, V. Kolesnikov and M. Rosulek, A Pragmatic Introduction to Secure Multi-Party 
Computation, 2018.  

[8]  A. C. Yao, "Protocols for secure computations," in 23rd Annual Symposium on Foundations of 
Computer Science (SFCS 1982), Chicago, IL, USA, 1982.  

[9]  C. Gentry, "Fully Homomorphic Encryption Using Ideal Lattices," in Proceedings of the Forty-first 
Annual ACM Symposium on Theory of Computing (STOC '09), Bethesda, MD, USA, 2009.  

[10]  S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai and B. Waters, "Candidate 
Indistinguishability Obfuscation and Functional Encryption for All Circuits," SIAM Journal on 
Computing, vol. 45, no. 3, pp. 882-929, 2016.  

[11]  D. Boneh, A. Sahai and B. Waters, "Functional Encryption: Definitions and Challenges," in 
Theory of Cryptography Conference, 2011.  

[12]  Wikipedia, "Verifiable computing," 12 August 2018. [Online]. Available: 
https://en.wikipedia.org/wiki/Verifiable_computing. [Accessed 15 October 2018]. 

[13]  E. Cline, Ready Player One, Crown Publishers, 2011.  
[14]  Wikipedia, "Transactive energy," 14 January 2019. [Online]. Available: 

https://en.wikipedia.org/wiki/Transactive_energy. [Accessed 1 February 2019]. 
[15]  Wikipedia, "Peering," 26 November 2018. [Online]. Available: 

https://en.wikipedia.org/wiki/Peering. [Accessed 1 February 2019]. 
[16]  Wikipedia, "Autonomous system (Internet)," 31 January 2019. [Online]. Available: 

https://en.wikipedia.org/wiki/Autonomous_system_(Internet). [Accessed 1 February 2019]. 
[17]  Wikipedia, "One-time pad," 29 March 2020. [Online]. Available: 

https://en.wikipedia.org/wiki/One-time_pad. [Accessed 4 April 2020]. 
[18]  "Truffle Suite," [Online]. Available: https://truffleframework.com/. [Accessed 15 October 

2018]. 
[19]  R. Van Dam, T.-N. Dinh, C. Cordi, G. Jacobus, N. Pattengale and S. Elliott, "Proteus: A DLT-

Agnostic Emulation and Analysis Framework," in 12th USENIX Workshop on Cyber Security 
Experimentation and Test, 2019.  



 

94 

[20]  Y. Zhou, D. Kumar, S. Bakshi, J. Mason, A. Miller and M. Bailey, "Erays: Reverse Engineering 
Ethereum's Opaque Smart Contracts," in 27th USENIX Security Symposium (USENIX Security 
18), 2018.  

[21]  V. Kolesnikov and T. Schneider, "A Practical Universal Circuit Construction and Secure 
Evaluation of Private Functions," in International Conference on Financial Cryptography and Data 
Security, 2008.  

[22]  C. Zhao, S. Zhao, M. Zhao, Z. Chen, C. Gao, H. Li and Y. Tan, "Secure Multi-Party 
Computation: Theory, practice and applications," Elsevier Information Sciences, vol. 476, pp. 357-
372, 2019.  

[23]  A. C. Yao, "How to generate and exchange secrets," in Proceedings of the 27th Annual Symposium 
on Foundations of Computer Science, 1986.  

[24]  M. O. Rabin, "How to exchange secrets with oblivious transfer," 1981. 
[25]  O. Goldreich, S. Micali and A. Widgerson, "How to play any mental game," in Proceedings of the 

19th Annual ACM Symposium on the Theory of Computing, 1987.  
[26]  Y. Lindell and B. Pinkas, "An efficient protocol for secure two-party computation in the 

presence of malicious adversaries," in Proceedings of the Advances in Cryptology, 2007.  
[27]  Galois, Inc., "Jana: Private Data as a Service," 2019. [Online]. Available: 

https://galois.com/project/jana-private-data-as-a-service. [Accessed 19 April 2019]. 
[28]  R. Bost, R. A. Popa, S. Tu and S. Goldwasser, "Machine learning classification over encrypted 

data," in Proceedings of the Network and Distributed System Security Symposium, 2015.  
[29]  D. Bogdanov, Niitsoo, M. Niitsoo, T. Toft and J. Willemson, "High-performance secure multi-

party computation for data mining applications," International Journal of Information Security, vol. 
11, no. 6, pp. 403-418, 2012.  

[30]  R. Rivest, A. Shamir and L. Adleman, "A method for obtaining digital signatures and public-
key cryptosystems," Communications of the ACM, vol. 21, no. 2, pp. 120-126, 1978.  

[31]  P. Paillier, "Public-key cryptosystems based on composite degree residuosity classes," in 
Eurocrypt, 1999.  

[32]  D. J. Wu, "Fully homomorphic encryption: Cryptography's holy grail," ACM Crossroads, vol. 21, 
no. 3, pp. 24-29, 2015.  

[33]  D. Boneh, E. J. Goh and K. Nissim, "Evaluating 2-DNF formulas on ciphertexts," in 
Proceedings of the Second Theory of Cryptography Conference (TCC) (Cambridge, February 10-12), Berlin 
Heidelberg, 2005.  

[34]  Wikipedia, "Random-access machine," 6 September 2018. [Online]. Available: 
https://en.wikipedia.org/wiki/Random-access_machine. [Accessed 11 October 2018]. 

[35]  S. Goldwasser, Y. Kalai, R. A. Popa, V. Vaikuntanathan and N. Zeldovich, "Succinct 
functional encryption and applications: Reusable garbled circuits and beyond," in Symposium on 
the Theory of Computation, 2013.  

[36]  S. Garg, C. Gentry, S. Halevi, A. Sahai, M. Raikova and B. Waters, "Candidate 
indistinguishability obfuscation and functional encryption for all circuits," in Foundations of 
Computer Science, 2013.  

[37]  A. Sahai and B. Waters, "How to use indistinguishability obfuscation: Deniable encryption, and 
more," in Symposium on the Theory of Computation, 2014.  

[38]  R. Canetti, C. Dwork, M. Naor and R. Ostrovsky, "Deniable encryption," in CRYPTO, 1997.  



 

95 

[39]  A. Sahai and B. Waters, "Fuzzy identity-based encryption," in EUROCRYPT 2005, Heidelberg, 
2005.  

[40]  A. O'Neill, Definitional issues in functional encryption, 2010.  
[41]  X. Fan and Q. Tang, Making Public Key Functional Encryption Function Private, Distributively, 2018.  
[42]  V. Goyal, A. Jain, V. Koppula and A. Sahai, "Functional encryption for randomized 

functionalities," in TCC 2015, Part II, Heidelberg, 2015.  
[43]  S. Agrawal and D. J. Wu, "Functional Encryption: Deterministic to Randomized Functions 

from Simple Assumptions," in EUROCRYPT, 2017.  
[44]  S. Goldwasser, S. D. Gordon, V. Goyal, A. Jain, J. Katz, F.-H. Liu, A. Sahai, E. Shi and H. S. 

Zhou, "Multi-input functional encryption," in EUROCRYPT, Heidelberg, 2014.  
[45]  J. Chotard, E. D. Sans, R. Gay, D. H. Phan and D. Pointcheval, "Decentralized multi-client 

functional encryption for inner product," in ASIACRYPT 2018, Part II, Heidelberg, 2018.  
 
 

 



 

96 

APPENDIX A TABLES OF NOTATIONS 
The following tables list the mathematical symbols and notations used in §§3–5 and §9 of this docu-
ment, roughly in order of first appearance in subappendix A.1, and alphabetically in subappendix A.2.   

The following typographic conventions are used throughout §§3–5:  A boldface symbol, like 𝐒𝐒, or 
𝑪𝑪, denotes a set.  If a symbol (like 𝐒𝐒 or v) is in roman (upright) font, it connotes that this particular 
object is assumed to have a constant value (throughout a given machine, as well as over time during a 
given machine execution).  Italic symbols such as 𝑆𝑆 or 𝑡𝑡 more generally connote variables, or quantities 
that may be taken to vary, such as over time, or across the various parts of a machine. 

A.1 Table of Notations—In Order of Appearance 

Table A-1.  Table of Notations (in order of appearance) 

Symbol/ 
Notation Meaning 

Symbols first used in sec. 3: 

𝐹𝐹 A desired abstract computational functionality, expressible as a finite state machine. 

𝐺𝐺 A garbled representation of some specific finite state machine implementation of 𝐹𝐹. 

Exec[𝐺𝐺] A smart contract in which a generic Executor is applied to the garbled state machine 𝐺𝐺. 

ℓ Maximum length (in cycles) of the state-machine execution supported by 𝐺𝐺.  Also used to refer 
to the number of layers/levels of logic gates in the computational circuit model. 

ℓ� An upper bound on ℓ which may be publicly inferred through inspection of Exec[𝐺𝐺]. 

𝑞𝑞 The quantity (number) of alternative arcs (conditional state transitions) supported on each 
cycle. 

𝑞𝑞� An upper bound on 𝑞𝑞 which may be publicly inferred through inspection of Exec[𝐺𝐺]. 

𝑤𝑤 The width, in bit lines, of an explicit computational circuit for computing the next state, in a 
version of GABLE based on the circuit model of computation (see §9). 

𝑤𝑤�  An upper bound on 𝑤𝑤 which may be publicly inferred through inspection of Exec[𝐺𝐺]. 

𝜎𝜎 An encoded input symbol to a machine 𝐺𝐺 using a single-source input model. 

𝑁𝑁 Number of required inputs to a machine 𝐺𝐺 using a multiple-source input model. 

𝑀𝑀 Number of alternative inputs from which the 𝑁𝑁 inputs in an “𝑁𝑁 out of 𝑀𝑀” input model are 
selected.  𝑀𝑀 ≥ 𝑁𝑁. 

Symbols first used in sec. 4: 

A, B A party to the Millionaires’ Problem example computation (see §4.1.1). 

𝐿𝐿 Maximum possible length of a party’s wealth number in bits (see §4.1.1). 

⊝ Special “end” symbol, which directs a machine to yield its final output and halt (§4.1.1). 

Symbols first used in sec. 5.1: 

𝑡𝑡 Index of a “time step” (state-machine cycle, or circuit layer).  𝑡𝑡 ∈ {0, … , ℓ − 1}. 

𝐒𝐒 Set of supported state-machine states.  𝐒𝐒 = {𝑠𝑠1, … , 𝑠𝑠𝑝𝑝}. 



 

97 

Symbol/ 
Notation Meaning 

𝑝𝑝 Number of supported states for the state machine.  𝑝𝑝 = |𝐒𝐒|, the cardinality of 𝐒𝐒. 

𝑙𝑙 Index of a specific state.  (This one is not used in the document, except below.) 

𝑠𝑠, 𝑠𝑠𝑙𝑙 A specific (machine) state, 𝑠𝑠 = 𝑠𝑠𝑙𝑙 ∈ 𝐒𝐒. 

𝑆𝑆𝑡𝑡 Line (variable) for the state output from step 𝑡𝑡 of the state machine’s execution. 

𝑆𝑆−1 Line (variable) for the initial state input to step 0 of the state machine’s execution. 

𝑠𝑠init Initial state, 𝑠𝑠init ∈ 𝐒𝐒.  This could be hardcoded into 𝐺𝐺, or provided in an initialization step. 

𝑆𝑆fin Final state variable, 𝑆𝑆fin = 𝑆𝑆ℓ−1.  This determines the final result of the computation. 

𝑠𝑠(𝑡𝑡) The actual machine state 𝑠𝑠(𝑡𝑡) ∈ 𝐒𝐒 resulting after step 𝑡𝑡 of a particular run. 

𝐕𝐕 Set of input variables supported for the state machine. 𝐕𝐕 = {𝑉𝑉1, … ,𝑉𝑉𝑚𝑚}. 

𝑚𝑚 Number of input variables. 𝑚𝑚 = |𝐕𝐕|. 

𝑖𝑖 Index of a specific input variable, 𝑉𝑉𝑖𝑖 ∈ 𝐕𝐕. 

𝑉𝑉,𝑉𝑉𝑖𝑖 A specific input variable, 𝑉𝑉 = 𝑉𝑉𝑖𝑖 ∈ 𝐕𝐕. 

𝑉𝑉𝑖𝑖(𝑡𝑡) Input line supplying the value assigned to input variable 𝑉𝑉𝑖𝑖 for time step 𝑡𝑡. 

𝐯𝐯𝑖𝑖 Set of possible values of input variable 𝑉𝑉𝑖𝑖.  We write 𝐯𝐯𝑖𝑖 = {𝑣𝑣𝑖𝑖1, … , 𝑣𝑣𝑖𝑖
𝑛𝑛𝑖𝑖}. 

𝑣𝑣𝑖𝑖(𝑡𝑡) Denotes the value assigned to input variable 𝑉𝑉𝑖𝑖 on time step 𝑡𝑡.  𝑣𝑣𝑖𝑖(𝑡𝑡) ∈ 𝐯𝐯𝑖𝑖 . 

𝑛𝑛𝑖𝑖 Number of alternative values of input variable 𝑉𝑉𝑖𝑖.  𝑛𝑛𝑖𝑖 = |𝐯𝐯𝑖𝑖|. 

𝑗𝑗 Index of a particular value of some particular input variable 𝑉𝑉𝑖𝑖.  𝑗𝑗 ∈ {1, … ,𝑛𝑛𝑖𝑖}. 

𝑣𝑣𝑖𝑖
𝑗𝑗 A particular value of a particular input variable 𝑉𝑉𝑖𝑖.  Note 𝑣𝑣𝑖𝑖

𝑗𝑗 ∈ 𝐯𝐯𝑖𝑖. 

𝐀𝐀 Set of arcs (a.k.a., arrows, directed edges, conditional state transitions) in the directed graph 
that defines the state machine.  𝐀𝐀 = {𝑎𝑎0, … ,𝑎𝑎𝑞𝑞−1}. 

𝑞𝑞 Number of arcs in the state machine.  𝑞𝑞 = |𝐀𝐀|, the cardinality of 𝐀𝐀. 

𝑘𝑘 Index of some specific arc, 𝑎𝑎𝑘𝑘 ∈ 𝐀𝐀. 

𝑎𝑎,𝑎𝑎𝑘𝑘 A specific arc, 𝑎𝑎 = 𝑎𝑎𝑘𝑘.  Identifiable with an ordered triple, 𝑎𝑎 = (𝑂𝑂,𝑪𝑪,𝐷𝐷). 

𝑂𝑂,𝑂𝑂𝑘𝑘 The origin state 𝑂𝑂 = 𝑂𝑂𝑘𝑘 ∈ 𝐒𝐒 of some specific arc 𝑎𝑎𝑘𝑘. 

𝐷𝐷,𝐷𝐷𝑘𝑘 The destination state 𝐷𝐷 = 𝐷𝐷𝑘𝑘 ∈ 𝐒𝐒 of some specific arc 𝑎𝑎𝑘𝑘. 

𝑪𝑪,𝑪𝑪𝑘𝑘 The set 𝑪𝑪 = 𝑪𝑪𝑘𝑘 of transition conditions for some specific arc 𝑎𝑎𝑘𝑘.  |𝑪𝑪𝑘𝑘| ≤ |V|. 

𝑟𝑟 The number of transition conditions in some specific set 𝑪𝑪 of transition conditions, 
 𝑟𝑟 = |𝑪𝑪|. 

𝑔𝑔 Index of some specific condition 𝑐𝑐𝑔𝑔 within some specific set 𝑪𝑪 of transition conditions, 
𝑔𝑔 ∈ {1, … , |𝑪𝑪|}. 

𝑐𝑐, 𝑐𝑐𝑔𝑔 Some specific condition 𝑐𝑐 = 𝑐𝑐𝑔𝑔 within some specific set 𝑪𝑪 of transition conditions.  Identifiable 
with an ordered pair 𝑐𝑐 = (𝑖𝑖, 𝑗𝑗) of a variable index and a value index 𝑗𝑗 ∈ {1, … ,𝑛𝑛𝑖𝑖}. 

𝐎𝐎𝐎𝐎(𝑠𝑠) The out-conditions of state 𝑠𝑠 are the set of condition sets 𝑪𝑪 on arcs 𝑎𝑎 = (𝑠𝑠,𝑪𝑪,𝐷𝐷) ∈ 𝐀𝐀. 

⊥𝑖𝑖 A special value for input line 𝑉𝑉𝑖𝑖 meaning “Input variable 𝑉𝑉𝑖𝑖 is unassigned on this cycle.” 



 

98 

Symbol/ 
Notation Meaning 

Symbols first used in sec. 5.2: 

ℎ(⋅) A selected cryptographic hash function, with an 𝑛𝑛-bit output. 

𝑛𝑛 The fixed length, in bits, of the random keys, hash function outputs, and encrypted values. 

𝐾𝐾,𝐾𝐾(𝑣𝑣𝑖𝑖
𝑗𝑗 , 𝑡𝑡) A randomly generated 𝑛𝑛-bit input key for enabling input value 𝑣𝑣𝑖𝑖

𝑗𝑗 to be provided on input line 
𝑉𝑉𝑖𝑖 for use in time step 𝑡𝑡. 

𝐾𝐾𝑖𝑖 A randomly-generated 𝑛𝑛-bit participant key which an authorized provider may use to (pseudo-
)randomly generate the input keys 𝐾𝐾(𝑣𝑣𝑖𝑖

𝑗𝑗 , 𝑡𝑡) for all possible values 𝑣𝑣𝑖𝑖
𝑗𝑗 of input variable 𝑉𝑉𝑖𝑖 for all 

time steps 𝑡𝑡. 

+ A generic Combinator method for combining inputs to a hash function; the Combinator might 
be lossless (like byte-string concatenation) or associative (like ⊕).  See text for details. 

𝐾𝐾(𝑠𝑠, 𝑡𝑡) A randomly generated 𝑛𝑛-bit state key for representing that the state resulting from time step 𝑡𝑡 
of the machine’s execution (which will be used as input to step 𝑡𝑡 + 1 of the machine’s 
execution), is 𝑠𝑠.  (Also, if 𝑡𝑡 = −1, this indicates that 𝑠𝑠 is the initial state.) 

𝐾𝐾cur A variable representing the most-recent state key 𝐾𝐾(𝑆𝑆𝑡𝑡−1, 𝑡𝑡 − 1) as it varies over time 𝑡𝑡. 

𝑝𝑝𝑡𝑡
𝑖𝑖,𝑗𝑗 The input provision key for providing the input value 𝑣𝑣𝑖𝑖

𝑗𝑗 to the machine on time step 𝑡𝑡, given 
that its current state 𝑠𝑠 leading in has a particular key 𝐾𝐾cur =  𝐾𝐾(𝑠𝑠, 𝑡𝑡 − 1). 

𝐼𝐼, 𝐼𝐼(𝑎𝑎) The arc identifier for some given specific arc 𝑎𝑎 ∈ 𝐀𝐀.  Defined in eq. 5. 

𝐼𝐼next This entry identifier, derived from 𝑎𝑎’s identifier 𝐼𝐼, allows encrypting 𝑎𝑎’s next-state field. 

𝐼𝐼valid This entry identifier, derived from 𝑎𝑎’s identifier 𝐼𝐼, allows encrypting 𝑎𝑎’s valid field. 

𝐼𝐼𝑒𝑒 A generic entry identifier; may be either 𝐼𝐼next or 𝐼𝐼valid, depending on the selected field. 

𝑒𝑒 A data entry, meaning a particular field of (encrypted) data associated to a given arc 𝑎𝑎. 

𝑥𝑥 An arbitrary 𝑛𝑛-bit plaintext to be encrypted. 

⨁ Bitwise exclusive-OR operation, applicable to pairs of bit-strings of equal length. 

𝑦𝑦, enc[𝐼𝐼𝑒𝑒 , 𝑥𝑥] Encrypted version of the 𝑛𝑛-bit plaintext 𝑥𝑥 to be used within a specific data entry 𝑒𝑒. 

𝐸𝐸next Encrypted version of the next-state field of arc 𝑎𝑎 at time 𝑡𝑡.  𝐸𝐸next = enc[𝐼𝐼next,𝐾𝐾(𝐷𝐷, 𝑡𝑡)]. 

𝐸𝐸valid Encrypted version of the ‘valid’ field of arc 𝑎𝑎 at time t.  𝐸𝐸valid = enc[𝐼𝐼valid, v] 

v A constant 𝑛𝑛-bit code indicating that a given arc has been validly matched. E.g., v = 0𝑛𝑛 

𝑣𝑣 A variable (arc-dependent) valid indicator, for slightly more obscurity.  E.g., 𝑣𝑣 = ℎ(𝐼𝐼). 

𝐸𝐸,𝐸𝐸(𝑎𝑎, 𝑡𝑡) The encoded representation of some specific arc 𝑎𝑎 at time t.  𝐸𝐸(𝑎𝑎, 𝑡𝑡) = (𝐸𝐸next,𝐸𝐸valid). 

𝑬𝑬(𝑡𝑡) The encoded representation of the entire arc set 𝐀𝐀 at time 𝑡𝑡.  𝑬𝑬(𝑡𝑡) = ⋃ {𝑒𝑒(𝑎𝑎, 𝑡𝑡)}𝑎𝑎∈𝐴𝐴  . 

Symbols first used in sec. 5.3: 

𝐼𝐼′ A candidate arc identifier that is constructed within the Executor. 

𝑲𝑲 A set which may be maintained within the Executor consisting of all of the input provision keys 
𝑝𝑝𝑡𝑡
𝑖𝑖,𝑗𝑗 that have been received so far during the current time step 𝑡𝑡. 



 

99 

Symbol/ 
Notation Meaning 

𝒌𝒌 An arbitrary subset of the present input provision key set 𝑲𝑲, which is combined with a new 
input provision key 𝑝𝑝 to produce a candidate arc identifier 𝐼𝐼′ for trial matching against arc 
conditions. 

ASCII(𝑐𝑐ℎ) Denotes the ASCII bytecode for a given text character 𝑐𝑐ℎ. 

𝑬𝑬 Combined representation of the union of all the arc sets 𝑬𝑬(𝑡𝑡) for all times 𝑡𝑡 ∈ {1, … , ℓ − 1} 

Θ(⋅) Standard notation from computational complexity theory for an exact asymptotic order of 
growth.  Very roughly speaking, this refers to a quantity proportional to the given expression. 

𝑃𝑃(𝑠𝑠, 𝑡𝑡) An arbitrary propositional function of a state 𝑠𝑠 ∈ S and a time step index 𝑡𝑡 ∈ {1, … , ℓ}. 

𝑷𝑷 Enumerative representation {(𝑠𝑠, 𝑡𝑡) | 𝑃𝑃(𝑠𝑠, 𝑡𝑡)} of the proposition 𝑃𝑃(𝑠𝑠, 𝑡𝑡). 

𝑯𝑯 Shuffled, hashed, encrypted representation of 𝑃𝑃. The set 𝑯𝑯 = �ℎ�𝐾𝐾(𝑠𝑠, 𝑡𝑡)� | (𝑠𝑠, 𝑡𝑡) ∈ 𝑷𝑷�. 

𝑿𝑿 × 𝒀𝒀 The Cartesian product, {(𝑥𝑥,𝑦𝑦) | 𝑥𝑥 ∈ 𝑋𝑋,𝑦𝑦 ∈ 𝑌𝑌} of the arbitrary sets 𝑿𝑿 and 𝒀𝒀. 

𝑓𝑓(𝑠𝑠, 𝑡𝑡) An arbitrary function of a state 𝑠𝑠 ∈ 𝐒𝐒 together with a time step index 𝑡𝑡 ∈ {1, … , ℓ}. 

𝑅𝑅 A reading authority; designates the ability to read a certain function of the current machine 
state (and/or a taken transition, if any output is associated with these). 

𝐾𝐾𝑅𝑅 A randomly generated 𝑛𝑛-bit reader key which confers the ability to read a certain function of 
the machine state as authorized under the reading authority 𝑅𝑅. 

𝐌𝐌 A set of coded output messages 𝑚𝑚𝑏𝑏 which may be distributed to readers, and possibly digitally 
signed by the Company if their non-repudiable authentication is required. 

𝑚𝑚𝑏𝑏 A particular coded output message 𝑚𝑚𝑏𝑏 ∈ 𝐌𝐌, containing the (encrypted) output information 
that is readable under a particular reading authority 𝑅𝑅 as a consequence of reaching some 
particular machine state 𝑠𝑠 during time step 𝑡𝑡. 

𝑎𝑎 Index of an output message 𝑚𝑚𝑏𝑏.  Its range is 1 ≤ 𝑎𝑎 ≤ |𝐌𝐌|. 

Symbols first used in sec. 5.4: 

⊚ A special input symbol to a machine meaning, “proceed to the next state.”  Useful in some 
protocol variants to work around the fairness problem. 

𝒗𝒗 The set of all input values received on the current time step. 

⊚𝒗𝒗 A variant of the Proceed symbol whose encoding varies depending on the set of input values 
received.  In a variant protocol this provides a way to resolve the reconvergent arcs problem. 

Symbols first used in sec. 9: 

𝑤𝑤 “Width” of a computational memory, in terms of a number of bits.  For convenience, in our 
circuit model we take 𝑤𝑤 to be a power of 2, specifically, 𝑤𝑤 = 2𝑛𝑛−1 for some integer 𝑛𝑛 ≥ 1. 

𝑉𝑉𝑡𝑡𝑖𝑖 Input line (variable) #𝑖𝑖 (1 ≤ 𝑖𝑖 ≤ 𝑚𝑚) coming into time step #𝑡𝑡 (0 ≤ 𝑡𝑡 < ℓ); note 𝑚𝑚 ≤ 𝑤𝑤. 

𝑆𝑆𝑡𝑡𝑖𝑖 Internal state line (variable) #𝑖𝑖 (1 ≤ 𝑖𝑖 ≤ 𝑤𝑤) coming from time step #𝑡𝑡 (−1 ≤ 𝑡𝑡 < ℓ − 1). 

𝑎𝑎𝑖𝑖 The activation key required to operate the 𝑖𝑖th routing element in the first layer of the 
interconnect fabric of the logic layer for the current time step 𝑡𝑡.  This is computed by an 
unlocker for step 𝑡𝑡 as 𝑎𝑎𝑖𝑖 = ℎ(𝐾𝐾(𝐿𝐿𝑡𝑡−12𝑖𝑖−1) ⊕𝐾𝐾(𝐿𝐿𝑡𝑡−12𝑖𝑖 ) ⊕  𝑘𝑘𝑡𝑡). 



 

100 

Symbol/ 
Notation Meaning 

𝐿𝐿𝑡𝑡−1
𝑗𝑗  This is the 𝑗𝑗th line feeding into the width-𝑁𝑁 circuit for evaluating logic layer #𝑡𝑡 of a circuit-

based computation.  Note that in general some of these lines may be output state variables 
from the previous logic layer, and some may be external input variables for time step 𝑡𝑡. 

𝑛𝑛 An integer 𝑛𝑛 = log2 𝑁𝑁, where 𝑁𝑁 = 2𝑤𝑤 is the total width (in bit-lines) of a circuit that updates 
a 𝑤𝑤-bit wide internal state, and which may also have up to 𝑚𝑚 ≤ 𝑤𝑤 bits of external input 
feeding into each layer of logic. 

𝑁𝑁 This integer is a power of two, 𝑁𝑁 = 2𝑛𝑛, and is also 𝑁𝑁 = 2𝑤𝑤, and is the total width (in bit-lines) 
of a circuit that updates a 𝑤𝑤-bit wide internal state, and which may also have up to 𝑚𝑚 ≤ 𝑤𝑤 bits 
of external input feeding into each layer of logic. 

𝑖𝑖 This is an integer in the range 1, 2, … ,𝑤𝑤 which indexes adjacent pairs of input lines.  It also can 
be used to index input variables and internal state variables. 

𝑗𝑗 This indexes a particular input line across the width of the u.c. and is given either by 𝑗𝑗 = 2𝑖𝑖 −
1 or 𝑗𝑗 = 2𝑖𝑖 if 𝑖𝑖 is the pair index.  Note that we have that 𝑗𝑗 is in the range 1, 2, … ,𝑁𝑁 where 𝑁𝑁 is 
the input width of the circuit. 

𝑘𝑘𝑡𝑡 A key needed to unlock evaluation of the circuit for logic layer #𝑡𝑡.  This key should be held by a 
protocol participant (the “unlocker”) that is not involved in the preparation of other inputs to 
layer 𝑡𝑡 (that is, new general inputs being provided in the input-gathering phase of the current 
time step). 

𝐿𝐿𝑡𝑡,𝑢𝑢
𝑗𝑗  This symbol refers to an internal line within the universal circuit for evaluating layer 𝑡𝑡 of the 

application circuit.  The index 𝑢𝑢 indicates the logic level within the u.c. that this line is the 
output of, and (for Thompson interconnect networks) is bounded by 0 ≤ 𝑢𝑢 < 4𝑛𝑛 − 3, where 
𝑛𝑛 = log2 𝑁𝑁, and 𝑁𝑁 is the width of the universal circuit.  The index 𝑗𝑗 is bounded by 1 ≤ 𝑗𝑗 ≤ 𝑁𝑁, 
and refers to this line’s position across the width of the universal circuit. 

𝐾𝐾�𝐿𝐿𝑡𝑡
𝑗𝑗�,𝐾𝐾(𝐿𝐿𝑡𝑡,𝑢𝑢

𝑗𝑗 ) Garbled (random bit-vector) encoding of the logical value of the line variable 𝐿𝐿𝑡𝑡
𝑗𝑗  or 𝐿𝐿𝑡𝑡,𝑢𝑢

𝑗𝑗 . 

𝑘𝑘𝑡𝑡
𝑗𝑗,𝑏𝑏, 𝑘𝑘𝑡𝑡,𝑢𝑢

𝑗𝑗,𝑏𝑏  These symbols refer to the random keys assigned to particular values of particular lines 
associated with the u.c. for evaluating a given time step (layer) of the target computational 
circuit.  The index 𝑎𝑎 refers to the bit-value (0 or 1) being represented (we can also generalize 
this to non-binary line variables).  The index 𝑡𝑡 refers to the time step that is producing this 
value, and the index 𝑢𝑢 (if present) refers to the logic layer within the u.c. for the present time 
step that is producing this value, if this is an internal line of that circuit. The index 𝑗𝑗 refers to 
this line’s position vertically across the width of the universal circuit. 

𝐸𝐸 Encrypted/garbled version of a given truth table row for a routing element or logic gate. 

Symbols first used in sec. 9.3: 

𝐿𝐿 Length of each auction bid in bits. 

𝐵𝐵 Number of bidders in an auction. 

𝑊𝑊𝑖𝑖 An internal state variable meaning bidder 𝑖𝑖 could still win.  𝑖𝑖 ∈ {0, … ,𝐵𝐵 − 1} 

𝑝𝑝 Bit-position index (LSB = position 0) within the binary (radix-2) bid value; 𝑝𝑝 = (𝐿𝐿 − 1) − 𝑡𝑡. 

𝑎𝑎𝑝𝑝𝑖𝑖  The bit in bit-position #𝑝𝑝 of bidder 𝑖𝑖’s bid.  Given by input value 𝑣𝑣𝑖𝑖(𝑡𝑡) for 𝑡𝑡 = (𝐿𝐿 − 1) − 𝑝𝑝. 

𝑢𝑢𝑝𝑝𝑑𝑑𝑎𝑎𝑡𝑡𝑒𝑒? A Boolean variable that is True if any potential winner supplied a ‘1’ bit on this cycle. 

 



 

101 

A.2 Table of Notations—In Alphabetical Order 

Table A-2.  Table of Notations (in alphabetical order) 

Symbol/ 
Notation Meaning 

𝐀𝐀 Set of arcs (a.k.a., arrows, directed edges, conditional state transitions) in the directed graph 
that defines the state machine.  𝐀𝐀 = {𝑎𝑎0, … ,𝑎𝑎𝑞𝑞−1}. 

A First party to the Millionaires’ Problem example computation (see §4.1.1). 

ASCII(𝑐𝑐ℎ) Denotes the ASCII bytecode for a given text character 𝑐𝑐ℎ. 

𝑎𝑎,𝑎𝑎𝑘𝑘 A specific arc, 𝑎𝑎 = 𝑎𝑎𝑘𝑘.  Identifiable with an ordered triple, 𝑎𝑎 = (𝑂𝑂,𝑪𝑪,𝐷𝐷). 

𝑎𝑎𝑖𝑖 In sec. 9, the activation key required to operate the 𝑖𝑖th routing element in the first layer of the 
interconnect fabric of the logic layer for the current time step 𝑡𝑡. 

B Second party to the Millionaires’ Problem example computation (see §4.1.1). 

𝐵𝐵 Number of bidders in an auction (§9.3). 

𝑎𝑎 Index of an output message 𝑚𝑚𝑏𝑏.  Its range is 1 ≤ 𝑎𝑎 ≤ |𝐌𝐌|. 

𝑎𝑎𝑝𝑝𝑖𝑖  In §9.3, this denotes the bit in bit-position #𝑝𝑝 of bidder 𝑖𝑖’s bid. 

𝑪𝑪,𝑪𝑪𝑘𝑘 The set 𝑪𝑪 = 𝑪𝑪𝑘𝑘 of transition conditions for some specific arc 𝑎𝑎𝑘𝑘.  |𝑪𝑪𝑘𝑘| ≤ |𝐕𝐕|. 

𝑐𝑐, 𝑐𝑐𝑔𝑔 Some specific condition 𝑐𝑐 = 𝑐𝑐𝑔𝑔 within some specific set 𝑪𝑪 of transition conditions.  Identifiable 
with an ordered pair 𝑐𝑐 = (𝑖𝑖, 𝑗𝑗) of a variable index and a value index 𝑗𝑗 ∈ {1, … ,𝑛𝑛𝑖𝑖}. 

𝐷𝐷,𝐷𝐷𝑘𝑘 The destination state 𝐷𝐷 = 𝐷𝐷𝑘𝑘 ∈ 𝐒𝐒 of some specific arc 𝑎𝑎𝑘𝑘. 

𝑬𝑬 Combined representation of the union of all the arc sets 𝑬𝑬(𝑡𝑡) for all times 𝑡𝑡 ∈ {1, … , ℓ − 1} 

𝑬𝑬(𝑡𝑡) The encoded representation of the entire arc set 𝐀𝐀 at time 𝑡𝑡.  𝑬𝑬(𝑡𝑡) = ⋃ {𝑒𝑒(𝑎𝑎, 𝑡𝑡)}𝑎𝑎∈𝐴𝐴  . 

𝐸𝐸,𝐸𝐸(𝑎𝑎, 𝑡𝑡) The encoded representation of some specific arc 𝑎𝑎 at time t.  𝐸𝐸(𝑎𝑎, 𝑡𝑡) = (𝐸𝐸next,𝐸𝐸valid).   
Also, in §9, 𝐸𝐸 is the encoded representation of a truth table row for a gate in a u.c.. 

𝐸𝐸next Encrypted version of the next-state field of arc 𝑎𝑎 at time 𝑡𝑡.  𝐸𝐸next = enc[𝐼𝐼next,𝐾𝐾(𝐷𝐷, 𝑡𝑡)]. 

𝐸𝐸valid Encrypted version of the ‘valid’ field of arc 𝑎𝑎 at time t.  𝐸𝐸valid = enc[𝐼𝐼valid, v] 

Exec[𝐺𝐺] A smart contract in which a generic Executor is applied to the garbled state machine 𝐺𝐺. 

𝑒𝑒 A data entry, meaning a particular field of (encrypted) data associated to a given arc 𝑎𝑎. 

enc[𝐼𝐼𝑒𝑒 , 𝑥𝑥] Encrypted version of the 𝑛𝑛-bit plaintext 𝑥𝑥 to be used within a specific data entry 𝑒𝑒. 

𝐹𝐹 A desired abstract computational functionality, expressible as a finite state machine. 

𝑓𝑓(𝑠𝑠, 𝑡𝑡) An arbitrary function of a state 𝑠𝑠 ∈ 𝐒𝐒 together with a time step index 𝑡𝑡 ∈ {1, … , ℓ}. 

𝐺𝐺 A garbled representation of some specific finite state machine implementation of 𝐹𝐹. 

𝑔𝑔 Index of some specific condition 𝑐𝑐𝑔𝑔 within some specific set 𝑪𝑪 of transition conditions, 𝑔𝑔 ∈
{1, … , |𝑪𝑪|}. 

𝑯𝑯 Shuffled, hashed, encrypted representation of 𝑷𝑷. The set 𝑯𝑯 = �ℎ�𝐾𝐾(𝑠𝑠, 𝑡𝑡)� | (𝑠𝑠, 𝑡𝑡) ∈ 𝑷𝑷�. 

ℎ(⋅) A selected cryptographic hash function, with an 𝑛𝑛-bit output. 

𝐼𝐼, 𝐼𝐼(𝑎𝑎) The arc identifier for some given specific arc 𝑎𝑎 ∈ 𝐀𝐀.  Defined in eq. 5. 



 

102 

Symbol/ 
Notation Meaning 

𝐼𝐼′ A candidate arc identifier that is constructed within the Executor. 

𝐼𝐼𝑒𝑒 A generic entry identifier; may be either 𝐼𝐼next or 𝐼𝐼valid, depending on the selected field. 

𝐼𝐼next This entry identifier, derived from 𝑎𝑎’s identifier 𝐼𝐼, allows encrypting 𝑎𝑎’s next-state field. 

𝐼𝐼valid This entry identifier, derived from 𝑎𝑎’s identifier 𝐼𝐼, allows encrypting 𝑎𝑎’s valid field. 

𝑖𝑖 Index of a specific input variable, 𝑉𝑉𝑖𝑖 ∈ 𝐕𝐕, or (in sec. 9) the index of an adjacent pair of bit-lines 
across a universal circuit’s width, or the index of an internal state variable. 

𝑗𝑗 Index of a particular value of some particular input variable 𝑉𝑉𝑖𝑖.  𝑗𝑗 ∈ {1, … ,𝑛𝑛𝑖𝑖}.  Or, in sec. 9, the 
index of a particular bit-line across a universal circuit’s width. 

𝑲𝑲 A set which may be maintained within the Executor consisting of all of the input provision keys 
𝑝𝑝𝑡𝑡
𝑖𝑖,𝑗𝑗 that have been received so far during the current time step 𝑡𝑡. 

𝐾𝐾,𝐾𝐾(𝑣𝑣𝑖𝑖
𝑗𝑗 , 𝑡𝑡) A randomly generated 𝑛𝑛-bit input key for enabling input value 𝑣𝑣𝑖𝑖

𝑗𝑗 to be provided on input line 𝑉𝑉𝑖𝑖 
for use in time step 𝑡𝑡. 

𝐾𝐾cur A variable representing the most-recent state key 𝐾𝐾(𝑆𝑆𝑡𝑡−1, 𝑡𝑡 − 1) as it varies over time 𝑡𝑡. 

𝐾𝐾𝑖𝑖 A randomly-generated 𝑛𝑛-bit participant key which an authorized provider may use to (pseudo-
randomly) generate the input keys 𝐾𝐾(𝑣𝑣𝑖𝑖

𝑗𝑗 , 𝑡𝑡) for all possible values 𝑣𝑣𝑖𝑖
𝑗𝑗 of input variable 𝑉𝑉𝑖𝑖 on all 

time steps 𝑡𝑡. 

𝐾𝐾𝑅𝑅 A randomly generated 𝑛𝑛-bit reader key which confers the ability to read a certain function of the 
machine state as authorized under the reading authority 𝑅𝑅. 

𝐾𝐾(𝑠𝑠, 𝑡𝑡) A randomly generated 𝑛𝑛-bit state key for designating that the state resulting from time step 𝑡𝑡 of 
the machine’s execution (which will be used as input to step 𝑡𝑡 + 1 of the machine’s execution), 
is 𝑠𝑠.  (Also, if 𝑡𝑡 = −1, this indicates that 𝑠𝑠 is the initial state.) 

𝐾𝐾�𝐿𝐿𝑡𝑡
𝑗𝑗�, 

𝐾𝐾(𝐿𝐿𝑡𝑡,𝑢𝑢
𝑗𝑗 ) 

In §9, the garbled (random bit vector) encoding of the logical value of the line variable 𝐿𝐿𝑡𝑡
𝑗𝑗  or 𝐿𝐿𝑡𝑡,𝑢𝑢

𝑗𝑗 . 

𝒌𝒌 An arbitrary subset of the present input provision key set 𝑲𝑲, which is combined with a new 
input provision key 𝑝𝑝 to produce a candidate arc identifier 𝐼𝐼′ for trial matching against arc 
conditions. 

𝑘𝑘 Index of some specific arc, 𝑎𝑎𝑘𝑘 ∈ 𝐀𝐀. 

𝑘𝑘𝑡𝑡 In sec. 9, a key needed to unlock evaluation of the universal circuit for logic layer #𝑡𝑡 of a target 
computation circuit. 

𝑘𝑘𝑡𝑡
𝑗𝑗,𝑏𝑏, 𝑘𝑘𝑡𝑡,𝑢𝑢

𝑗𝑗,𝑏𝑏 In sec. 9, the random key assigned to bit-value 𝑎𝑎 of bit-line 𝐿𝐿𝑡𝑡
𝑗𝑗  or 𝐿𝐿𝑡𝑡,𝑢𝑢

𝑗𝑗 , respectively. 

𝐿𝐿 Maximum possible length of a party’s wealth number in bits (see §4.1.1).  Also used in §9.3 for 
the length of an auction bid in bits. 

𝐿𝐿𝑡𝑡−1
𝑗𝑗  In sec. 9, the 𝑗𝑗th bit-line feeding into the width-𝑁𝑁 universal circuit for evaluating logic layer #𝑡𝑡 of 

a circuit-based computation. 

𝐿𝐿𝑡𝑡,𝑢𝑢
𝑗𝑗  In sec. 9, the 𝑗𝑗th bit-line output from layer 𝑢𝑢 of the universal circuit for evaluating target logic 

layer #𝑡𝑡 of a circuit-based computation. 

𝑙𝑙 Index of a specific state.  (This one is not used in the document, except below.) 



 

103 

Symbol/ 
Notation Meaning 

ℓ Maximum length (in cycles) of the state-machine execution supported by 𝐺𝐺. 

ℓ� An upper bound on ℓ which may be publicly inferred through inspection of 𝐺𝐺. 

𝐌𝐌 A set of coded output messages 𝑚𝑚𝑏𝑏 which may be distributed to readers, and possibly digitally 
signed by the Company if their non-repudiable authentication is required. 

𝑀𝑀 Number of alternative inputs from which the 𝑁𝑁 inputs in an “𝑁𝑁 out of 𝑀𝑀” input model are being 
selected.  𝑀𝑀 ≥ 𝑁𝑁. 

𝑚𝑚 Number of input variables. 𝑚𝑚 = |𝐕𝐕|. 

𝑚𝑚𝑏𝑏 A particular coded output message 𝑚𝑚𝑏𝑏 ∈ M, containing the (encrypted) output information that 
is readable under a particular reading authority 𝑅𝑅 as a consequence of reaching some particular 
machine state 𝑠𝑠 during time step 𝑡𝑡. 

𝑁𝑁 Number of required inputs to a machine 𝐺𝐺 using a multiple-source input model, or (in sec. 9), 
the total width in bit-lines of a universal circuit for updating the machine state. 

𝑛𝑛 The fixed length, in bits, of the random keys, hash function outputs, and encrypted values, or (in 
sec. 9) the logarithm base 2 of the width 𝑁𝑁 of a universal circuit. 

𝑛𝑛𝑖𝑖 Number of alternative values of input variable 𝑉𝑉𝑖𝑖.  𝑛𝑛𝑖𝑖 = |𝐕𝐕𝑖𝑖|. 

𝑂𝑂,𝑂𝑂𝑘𝑘 The origin state 𝑂𝑂 = 𝑂𝑂𝑘𝑘 ∈ S of some specific arc 𝑎𝑎𝑘𝑘. 

OC(𝑠𝑠) The out-conditions of state 𝑠𝑠 are the set of condition sets 𝑪𝑪 on arcs 𝑎𝑎 = (𝑠𝑠,𝐶𝐶,𝐷𝐷) ∈ A. 

𝑷𝑷 Enumerative representation {(𝑠𝑠, 𝑡𝑡) | 𝑃𝑃(𝑠𝑠, 𝑡𝑡)} of the proposition 𝑃𝑃(𝑠𝑠, 𝑡𝑡). 

𝑃𝑃(𝑠𝑠, 𝑡𝑡) An arbitrary propositional function of a state 𝑠𝑠 ∈ 𝐒𝐒 and a time step index 𝑡𝑡 ∈ {1, … , ℓ}. 

𝑝𝑝 Number of supported states for the state machine.  𝑝𝑝 = |𝐒𝐒|, the cardinality of 𝐒𝐒.  Sometimes 
also stands for an input provision key.  Alternatively, in §9.3, 𝑝𝑝 is a bit-position index in a bid. 

𝑝𝑝𝑡𝑡
𝑖𝑖,𝑗𝑗 The input provision key for providing the input value 𝑣𝑣𝑖𝑖

𝑗𝑗 to the machine on time step 𝑡𝑡, given 
that its current state 𝑠𝑠 leading in has a particular key 𝐾𝐾cur =  𝐾𝐾(𝑠𝑠, 𝑡𝑡 − 1). 

𝑞𝑞 Number of arcs in the state machine.  𝑞𝑞 = |𝐀𝐀|, the cardinality of 𝐀𝐀. 

𝑞𝑞� An upper bound on 𝑞𝑞 which may be publicly inferred through inspection of 𝐺𝐺. 

𝑅𝑅 A reading authority; designates the ability to read a certain function of the current machine 
state (and/or a taken transition, if any output is associated with these). 

𝑟𝑟 The number of transition conditions in some specific set 𝑪𝑪 of transition conditions,  
𝑟𝑟 = |𝑪𝑪|. 

𝐒𝐒 Set of supported state-machine states.  𝐒𝐒 = {𝑠𝑠1, … , 𝑠𝑠𝑝𝑝}. 

𝑆𝑆−1 Line (variable) for the initial state input to step 0 of the state machine’s execution. 

𝑆𝑆fin Final state variable, 𝑆𝑆fin = 𝑆𝑆ℓ−1.  This determines the final result of the computation. 

𝑆𝑆𝑡𝑡 Line (variable) for the state output from step 𝑡𝑡 of the state machine’s execution. 

𝑆𝑆𝑡𝑡𝑖𝑖 In §9, internal state line (variable) #𝑖𝑖 (1 ≤ 𝑖𝑖 ≤ 𝑤𝑤) from time step #𝑡𝑡 (0 ≤ 𝑡𝑡 < ℓ). 

𝑠𝑠, 𝑠𝑠𝑙𝑙 A specific state, 𝑠𝑠 = 𝑠𝑠𝑙𝑙 ∈ 𝐒𝐒. 

𝑠𝑠init Initial state, 𝑠𝑠init ∈ 𝐒𝐒.  This could be hardcoded into 𝐺𝐺, or provided in an initialization step. 



 

104 

Symbol/ 
Notation Meaning 

𝑠𝑠(𝑡𝑡) The actual machine state 𝑠𝑠(𝑡𝑡) ∈ 𝐒𝐒 resulting after step 𝑡𝑡 of a particular run. 

𝜎𝜎 An encoded input symbol to a machine 𝐺𝐺 using a single-source input model. 

𝑡𝑡 Index of a “time step” (state-machine cycle).  𝑡𝑡 ∈ {1, … , ℓ}. 

𝑢𝑢𝑝𝑝𝑑𝑑𝑎𝑎𝑡𝑡𝑒𝑒? In §9.3, a Boolean variable that is True if any potential winner supplied a ‘1’ bit on this cycle. 

𝐕𝐕 Set of input variables supported for the state machine. 𝐕𝐕 = {𝑉𝑉1, … ,𝑉𝑉𝑚𝑚}. 

𝐯𝐯𝑖𝑖 Set of possible values of input variable 𝑉𝑉𝑖𝑖.  We write 𝐯𝐯𝑖𝑖 = {𝑣𝑣𝑖𝑖1, … , 𝑣𝑣𝑖𝑖
𝑛𝑛𝑖𝑖}. 

𝑉𝑉,𝑉𝑉𝑖𝑖 A specific input variable, 𝑉𝑉 = 𝑉𝑉𝑖𝑖 ∈ 𝐕𝐕. 

𝑉𝑉𝑖𝑖(𝑡𝑡) Input line supplying the value of input variable 𝑉𝑉𝑖𝑖 for time step 𝑡𝑡; we tend to use this notation 
when discussing the state-machine model. 

𝑉𝑉𝑡𝑡𝑖𝑖 Another notation for input line (variable) #𝑖𝑖 (1 ≤ 𝑖𝑖 ≤ 𝑚𝑚) coming into time step #𝑡𝑡 (0 ≤ 𝑡𝑡 < ℓ); 
note that 𝑚𝑚 ≤ 𝑤𝑤 in the circuit model discussed in §9. 

𝑣𝑣𝑖𝑖(𝑡𝑡) Refers to the value assigned to input variable 𝑉𝑉𝑖𝑖 on time step 𝑡𝑡.  𝑣𝑣𝑖𝑖(𝑡𝑡) ∈ 𝐯𝐯𝑖𝑖 . 

𝒗𝒗 The set of all input values received on the current time step. 

v A constant 𝑛𝑛-bit code indicating that a given arc has been validly matched. E.g., v = 0𝑛𝑛 

𝑣𝑣 A variable (arc-dependent) valid indicator, for slightly more obscurity.  E.g., 𝑣𝑣 = ℎ(𝐼𝐼). 

𝑣𝑣𝑖𝑖
𝑗𝑗 A particular value of a particular input variable 𝑉𝑉𝑖𝑖.  𝑣𝑣𝑖𝑖

𝑗𝑗 ∈ 𝐯𝐯𝑖𝑖. 

𝑊𝑊𝑖𝑖 In §9.3, an internal state variable meaning bidder 𝑖𝑖 could still win.  𝑖𝑖 ∈ {0, … ,𝐵𝐵 − 1} 

𝑤𝑤 The “width” of a computational memory, in terms of a number of bits.  Or, the output width, in 
bit lines, of an explicit computational circuit for computing the next state, in a version of GABLE 
based on the circuit model of computation (see §9). 

𝑿𝑿 × 𝒀𝒀 The Cartesian product, {(𝑥𝑥,𝑦𝑦) | 𝑥𝑥 ∈ 𝑿𝑿,𝑦𝑦 ∈ 𝒀𝒀} of the arbitrary sets 𝑿𝑿 and 𝒀𝒀. 

𝑥𝑥 An arbitrary 𝑛𝑛-bit plaintext to be encrypted. 

𝑦𝑦 Encrypted version of the 𝑛𝑛-bit plaintext 𝑥𝑥 to be used within a specific data entry 𝑒𝑒. 

Θ(⋅) Standard notation from computational complexity theory for an exact asymptotic order of 
growth.  Roughly speaking, this refers to a quantity proportional to the given expression. 

⊥𝑖𝑖 A special value for input line 𝑉𝑉𝑖𝑖 meaning “Input variable 𝑉𝑉𝑖𝑖 is unassigned on this cycle.” 

+ A generic operator for combining inputs to a hash function; this operator might be lossless (like 
concatenation of self-delimiting byte strings) or associative (like ⊕).  See text for details. 

⨁ Bitwise exclusive-OR operation, applicable to pairs of bit strings of equal length. 

⊚ A special input symbol to a machine meaning, “proceed to the next state.” 

⊚𝒗𝒗 A variant of the Proceed symbol whose encoding varies depending on the set of input values 
received.  In a variant protocol this provides a way to resolve the reconvergent arcs problem. 

⊝ A special input symbol to a machine meaning, “halt” (yielding final outputs, if any). 

 



 

105 

APPENDIX B REFERENCE GARBLER IMPLEMENTATION (IN PYTHON)  
In this appendix, we provide complete code for a reference implementation of a Garbler in the Python 
language, version 3.x. 

B.1 Concise version of Garbler code (no comments) 
The following listing of the reference Python code for the Garbler has all comments stripped out for 
conciseness.  A much more verbose listing with extensive comments is provided in subappendix B.2. 

1 import argparse 
2 import random 
3 from eth_hash.auto import keccak 
4 import json 
5  
6 KEY_LENGTH=256 
7  
8 def randBytes(length): 
9     return (bytes(random.getrandbits(8) for _ in range(length//8))) 

10      
11 def hash256(seq): 
12     assert(type(seq) == type(b'')) 
13     return keccak(seq) 
14      
15 def get_key_targets(mach, in_states): 
16     lineVals = {}               
17     states = set()       
18     for arc in mach:        
19         (origState, conditions, destState) = arc 
20         states.add(origState)       
21         states.add(destState)       
22         for lineName in conditions:      
23             assert(not lineName.startswith('_'))     
24             condVal = conditions[lineName] 
25             try: 
26                 lineVals[lineName].add(condVal)       
27             except KeyError: 
28                 lineVals[lineName] = {condVal}         
29     lineVals['_out_states'] = states 
30     if not in_states: 
31         lineVals['_in_states'] = states 
32     return lineVals 
33      
34 def gen_step_keys(mach, in_states=None): 
35     lineVals = get_key_targets(mach, in_states) 
36     keys = {} 
37     for target in sorted(lineVals):     
38         keys[target] = {}           
39         for val in sorted(lineVals[target]):    
40             keys[target][val] = randBytes(KEY_LENGTH)  
41     if in_states: 
42         keys['_in_states'] = in_states 
43     return keys 
44          
45 def save_keys(t, keys): 
46     for key in keys: 
47         with open('%s-%s.keys' % (t, key), 'w') as keyFile: 
48             json_keys = {k: v.hex()  
49                             for k, v in keys[key].items()} 
50             json.dump(json_keys, keyFile) 
51              
52 def save_gc(t, gc): 
53     with open('%s.gc' % t, 'w') as gcFile: 
54         json.dump( 
55             list(map( 



 

106 

56                     lambda earc: (earc[0].hex(), 
57                                   earc[1].hex()),  
58                     gc)), 
59             gcFile) 
60                                      
61 def encdec(k, v): 
62     assert(len(v) == KEY_LENGTH//8) 
63     return bytes(map(lambda h,x: h^x, hash256(k), v)) 
64              
65 def garble(circ, ks): 
66     encArcs = []     
67     for arc in circ: 
68         (origState, conditions, destState) = arc 
69         arcID = ks['_in_states'][origState] 
70         for lineName in filter(lambda varName: not varName.startswith('_'),  
71                                ks.keys()): 
72             if lineName in conditions: 
73                 Pij = hash256(bytes(map(lambda b1,b2: b1^b2, 
74                                             ks[lineName][conditions[lineName]], 
75                                             ks['_in_states'][origState]))) 
76                 arcID = bytes(map(lambda b1,b2: b1^b2, arcID, Pij)) 
77         nextID  = bytes(arcID[:-1] + bytes([arcID[-1] ^ ord('n')])) 
78         validID = bytes(arcID[:-1] + bytes([arcID[-1] ^ ord('v')])) 
79         destStateCode = ks['_out_states'][destState] 
80         encNextState = encdec(nextID, destStateCode) 
81         encValidArc = encdec(validID, b'\0'*(KEY_LENGTH//8)) 
82         encArcs.append((encNextState, encValidArc)) 
83     random.shuffle(encArcs) 
84     return encArcs 
85      
86 if __name__ == '__main__': 
87     parser = argparse.ArgumentParser(description='PoC Garbler') 
88     parser.add_argument('--seed', default=None,  
89                         help='Seed to use for deterministic garbling') 
90     parser.add_argument('--time_steps', default=10, type=int,  
91                         help='Number of time steps to generate circuits for') 
92     parser.add_argument('circuit', help='JSON file to use as the circuit') 
93     args = parser.parse_args() 
94     if args.seed: 
95         random.seed(args.seed) 
96     with open(args.circuit) as fsmFile: 
97         circuit = json.load(fsmFile) 
98     in_states = None 
99     for t in range(args.time_steps):     

100         keys = gen_step_keys(circuit, in_states) 
101         save_keys(t, keys) 
102         garbled = garble(circuit, keys) 
103         save_gc(t, garbled) 
104         if t == 0: 
105             if not 'SInit' in keys['_in_states']: 
106                 raise Exception('please create a state SInit and/or change ' 
107                                 'this logic') 
108             with open('init.gc', 'w') as initFile: 
109                 json.dump([keys['_in_states']['SInit'].hex()],  
110                           initFile) 
111         in_states = keys['_out_states'] 

B.2 Verbose listing of Garbler code (with detailed comments) 
The following version of the reference Python code for the Garbler includes detailed comments and 
some diagnostics.  A much more concise listing without comments is given in subappendix B.1 above. 

1 #!/usr/bin/env python3 
2 #|=============================================================================| 
3 #|                                                                             | 
4 #|      FILE NAME:  garbler.py                          [Python source file]   | 



 

107 

5 #|                                                                             | 
6 #|                                                                             | 
7 #|      Description:                                                           | 
8 #|      ------------                                                           | 
9 #|                                                                             | 

10 #|          This Python program is an example implementation of a              | 
11 #|          Garbler for finite state machines.  It takes an input a            | 
12 #|          description of a finite state machine F, and produces as           | 
13 #|          output an array of coded input keys K(v_i^j,t) and                 | 
14 #|          set of encrypted arcs E(t) making up the description of            | 
15 #|          the garbled version G of F, for each time step t in the            | 
16 #|          range from 0 to L-1, where L is the number of supported            | 
17 #|          time steps.                                                        | 
18 #|                                                                             | 
19 #|      Language:   Python 3 (version 3.6 or higher)                           | 
20 #|                                                                             | 
21 #|      Other dependencies:                                                    | 
22 #|      -------------------                                                    | 
23 #|                                                                             | 
24 #|          The present version assumes that the 'eth-hash' library            | 
25 #|          has been installed; it is used to obtain the keccak()              | 
26 #|          (Keccak-256) hash function, which is used because it is            | 
27 #|          also available in Solidity (which the prototype Executor           | 
28 #|          is written in).  To install eth-hash in your environment:          | 
29 #|                                                                             | 
30 #|              $ pip install eth-hash[pycryptodome]                           | 
31 #|                                                                             | 
32 #|                                                                             | 
33 #|      Usage:                                                                 | 
34 #|      ------                                                                 | 
35 #|                                                                             | 
36 #|          ./garbler.py [--seed <seed>] [--time_steps <L>] <FSM_file>         | 
37 #|                                                                             | 
38 #|                                                                             | 
39 #|      Arguments:                                                             | 
40 #|      ----------                                                             | 
41 #|                                                                             | 
42 #|          --seed <string=None>                                               | 
43 #|                                                                             | 
44 #|              Optional argument.  Provides a string to use as a              | 
45 #|              random seed.  If not provided, no consistent seed              | 
46 #|              is used.                                                       | 
47 #|                                                                             | 
48 #|          --time_steps <integer=10>                                          | 
49 #|                                                                             | 
50 #|              Number L of time steps worth of garbled state-                 | 
51 #|              machine execution to synthesize.  Defaults to                  | 
52 #|              10 steps if not specified.                                     | 
53 #|                                                                             | 
54 #|          <FSM_file>                                                         | 
55 #|                                                                             | 
56 #|              Required argument; the pathname of the .sm file                | 
57 #|              describing the state machine.  This is a JSON                  | 
58 #|              file consisting of an array of arcs, where each                | 
59 #|              arc is an array with 3 elements:                               | 
60 #|                                                                             | 
61 #|                  <origState> [string] - Name of the arc's                   | 
62 #|                                          origin state.                      | 
63 #|                                                                             | 
64 #|                  <varDict> [map] - Condition set; maps an                   | 
65 #|                                      input variable name                    | 
66 #|                                      [string] to a value                    | 
67 #|                                      [string].                              | 
68 #|                                                                             | 
69 #|                  <destState> [string] - Name of the arc's                   | 
70 #|                                          destination state.                 | 
71 #|                                                                             | 



 

108 

72 #|              An example of such a file is shown below:                      | 
73 #|                                                                             | 
74 #|                  [["SInit", {"A": "1", "B": "1"}, "SPass"],                 | 
75 #|                   ["SInit", {"A": "0", "B": "0"}, "SFail"],                 | 
76 #|                   ["SInit", {"A": "0", "B": "1"}, "SReset"],                | 
77 #|                   ["SInit", {"A": "1", "B": "0"}, "SReset"],                | 
78 #|                   ["SReset", {"A": "0", "B": "1"}, "SInit"],                | 
79 #|                   ["SReset", {"A": "1", "B": "0"}, "SInit"],                | 
80 #|                   ["SReset", {"A": "0", "B": "0"}, "SFail"],                | 
81 #|                   ["SReset", {"A": "1", "B": "1"}, "SFail"]]                | 
82 #|                                                                             | 
83 #|      Output files:                                                          | 
84 #|      -------------                                                          | 
85 #|                                                                             | 
86 #|          This program produces the following output files:                  | 
87 #|                                                                             | 
88 #|              init.gc [JSON]                                                 | 
89 #|                                                                             | 
90 #|                  An array with one element, which is the 64                 | 
91 #|                  hex digit code for the initial state [string].             | 
92 #|                                                                             | 
93 #|              <t>.gc [JSON]                                                  | 
94 #|                                                                             | 
95 #|                  An array of encrypted arcs, each of which is               | 
96 #|                  an array of two strings, which are the 64 hex              | 
97 #|                  digit codes for the encrypted 'next state' and             | 
98 #|                  'valid' entries, respectively.                             | 
99 #|                                                                             | 

100 #|              <t>-_in_states.keys [JSON]                                     | 
101 #|                                                                             | 
102 #|                  A map from state names to the 64 hex digit                 | 
103 #|                  codes for those states for input to the garbled            | 
104 #|                  state machine on time step <t>.                            | 
105 #|                                                                             | 
106 #|              <t>-_out_states.keys [JSON]                                    | 
107 #|                                                                             | 
108 #|                  A map from state names to the 64 hex digit                 | 
109 #|                  codes for those states for output from the                 | 
110 #|                  garbled state machine on time step <t>.                    | 
111 #|                  Identical to <t+1>-_in_states.keys.                        | 
112 #|                                                                             | 
113 #|              <t>-<V>.keys [JSON]                                            | 
114 #|                                                                             | 
115 #|                  For the input variable named <V>, a map from               | 
116 #|                  each name of a value of that variable to the               | 
117 #|                  64 hex digit code (key) for that value for                 | 
118 #|                  input to the machine on time step <t>.                     | 
119 #|                                                                             | 
120 #|                                                                             | 
121 #|      Revision history:                                                      | 
122 #|      -----------------                                                      | 
123 #|                                                                             | 
124 #|          v0.1 (7/29/'18) - Original version by Kasimir Gabert               | 
125 #|              <kasimir@gatech.edu>.                                          | 
126 #|          v0.2 (7/18/'18) - Additional comments added by M.P. Frank          | 
127 #|              <mpfrank@sandia.gov>.                                          | 
128 #|          v0.3 (8/24/'18) - Further cleanup for inclusion in draft           | 
129 #|              report (MPF).                                                  | 
130 #|          v0.4 (8/30/'18) - Continuing cleanup for draft report.             | 
131 #|          v0.5 (10/8/'18) - Modifying to use keccak-256 hash func            | 
132 #|              instead of 256-bit standard SHA-3.  Also got rid of            | 
133 #|              binascii library; using builtins instead. (MPF)                | 
134 #|          v0.7 (3/19/'20) – Fix replacing input K(Vij) with hash(            | 
135 #|              K(Vij) xor K(state)) by Ryan Kao <rkao@sandia.gov>.            | 
136 #|                                                                             | 
137 #|vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv| 
138  



 

109 

139     #|=========================================================================| 
140     #|      Imports.                                         [code section]    | 
141     #|vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv| 
142  
143 import argparse                     # Parse command-line arguments. 
144 import random                       # Pseudo-random number generation. 
145 from eth_hash.auto import keccak    # Keccak-256 hash function (used in ETH). 
146 import json                         # JSON format file reading and writing. 
147 import pprint                       # Pretty-print Python data structures. 
148  
149  
150     #|=========================================================================| 
151     #|      Constant definitions.                            [code section]    | 
152     #|vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv| 
153  
154         #|---------------------------------------------------------------------| 
155         #|      KEY_LENGTH                                [integer constant]   | 
156         #|                                                                     | 
157         #|          A "key" in the garbler means a random codeword             | 
158         #|          representing a particular state in the state               | 
159         #|          machine on a given cycle, or a particular value            | 
160         #|          of an input variable to the state machine.  For            | 
161         #|          our purposes, we will use keys that are 256 bits           | 
162         #|          long.                                                      | 
163         #|vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv| 
164  
165 KEY_LENGTH=256 
166  
167  
168     #|=========================================================================| 
169     #|      Function definitions.                            [code section]    | 
170     #|vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv| 
171  
172         #|---------------------------------------------------------------------| 
173         #|                                                                     | 
174         #|      randBytes()                                      [function]    | 
175         #|                                                                     | 
176         #|          Returns an immutable array of random bytes, of the         | 
177         #|          given length len (in bits).                                | 
178         #|                                                                     | 
179         #|      Arguments:                                                     | 
180         #|                                                                     | 
181         #|          len [positive integer] - Length of the random array        | 
182         #|              to generate, in bits.  Should be a multiple of 8.      | 
183         #|                                                                     | 
184         #|      Return value:                                                  | 
185         #|                                                                     | 
186         #|          A random "bytes" object of the requested length.           | 
187         #|                                                                     | 
188         #|vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv| 
189  
190 def randBytes(length): 
191     return (bytes(random.getrandbits(8) for _ in range(length//8))) 
192         # (The above expression is using generator syntax.) 
193 #__/End function randBytes(). 
194  
195  
196         #|---------------------------------------------------------------------| 
197         #|                                                                     | 
198         #|      hash256()                                        [function]    | 
199         #|                                                                     | 
200         #|          Given a 'bytes' object (which may have any length),        | 
201         #|          return the 256-bit SHA3 hash of that object, also          | 
202         #|          as a 'bytes' object (with exactly 32 bytes).               | 
203         #|                                                                     | 
204         #|      Arguments:                                                     | 
205         #|                                                                     | 



 

110 

206         #|          seq [bytes] - Sequence of bytes to hash.                   | 
207         #|                                                                     | 
208         #|      Returns:                                                       | 
209         #|                                                                     | 
210         #|          A 32-byte long 'bytes' object, which is the hash.          | 
211         #|                                                                     | 
212         #|vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv| 
213      
214 def hash256(seq): 
215     assert(type(seq) == type(b''))  # Make sure argument is a bytes object. 
216     return keccak(seq)    # Keccak-256 hash function available in Solidity. 
217 #__/End function hash256(). 
218  
219  
220         #|---------------------------------------------------------------------| 
221         #|                                                                     | 
222         #|      get_key_targets()                                [function]    | 
223         #|                                                                     | 
224         #|          Get the names and the possible (plaintext) values          | 
225         #|          of all of the lines in the machine.  Here, 'line'          | 
226         #|          means a variable, which may either be an input             | 
227         #|          variable or a state variable. (Think of it like a          | 
228         #|          hardware data bus.)                                        | 
229         #|                                                                     | 
230         #|      Arguments:                                                     | 
231         #|      ----------                                                     | 
232         #|                                                                     | 
233         #|          mach - A state machine, represented as a sequence of       | 
234         #|                  arcs, where an arc is a three-element              | 
235         #|                  sequence [<orig>, <conds>, <dest>] of              | 
236         #|                  origin state <orig>, set of transition             | 
237         #|                  conditions <conds>, and destination state          | 
238         #|                  <dest>.                                            | 
239         #|                                                                     | 
240         #|          in_states - If this is not None, then our input            | 
241         #|                  states are already known (as outputs from          | 
242         #|                  the prior iteration) and we do not need            | 
243         #|                  to generate key targets for them.                  | 
244         #|                                                                     | 
245         #|                                                                     | 
246         #|      Return value:                                                  | 
247         #|      -------------                                                  | 
248         #|                                                                     | 
249         #|          lineVals - A dictionary mapping each line name             | 
250         #|              (variable name) to its set of possible value           | 
251         #|              names [strings].  Two special reserved line            | 
252         #|              names '_in_states' and '_out_states' designate         | 
253         #|              the input state line to and output state line          | 
254         #|              from the machine on any given time step,               | 
255         #|              respectively.                                          | 
256         #|                                                                     | 
257         #|vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv| 
258          
259 def get_key_targets(mach, in_states): 
260  
261         #--------------------------------------------------------------- 
262         # Initialize an empty dictionary 'lineVals', mapping the name  
263         # of each variable ('line') to its set of possible values. 
264          
265     lineVals = {}               
266      
267         #--------------------------------------------------------------- 
268         # The set of state names that we have seen so far ('states')  
269         # is initially the empty set. 
270          
271     states = set()       
272  



 

111 

273         #--------------------------------------------------------------- 
274         # Iterate through each row in the transition table (an arrow or  
275         # 'arc' of the state machine). 
276      
277     for arc in mach:        
278      
279             #--------------------------------------------------------------- 
280             # Decompose the row/arc data structure (sequence) into its 3  
281             # elements which are the origin state name, set of transition  
282             # conditions, and destination state name, respectively. 
283      
284         (origState, conditions, destState) = arc 
285      
286             #--------------------------------------------------------------- 
287             # The first (#0) element of the row is the initial state name.   
288             # Make sure it's included in our state set. 
289      
290         states.add(origState)       
291          
292             #--------------------------------------------------------------- 
293             # The third (#2) element of the row is the final state name.   
294             # Make sure it's also included in our state set. 
295          
296         states.add(destState)       
297          
298             #--------------------------------------------------------------- 
299             # The second (#1) element of the row is a map from input lines  
300             # (input variables) to their values.  Iterate through the keys  
301             # of this map, which are the names of the input variables. 
302          
303         for lineName in conditions:      
304  
305                 #--------------------------------------------------------------- 
306                 # This assert enforces that the input lines are distinct from the  
307                 # 'special' reserved lines (whose names start with '_') which  
308                 # encode state variables.  If the user tries to start a variable  
309                 # name with an underscore, we flag this as an error. 
310          
311             assert(not lineName.startswith('_'))     
312              
313                 #--------------------------------------------------------------- 
314                 # Get the name of the particular value that must be assigned  
315                 # to this particular input line in this particular arc's set of  
316                 # transition conditions. 
317              
318             condVal = conditions[lineName] 
319              
320                 #--------------------------------------------------------------- 
321                 # This try/except clause adds the value name to the set of  
322                 # value names for this variable; or, if that set hasn't been 
323                 # created yet, we create it in the except clause. 
324              
325             try: 
326              
327                     #----------------------------------------------------------- 
328                     # Assuming that we already have a set of values for this  
329                     # variable in the dictionary, make sure this specific value  
330                     # is included in the set. 
331              
332                 lineVals[lineName].add(condVal)       
333                  
334             except KeyError:    # Occurs if this key hasn't been assigned to yet. 
335              
336                     #----------------------------------------------------------- 
337                     # Initialize the set of values for this variable, as a  
338                     # singleton set of the current value. 
339              



 

112 

340                 lineVals[lineName] = {condVal}         
341                  
342             #__/ End try/except. 
343  
344         #__/ End for lineName in conditions. 
345      
346     #__/ End for arc in mach. 
347      
348         #----------------------------------------------------------- 
349         # Record the list of state names under the '_out_states' 
350         # attribute.  This will exist for every time step. 
351                  
352     lineVals['_out_states'] = states 
353      
354         #----------------------------------------------------------- 
355         # On the first iteration only, when 'in_states' is None, 
356         # include the list of states in the '_in_states' attribute, 
357         # because we will need to generate keys for these states 
358         # (although really only the key for state SInit gets used). 
359      
360     if not in_states: 
361         lineVals['_in_states'] = states 
362  
363     return lineVals 
364      
365 #__/ End function get_key_targets(). 
366  
367  
368         #|---------------------------------------------------------------------| 
369         #|                                                                     | 
370         #|      gen_step_keys()                                 [function]     | 
371         #|                                                                     | 
372         #|          This function generates a data structure 'keys'            | 
373         #|          which contains all the mappings from state lines           | 
374         #|          and input variables to the random keys for their           | 
375         #|          possible values, for the present iteration of the          | 
376         #|          state machine 'mach'.  If the argument 'in_states'         | 
377         #|          is provided and not 'None', it's assumed to be a           | 
378         #|          map of already-known state keys (output from the           | 
379         #|          last iteration) to be used as the input state keys         | 
380         #|          for the current iteration.                                 | 
381         #|                                                                     | 
382         #|      Arguments:                                                     | 
383         #|      ----------                                                     | 
384         #|                                                                     | 
385         #|          mach - A state machine, represented as a sequence of       | 
386         #|                  arcs, where an arc is a three-element              | 
387         #|                  sequence [<orig>, <conds>, <dest>] of              | 
388         #|                  origin state <orig>, set of transition             | 
389         #|                  conditions <conds>, and destination state          | 
390         #|                  <dest>.                                            | 
391         #|                                                                     | 
392         #|          in_states - Map from state names to keys to use            | 
393         #|                  for the input state line to this step of           | 
394         #|                  the machine, or None if not yet known.             | 
395         #|                  When a non-None value is provided, it is           | 
396         #|                  the same as the keys for the output                | 
397         #|                  states from the previous time step.                | 
398         #|                                                                     | 
399         #|      Returns:                                                       | 
400         #|      --------                                                       | 
401         #|                                                                     | 
402         #|          keys [map] - A map from line names to maps from            | 
403         #|                  value names to 32-byte random codes.               | 
404         #|                                                                     | 
405         #|vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv| 
406      



 

113 

407 def gen_step_keys(mach, in_states=None): 
408  
409         #--------------------------------------------------------------- 
410         # Obtain a data structure 'lineVals' which gives the names of  
411         # all the states, input variables, and input variable values for  
412         # this state machine.  The input state and output state can also  
413         # be considered variables.  All the variables (including input  
414         # variables and state variables) are called 'key targets',  
415         # because we will need to assign a key to each of their possible 
416         # values. 
417  
418     lineVals = get_key_targets(mach, in_states) 
419  
420     pp.pprint(lineVals)    # Diagnostic. 
421      
422         #--------------------------------------------------------------- 
423         # Generate keys for each key target.  The 'keys' data structure 
424         # will map each variable name to a map from its possible value  
425         # names to their corresponding random keys.  Initially empty. 
426          
427     keys = {} 
428      
429         #--------------------------------------------------------------- 
430         # Iterate through the (input and state) variable names.  These  
431         # are the keys of the lineVals dictionary.  (Sorting just  
432         # ensures deterministic behavior regardless of how the  
433         # dictionary happens to be ordered internally.) 
434      
435     for target in sorted(lineVals):     
436      
437             #--------------------------------------------------------------- 
438             # Initialize an empty dictionary for this target's keys.   
439      
440         keys[target] = {}           
441          
442             #--------------------------------------------------------------- 
443             # Iterate through the possible values of that target variable. 
444          
445         for val in sorted(lineVals[target]):    
446          
447                 #--------------------------------------------------------------- 
448                 # That key is a newly-created random number of the given length. 
449              
450             keys[target][val] = randBytes(KEY_LENGTH)  
451  
452         #__/ End for val in target values. 
453      
454     #__/ End for target in list of target variable names. 
455  
456         #--------------------------------------------------------------- 
457         # On every iteration after the first, the '_in_states' key  
458         # assignments, provided in the in_states argument, will just be  
459         # a copy of the key assignments for the output states from the  
460         # previous iteration. 
461              
462     if in_states: 
463         keys['_in_states'] = in_states 
464          
465     pp.pprint(keys)       # Diagnostic 
466          
467     return keys 
468      
469 #__/ End function gen_step_keys(). 
470  
471  
472         #|---------------------------------------------------------------------| 
473         #|      save_keys()                                      [function]    | 



 

114 

474         #|                                                                     | 
475         #|          Saves all the variable value keys for the current          | 
476         #|          iteration to a set of JSON files named                     | 
477         #|                                                                     | 
478         #|                              <t>-<ln>.keys,                         | 
479         #|                                                                     | 
480         #|          where <t> is the current step number t, and <ln>           | 
481         #|          is the name of a particular line (variable), which         | 
482         #|          may be an input variable, or '_in_states' or               | 
483         #|          '_out_states' for the input or output state lines,         | 
484         #|          respectively.                                              | 
485         #|                                                                     | 
486         #|      Arguments:                                                     | 
487         #|      ----------                                                     | 
488         #|                                                                     | 
489         #|          t [integer] - Current time step number, from 0 to          | 
490         #|                          L-1.                                       | 
491         #|                                                                     | 
492         #|          keys [map] - Data structure as produced by                 | 
493         #|                          gen_step_keys(), mapping line              | 
494         #|                          names to a map from line value             | 
495         #|                          names to 256-bit random codes.             | 
496         #|                                                                     | 
497         #|      Output files:                                                  | 
498         #|      -------------                                                  | 
499         #|                                                                     | 
500         #|          <t>-<ln>.keys [JSON] - N+2 files, one for each             | 
501         #|              line <ln>, in JSON format giving the maps              | 
502         #|              from value names to 64 hex digit strings               | 
503         #|              for the value's encoding.                              | 
504         #|                                                                     | 
505         #|vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv| 
506      
507 def save_keys(t, keys): 
508     for key in keys:    # Iterates through the variable names keying the 'keys' map. 
509         with open('%s-%s.keys' % (t, key), 'w') as keyFile: 
510             json_keys = {k: v.hex()  
511                             for k, v in keys[key].items()} 
512             json.dump(json_keys, keyFile) 
513         #__/ End with open output file. 
514     #__/ End for key in keys. 
515 #__/ End function save_keys(). 
516  
517  
518         #|---------------------------------------------------------------------| 
519         #|      save_gc()                                        [function]    | 
520         #|                                                                     | 
521         #|          Saves the garbled circuit for the current iteration        | 
522         #|          to a file named "<t>.gc", where <t> is the time step       | 
523         #|          number, in the range from 0 to L-1.                        | 
524         #|                                                                     | 
525         #|      Arguments:                                                     | 
526         #|      ----------                                                     | 
527         #|                                                                     | 
528         #|          t [integer] - Current time step number, in the range       | 
529         #|              from 0 through L-1.                                    | 
530         #|                                                                     | 
531         #|          gc [sequence] - Garbled circuit for a given time step,     | 
532         #|              consisting of a sequence E of encrypted arcs,          | 
533         #|              each a pair (Enext,Evalid) of encrypted entries.       | 
534         #|                                                                     | 
535         #|      Output file:                                                   | 
536         #|      ------------                                                   | 
537         #|                                                                     | 
538         #|          <t>.gc [JSON] - A JSON-format representation of the        | 
539         #|              gc object as an array of 2-element arrays of           | 
540         #|              64 hex digit strings giving the encrypted 'next'       | 



 

115 

541         #|              and 'valid' fields for the given arc.                  | 
542         #|                                                                     | 
543         #|vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv| 
544              
545 def save_gc(t, gc): 
546     with open('%s.gc' % t, 'w') as gcFile: 
547         json.dump( 
548             list(map( 
549                     lambda earc: (earc[0].hex(), 
550                                   earc[1].hex(),  
551                     gc)), 
552             gcFile) 
553     #__/ End with open output file. 
554 #__/ End function save_gc(). 
555                    
556                    
557         #|---------------------------------------------------------------------| 
558         #|      encdec()                                         [function]    | 
559         #|                                                                     | 
560         #|          Lightweight encryption/decryption routine.  The            | 
561         #|          encryption key 'k' could be any hashable object,           | 
562         #|          but in our case, it will always be 32 bytes.  The          | 
563         #|          value 'v' to be encrypted or decrypted must be an          | 
564         #|          array of bytes with the same length as our standard        | 
565         #|          value-code keys.  The hash of the key is used as a         | 
566         #|          one-time pad of the data.  Note that this code is          | 
567         #|          uncrackable if you do not know the full key!               | 
568         #|                                                                     | 
569         #|      Arguments:                                                     | 
570         #|      ----------                                                     | 
571         #|                                                                     | 
572         #|          k [bytes] - A sequence of 32 bytes that will be used       | 
573         #|              as our encryption/decryption key.                      | 
574         #|                                                                     | 
575         #|          v [bytes] - A sequence of 32 bytes that is the data        | 
576         #|              value to be encrypted or (if already encrypted)        | 
577         #|              decrypted.                                             | 
578         #|                                                                     | 
579         #|      Returns:                                                       | 
580         #|      --------                                                       | 
581         #|                                                                     | 
582         #|          A bytes object of length 32 which is the result of         | 
583         #|          encrypting the data value v, or decrypting it if it        | 
584         #|          was already encrypted.                                     | 
585         #|                                                                     | 
586         #|vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv| 
587                    
588 def encdec(k, v): 
589  
590         #------------------------------------------------------------------- 
591         # Make sure the 'value' we're encoding has our standard key length. 
592  
593     assert(len(v) == KEY_LENGTH//8) 
594      
595         #--------------------------------------------------------------- 
596         # Encrypt the value by bitwise XOR'ing the hashed key with it. 
597      
598     return bytes(map(lambda h,x: h^x, hash256(k), v)) 
599  
600 #__/ End function encdec(). 
601  
602  
603         #|---------------------------------------------------------------------| 
604         #|      garble()                                         [function]    | 
605         #|                                                                     | 
606         #|          Produces the garbled representation of a given             | 
607         #|          'circuit' (state machine transition table) circ            | 



 

116 

608         #|          using the given keyset ks.                                 | 
609         #|                                                                     | 
610         #|                                                                     | 
611         #|      Arguments:                                                     | 
612         #|      ----------                                                     | 
613         #|                                                                     | 
614         #|          circ [sequence] - A finite state machine F,                | 
615         #|                  represented as a sequence of arcs,                 | 
616         #|                  where an arc is a three-element sequence           | 
617         #|                  [<orig>, <conds>, <dest>] of origin state          | 
618         #|                  <orig>, set of transition conditions               | 
619         #|                  <conds>, and destination state <dest>.             | 
620         #|                                                                     | 
621         #|          ks [dict] - A keyset <ks> is a map from line names         | 
622         #|                  to maps from value names to their 32-byte          | 
623         #|                  random codes ('keys').                             | 
624         #|                                                                     | 
625         #|      Returns:                                                       | 
626         #|      --------                                                       | 
627         #|                                                                     | 
628         #|          encArcs [list] - The garbled circuit represented as        |     
629         #|                  a list (in randomized order) of pairs of the       | 
630         #|                  arc's encrypted 'next' and 'valid' fields.         | 
631         #|                                                                     | 
632         #|vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv| 
633              
634 def garble(circ, ks): 
635  
636         #------------------------------------------------------------ 
637         # Initialize the list of encrypted arcs to output; initially  
638         # this is just the empty list. 
639  
640     encArcs = []     
641      
642         #---------------------------------------------------------- 
643         # Each arc in the machine needs to be garbled (encrypted). 
644          
645     for arc in circ: 
646  
647             #------------------------------------------------------------- 
648             # Decompose the row/arc data structure (sequence) into its 3  
649             # elements which are the origin state name, set of transition  
650             # conditions, and destination state name, respectively. 
651  
652         (origState, conditions, destState) = arc 
653  
654                 #============================================================ 
655                 # In the following, we are constructing an 'arc identifier', 
656                 # which is a code used to identify and encrypt/decrypt this  
657                 # specific arc of the state machine. 
658          
659             #------------------------------------------------------------- 
660             # Begin with the initial state.  I.e., its identifying key is 
661             # included in the information that we will use to encrypt the  
662             # arc's output data. 
663              
664         arcID = ks['_in_states'][origState] 
665          
666             #---------------------------------------------------------------- 
667             # For each input line (variable) name 'lineName', which consists  
668             # of the keys of the 'ks' dictionary, except for the special  
669             # state variable names starting with underscore... 
670          
671         for lineName in filter(lambda varName: not varName.startswith('_'),  
672                                ks.keys()): 
673          
674                 #--------------------------------------------------------- 



 

117 

675                 # If that input line is included among the arc's conditions, 
676                 # then we'll XOR its code into the arc ID. 
677  
678             if lineName in conditions: 
679                 # To preclude retrospection of alternate paths, we require 
680                 # a state-dependent input provision key hash(Kij XOR Ks). 
681                 Pij = hash256(bytes(map(lambda b1,b2: b1^b2,  
682                                         ks[lineName][conditions[lineName]], 
683                                         ks['_in_states'][origState]))) 
684                 arcID = bytes(map(lambda b1,b2: b1^b2, arcID, Pij)) 
685                                
686             #__/ End if lineName in condition dict. 
687  
688         #__/ End for lineName in names of input variables. 
689          
690             #---------------------------------------------------------------- 
691             # Get the 'entry identifiers' nextID and validID for this arc's 
692             # 'next state' and 'valid' data entries, respectively.  We derive 
693             # these from the 32-byte arcID by just tweaking its last byte. 
694          
695         nextID  = bytes(arcID[:-1] + bytes([arcID[-1] ^ ord('n')])) # 'n' = 'next' 
696         validID = bytes(arcID[:-1] + bytes([arcID[-1] ^ ord('v')])) # 'v' = 'valid' 
697          
698             #---------------------------------------------------------------- 
699             # Get the 32-byte random code for this arc's destination state. 
700             # This is the main data to encrypt in this arc's representation. 
701              
702         destStateCode = ks['_out_states'][destState] 
703          
704             #-------------------------------------------------------------- 
705             # We use the initial state and the keys for all the input line  
706             # values XOR'ed together with the ASCII byte 'n' (for 'next  
707             # state') as the information that will be hashed together to  
708             # generate the one-time pad for encrypting the destination  
709             # state code. 
710  
711         encNextState = encdec(nextID, destStateCode) 
712          
713             #-------------------------------------------------------------- 
714             # We also encrypt an extra output whose only purpose is to let  
715             # us know which of the outputs is the correct one (since their  
716             # order will be randomized).  Note that this will generate a  
717             # false positive once every 2^256 times--i.e., basically never. 
718             # The 'v' here stands for 'valid'. 
719          
720         encValidArc = encdec(validID, b'\0'*(KEY_LENGTH//8)) 
721  
722             #-------------------------------------------------------------- 
723             # Add the encrypted next-state key and valid identifier to the 
724             # list of encrypted arcs. 
725          
726         encArcs.append((encNextState, encValidArc)) 
727          
728     #__/ End for arc in FSM. 
729          
730         #------------------------------------------------------------- 
731         # Randomize the order of the encrypted arcs and return them. 
732      
733     random.shuffle(encArcs) 
734     return encArcs 
735      
736 #__/ End function garble(). 
737  
738     #|=========================================================================| 
739     #|      Main program.                                    [code section]    | 
740     #|vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv| 
741      



 

118 

742 if __name__ == '__main__':   # Skip this section if loading file as a module. 
743  
744         #------------------------------- 
745         # Parse command-line arguments. 
746  
747     parser = argparse.ArgumentParser(description='PoC Garbler') 
748     parser.add_argument('--seed', default=None,  
749                         help='Seed to use for deterministic garbling') 
750     parser.add_argument('--time_steps', default=10, type=int,  
751                         help='Number of time steps to generate circuits for') 
752     parser.add_argument('circuit', help='JSON file to use as the circuit') 
753  
754     args = parser.parse_args() 
755  
756         #---------------------------------------- 
757         # Seed the PRNG, if a seed was provided. 
758      
759     if args.seed: 
760         random.seed(args.seed) 
761  
762         #------------------------------------------------------------------ 
763         # Load the JSON file representing the state machine to be garbled. 
764          
765     with open(args.circuit) as fsmFile: 
766         circuit = json.load(fsmFile) 
767  
768         #-------------------------------------------------- 
769         # Map of input state keys: We have none initially. 
770          
771     in_states = None 
772      
773         #-------------------------------------------------- 
774         # Create a pretty-printer for diagnostic purposes. 
775      
776     pp = pprint.PrettyPrinter(indent=4) 
777      
778         #--------------------------------------------- 
779         # Now, garble the circuit for each time step. 
780      
781     for t in range(args.time_steps): 
782      
783             #----------------------------------------------------------- 
784             # Get the new keys for this iteration.  If this is not the  
785             # first iteration, 'in_states' will contain the state-key 
786             # dictionary for the output states of the previous iteration, 
787             # while be reused for the input states in this iteration. 
788              
789         keys = gen_step_keys(circuit, in_states) 
790  
791             #----------------------------------------------- 
792             # Write out the newly generated keys to a file. 
793              
794         save_keys(t, keys) 
795  
796             #--------------------------------------------------------- 
797             # Perform the actual circuit garbling for this iteration. 
798              
799         garbled = garble(circuit, keys) 
800  
801             #--------------------------------------------------- 
802             # Save the garbled circuit data for this iteration. 
803          
804         save_gc(t, garbled) 
805  
806             #------------------------------------------------------------------ 
807             # For the first time step only, save the key of the initial state  
808             # (which must have the special name 'SInit') in the file "init.gc". 



 

119 

809          
810         if t == 0: 
811  
812             if not 'SInit' in keys['_in_states']: 
813                 raise Exception('please create a state SInit and/or change ' 
814                                 'this logic') 
815             with open('init.gc', 'w') as initFile: 
816                 json.dump([keys['_in_states']['SInit'.hex()],  
817                           initFile) 
818                  
819         #__/ End if t=0. 
820                  
821             #------------------------------------------------------------------ 
822             # Pass forward the output-state keys to also use as the input-state 
823             # keys on the next iteration. 
824              
825         in_states = keys['_out_states'] 
826  
827     #__/ End for t in range 0 through L-1. 
828      
829 #__/ End if loading this file as the main program... 
830          
831 #|  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^| 
832 #|      END OF FILE:    garbler.py                                             | 
833 #|  ===========================================================================| 

 
 

 
 
 



 

120 

APPENDIX C REFERENCE SOLIDITY CODE FOR EXECUTOR 
Below is an initial reference implementation in Solidity of the Executor Exec[𝐺𝐺] for the garbled ver-
sion 𝐺𝐺 of the state machine 𝐹𝐹 illustrated in Figure 5-3.  Please note that this reference implementation 
is very simple; it uses a basic gather-all-inputs input model, and it does not authenticate input provi-
ders. 

C.1 Concise version of reference Solidity implementation of Executor 
This version has comments stripped out for conciseness and elides most of the repetitive data section.  
Section C.2 has the full code, with comments. 

1 pragma solidity >=0.4.24; 
2  
3 contract ExecutableMachine { 
4  
5     struct EncryptedArc { 
6         uint256 encNext; 
7         uint256 encValid; 
8     } 
9      

10     uint16 constant maxSteps = 10; 
11     uint8 constant nInputs = 2; 
12     uint16 constant nArcs = 8; 
13     uint256 sInit; 
14     EncryptedArc[nArcs][maxSteps] arcs; 
15     uint16 nextStep = 0; 
16     uint256 public curState; 
17     uint8 nInputsRecd = 0; 
18     bool[2] gotInput = [false, false]; 
19     uint256 combinedInputs = 0; 
20  
21     constructor() public { 
22         sInit = 0x7128b98ce5a2a8cce5f8db6fc52cbf6c1e7b20b6122e8168650b067d1d194fb6; 
23         curState = sInit; 
24  

25         arcs[0][0] = EncryptedArc(0x8b40c8d1f7700cfcadf6dbbb0b17003fbe22597928ac9afdf95eeb1d14417ce8, 

26                                   0x2e735e54eb61b5a9ea17893dcffc5e3cc472ec4e6b84663bc6ef603305acc85e); 

27         arcs[0][1] = EncryptedArc(0x7042af3d7aa8de40a73ad98365ef793ad1485bce2e8cc26f4fe95e5179ff45c7, 

28                                   0xe48e3b7896ba6efa75fab00de4228c254999725107d58a9b97c41f973ca32c11); 

29         arcs[0][2] = EncryptedArc(0x2a879d9562dfad7ace4d5a286dc93e8e06720e1c14702b1f7665f861b6255131, 

30                                   0xa8e7664a785998204111bc9377c5f9cbb11eefa58268949c6c85f5d617f48cee); 

31         arcs[0][3] = EncryptedArc(0x2f67fbf76171aaec64ddcad20d0b73e711851fb64c7a37f1fe3d0c9d0da54b54, 

32                                   0x79eca19b5fa79a964f7781cec805f3e966b291c15f7253358cfabebee7a95f38); 

33         arcs[0][4] = EncryptedArc(0x11dc9df283fde796d45fef46531da529cf97d4a24f20ae52bf6911f8ef4416c3, 

34                                   0xdb3bde5d94e3a9abc29b52147495141c04be5c9faea544fa117009a7a661ea8d); 

35         arcs[0][5] = EncryptedArc(0xf1d6783650a502a69311e6a0977f12b9af327836f7e91c329f0e00d442ce4aee, 

36                                   0x631b413fbac4e467e9257fb35d92296ac624b26879cd7e7566a8f09bdea049d9); 

37         arcs[0][6] = EncryptedArc(0xd69f5598c13acffe355dfefe2545b3537342c66cdeed3010e66eab11cf014f94, 

38                                   0xeccfa45c5c16ba96c7ef125bc7eb095872125b597f9213a8ed4f2ac53662a260); 

39         arcs[0][7] = EncryptedArc(0x2d9620ecaf2d71deb91a53e8dfa05f383a3e554f2edf449938588e67e52fc43e, 

40                                   0xe8e46a6dafc22ac88449c11943f0ece0336e7073ac01c4d2a4f9a7b5fbfc007f); 

41          
42         // ... and likewise for the other 9 time steps ... 
43     } 
44  
45     function provideInput(uint8 varIndex, uint256 value) public { 
46         if (nInputsRecd == nInputs) return; 
47         if (varIndex >= nInputs) return; 
48         if (gotInput[varIndex]) return; 
49         nInputsRecd++; 
50         gotInput[varIndex] = true; 
51         combinedInputs ^= value; 
52         if (nInputsRecd == nInputs) { 
53             executeStep(); 



 

121 

54             nInputsRecd = 0; 
55             for (uint i=0; i<nInputs; i++) 
56                 gotInput[i] = false; 
57             combinedInputs = 0; 
58         } 
59     } 
60  
61     function executeStep() private { 
62         if (nInputsRecd != nInputs) return; 
63         if (nextStep >= maxSteps) return; 
64         uint256 arcID = curState ^ combinedInputs; 
65         uint256 nextID = arcID ^ (uint256(bytes32('n')) >> 248); 
66         uint256 validID = arcID ^ (uint256(bytes32('v')) >> 248); 
67         bool foundIt = false; 
68         uint16 arcIndex; 
69         for (arcIndex = 0; arcIndex < nArcs; arcIndex++) { 
70             uint256 valid = endecrypt(validID, arcs[nextStep][arcIndex].encValid); 
71             if (valid == 0) { 
72                 foundIt = true; 
73                 break; 
74             } 
75         } 
76         if (!foundIt) return; 
77         curState = endecrypt(nextID, arcs[nextStep][arcIndex].encNext); 
78         nextStep++; 
79     } 
80  
81     function endecrypt(uint256 entryID, uint256 data) private pure returns (uint256 res) { 
82         res = hash(entryID) ^ data; 
83     } 
84  
85     function hash(uint256 value) private pure returns (uint256 h) { 
86         h = uint256(keccak256(abi.encodePacked(value))); 
87     } 
88 } 

C.2 Verbose version of reference Solidity code for Executor (with comments) 
This version is documented with verbose comments.  Section C.1 has bare code, with no comments. 

1 //|============================================================================| 
2 //|                                TOP OF FILE                                 | 
3 //|----------------------------------------------------------------------------| 
4 //|                                                                            | 
5 //|     ExecutableMachine.sol                       [Solidity source file]     | 
6 //|                                                                            | 
7 //|                                                                            | 
8 //|         Description:                                                       | 
9 //|         ------------                                                       | 

10 //|                                                                            | 
11 //|             This file constitutes source code in the Solidity              | 
12 //|             language for a smart contract Exec[G] implementing             | 
13 //|             an executable interpreter for a (hard-coded) sample            | 
14 //|             garbled state machine G.                                       | 
15 //|                                                                            | 
16 //|             The specific (ungarbled) state-machine function F              | 
17 //|             that G is the garbled version of is the state machine          | 
18 //|             illustrated in Fig. 3 of the working document "GABLE:          | 
19 //|             A system for garbled state machine execution on smart          | 
20 //|             contract blockchains," v. 0.8.  Its state diagram is           | 
21 //|             as follows:                                                    | 
22 //|                                                                            | 
23 //|                                     (Begin)                                | 
24 //|                                        |                                   | 
25 //|                                        |     A=0,B=1;                      | 
26 //|                _______              ___V___  A=1,B=0    ______             | 
27 //|               /       \   A=1,B=1  /       \==========>/      \            | 



 

122 

28 //|              (  Spass  )<---------(  Sinit  )         ( Sreset )           | 
29 //|               \_______/            \_______/<==========\______/            | 
30 //|                                        |      A=0,B=1;    ||               | 
31 //|                                A=0,B=0 |      A=1,B=0     ||               | 
32 //|                                        |                  ||               | 
33 //|                                     ___V___              // A=0,B=0;       | 
34 //|                                    /       \            //  A=1,B=1        | 
35 //|                                   (  Sfail  )<==========                   | 
36 //|                                    \_______/                               | 
37 //|                                                                            | 
38 //|             where the double lines indicate multiple arcs (with            | 
39 //|             different condition sets) between the two states.              | 
40 //|             States with no outgoing arcs are effectively final             | 
41 //|             (halting) states.                                              | 
42 //|                                                                            | 
43 //|             The above state machine is described in the file               | 
44 //|             3state-simple.sm as follows:                                   | 
45 //|                                                                            | 
46 //|                 [["SInit", {"A": "1", "B": "1"}, "SPass"],                 | 
47 //|                  ["SInit", {"A": "0", "B": "0"}, "SFail"],                 | 
48 //|                  ["SInit", {"A": "0", "B": "1"}, "SReset"],                | 
49 //|                  ["SInit", {"A": "1", "B": "0"}, "SReset"],                | 
50 //|                  ["SReset", {"A": "0", "B": "1"}, "SInit"],                | 
51 //|                  ["SReset", {"A": "1", "B": "0"}, "SInit"],                | 
52 //|                  ["SReset", {"A": "0", "B": "0"}, "SFail"],                | 
53 //|                  ["SReset", {"A": "1", "B": "1"}, "SFail"]]                | 
54 //|                                                                            | 
55 //|                                                                            | 
56 //|         Language:     Solidity, ver. 0.4.24.                               | 
57 //|                                                                            | 
58 //|                                                                            | 
59 //|         Defined names:   (Top-level names defined in this file.)           | 
60 //|         --------------                                                     | 
61 //|                                                                            | 
62 //|             ExecutableMachine [contract]                                   | 
63 //|                                                                            | 
64 //|                 The main smart contract Exec[G] implementing               | 
65 //|                 an executable version of garbled machine G.                | 
66 //|                                                                            | 
67 //|                                                                            | 
68 //|         External interface:     (Externally accessible members.)           | 
69 //|         -------------------                                                | 
70 //|                                                                            | 
71 //|             ExecutableMachine.provideInput() - Provide a (coded) value     | 
72 //|                 for a specified input variable for the next time step.     | 
73 //|                                                                            | 
74 //|             ExecutableMachine.curState() - This getter function            | 
75 //|                 gets the (coded) current state of the garbled state        | 
76 //|                 machine G.                                                 | 
77 //|                                                                            | 
78 //|                                                                            | 

79 //|         Revision history:                                                  | 

80 //|         -----------------                                                  | 

81 //|             All revisions are by MPF (M.P. Frank, mpfrank@sandia.gov),     | 

82 //|             w. contributions from CNC (C.N. Cordi, cncordi@sandia.gov).    |  

83 //|                                                                            | 

84 //|             v0.0 (2018-08-16) - First checkin; not yet compiled.           | 

85 //|             v0.1 (2018-08-22) - Compiles in Truffle.                       | 

86 //|             v0.2 (2018-09-01) - Last version before debugging.             | 

87 //|             v0.3 (2018-10-08) - A few bug fixes; switched hash             | 

88 //|                 function from sha256() (256-bit SHA-2) to keccak256()      | 

89 //|                 (which is NOT the standard SHA-3 function).                | 

90 //|                                                                            | 

91 //|vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv| 
92  
93 pragma solidity >=0.4.24;     // Need to figure out the right version specifier still 
94  
95     //|------------------------------------------------------------------------| 



 

123 

96     //|                                                                        | 
97     //|    ExecutableMachine                                     [contract]    | 
98     //|                                                                        | 
99     //|        The ExecutableMachine contract is the main (and at this         | 

100     //|        point, only) smart contract making up the implementation        | 
101     //|        Exec[G] of an executable garbled state machine G.               | 
102     //|                                                                        | 
103     //|                                                                        | 
104     //|     Public interface:                                                  | 
105     //|     -----------------                                                  | 
106     //|                                                                        | 
107     //|         provideInput(varIndex,value) - Provide a (coded) value         | 
108     //|             for a specified input variable for this time step.         | 
109     //|                                                                        | 
110     //|         curState() - This getter function returns the coded            | 
111     //|             current state of the garbled state machine G.              | 
112     //|                                                                        | 
113     //|                                                                        | 
114     //|     Internal types:     (Not intended to be externally used.)          | 
115     //|     ---------------                                                    | 
116     //|                                                                        | 
117     //|         struct EncryptedArc - Stores encrypted data for one arc        | 
118     //|             of the garbled state machine.                              | 
119     //|                                                                        | 
120     //|                                                                        | 
121     //|     Internal constants:                                                | 
122     //|     -------------------                                                | 
123     //|                                                                        | 
124     //|         uint16 maxSteps - Maximum # of supported time-steps.           | 
125     //|                                                                        | 
126     //|         uint8 nInputs - Number of input lines into the machine.        | 
127     //|                                                                        | 
128     //|         uint16 nArcs - How many state-transition arcs machine has.     | 
129     //|                                                                        | 
130     //|         uint256 sInit - Coded rep. of initial state of machine.        | 
131     //|                                                                        | 
132     //|         EncryptedArc[][] arcs - Garbled array of arcs by time step.    | 
133     //|                                                                        | 
134     //|                                                                        | 
135     //|     Internal variables:                                                | 
136     //|     -------------------                                                | 
137     //|                                                                        | 
138     //|         uint16 nextStep - Sequential index of current time step.       | 
139     //|                                                                        | 
140     //|         uint256 curState - Coded current state of machine;             | 
141     //|             externally readable via the .curState() getter             | 
142     //|             function.                                                  | 
143     //|                                                                        | 
144     //|         uint8 nInputsRecd - Number of input variables whose            | 
145     //|             values have been received so far on this time step.        | 
146     //|                                                                        | 
147     //|         bool[] gotInput - Whether a value has been received            | 
148     //|             yet for each input variable on this time step.             | 
149     //|                                                                        | 
150     //|         uint256 combinedInputs - Represents the full set of            | 
151     //|             all input values received so far on this time step.        | 
152     //|                                                                        | 
153     //|                                                                        | 
154     //|     Internal functions:                                                | 
155     //|     -------------------                                                | 
156     //|                                                                        | 
157     //|         executeStep() - Execute a step of the garbled state            | 
158     //|             machine, given the input values provided so far.           | 
159     //|                                                                        | 
160     //|         endecrypt(entryID,data) - Encrypt the given data               | 
161     //|             block for storage under entry identifier entryID,          | 
162     //|             or decrypt it if already encrypted.                        | 
163     //|                                                                        | 



 

124 

164     //|         hash(value) - Return a cryptographic hash of the given         | 
165     //|             data value.                                                | 
166     //|                                                                        | 
167     //|                                                                        | 
168     //|vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv| 
169  
170 /// @title Executable garbled state machine. 
171 contract ExecutableMachine { 
172  
173         //|====================================================================| 
174         //| Structure type definitions.                  [contract section]    | 
175         //|                                                                    | 
176         //|     These are lexically defined locally within the contract,       | 
177         //|     so I think they're effectively private. (Is that correct?)     | 
178         //|vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv| 
179  
180         // This struct stores encrypted data for a given arc in the machine. 
181     struct EncryptedArc { 
182         uint256 encNext;    // The arc's encrypted 'next state' entry. 
183         uint256 encValid;   // The arc's encrypted 'valid' entry. 
184     } 
185  
186  
187         //|================================================================== 
188         //| State variables.                            [contract section] 
189         //|vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv 
190  
191             //|------------------------------------------------------------- 
192             //| Constants of the machine definition.  We hard-code these  
193             //| values as appropriate for the specific garbled state machine 
194             //| G that we are representing. 
195  
196         // Maximum number of supported time steps, L (1 <= L <= 65,535). 
197     uint16 constant maxSteps = 10;   // In this simple example, we only support 10 steps. 
198  
199         // Number of input lines (per step) to the machine, n (0<=n<=255). 
200     uint8 constant nInputs = 2;      // There are only 2 inputs to this machine, named A and B. 
201  
202         // Number of arcs (per step) in the machine, q (0 <= q <= 65,535). 
203     uint16 constant nArcs = 8;       // This simple machine has only 8 arcs (2 states * 4 arcs) 
204  
205         // Coded initial-state representation, 256 bits (32 bytes). 
206     uint256 sInit;                   // Initialized in constructor (with rest of machine). 
207             // We would mark this constant; unsure if that’s compatible w. constructor. 
208  
209         // Encrypted representations of all FSM arcs for all time steps. 
210     EncryptedArc[nArcs][maxSteps] arcs;     // Initialized in constructor. 
211             // So we can't actually mark this one as const, I think. 
212             // NOTE: Array dimensions are listed in opposite order as array access! 
213  
214             //|---------------------------------------------------------------- 
215             //| The following state variables are not constants, but correspond  
216             //| to actual variable components of the machine state. 
217  
218         // Next time step number to be executed, in range 0 to maxSteps. 
219         // If it ever gets to maxSteps, the machine halts at that point. 
220     uint16 nextStep = 0;    // The first time step to be executed is step #0. 
221  
222         // Coded representation of current state, 256 bits (32 bytes). 
223     uint256 public curState;    // Initialized to initial state in constructor. 
224         // NOTE: We mark 'curState' as 'public' because its getter is the only 
225         // 'sanctioned' means at present of obtaining output from the machine. 
226  
227             //|-------------------------------------------------------------- 
228             //| The following state variables are used for implementing the 
229             //| simple "gather all inputs" input model.  Here, we do an even 
230             //| further simplified version, where we don't even require 
231             //| senders to authenticate (anyone can attempt to send any 



 

125 

232             //| input).  (Note: This method is therefore vulnerable to DNS 
233             //| attacks via spamming the contract with invalid inputs.) 
234  
235         // Number of inputs received so far for the current time step. 
236     uint8 nInputsRecd = 0;   // Zero initially at the start of each step. 
237  
238         // Did we receive the given input yet on the current time step? 
239     bool[2] gotInput = [false, false];   // False for all at the start of each step. 
240  
241         // All of the input values received so far, combined associatively. 
242     uint256 combinedInputs = 0;      // Zero at the start of each step. 
243  
244  
245         //|=============================================================== 
246         //| Public (and external) functions.        [contract section] 
247         //| 
248         //|     These constitute the visible external interface  
249         //|     to the smart contract. 
250         //|vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv 
251  
252             //|----------------------------------------------------------- 
253             //| Constructor.                    [special public function] 
254             //| 
255             //|     This initializes the smart contract when it 
256             //|     is created.  (Everything that can't be  
257             //|     initialized with a literal initializer goes  
258             //|     here, and initializing arrays of structs 
259             //|     inline doesn't seem to work.)  This particular 
260             //|     garbled representation G of the FSM F was  
261             //|     generated by the sample script garbler.py  
262             //|     using the random seed "xyz". 
263             //| 
264             //|vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv 
265              
266     constructor() public { 
267  
268             // Coded representation of initial state. 
269      
270         sInit = 0x7128b98ce5a2a8cce5f8db6fc52cbf6c1e7b20b6122e8168650b067d1d194fb6; 
271         curState = sInit; 
272          
273                 //|-------------------------------------------------------------- 
274                 //| The actual "logic" of the garbled state machine is here.  For 
275                 //| each time step, for each arc index, we have an encrypted arc 
276                 //| representation.  The order of the arcs at each time step is 
277                 //| random, and the encrypted data looks fully random to anyone 
278                 //| not holding the input keys.  Thus, this machine's function is 
279                 //| fully obfuscated, to the level of only knowing its size 
280                 //| parameters (number of time steps, input variables, and arcs). 
281      
282             //------------------------ 
283             // Arcs for time step #0. 
284          
285         arcs[0][0] = EncryptedArc(0x8b40c8d1f7700cfcadf6dbbb0b17003fbe22597928ac9afdf95eeb1d14417ce8, 

286                                   0x2e735e54eb61b5a9ea17893dcffc5e3cc472ec4e6b84663bc6ef603305acc85e); 

287         arcs[0][1] = EncryptedArc(0x7042af3d7aa8de40a73ad98365ef793ad1485bce2e8cc26f4fe95e5179ff45c7, 

288                                   0xe48e3b7896ba6efa75fab00de4228c254999725107d58a9b97c41f973ca32c11); 

289         arcs[0][2] = EncryptedArc(0x2a879d9562dfad7ace4d5a286dc93e8e06720e1c14702b1f7665f861b6255131, 

290                                   0xa8e7664a785998204111bc9377c5f9cbb11eefa58268949c6c85f5d617f48cee); 

291         arcs[0][3] = EncryptedArc(0x2f67fbf76171aaec64ddcad20d0b73e711851fb64c7a37f1fe3d0c9d0da54b54, 

292                                   0x79eca19b5fa79a964f7781cec805f3e966b291c15f7253358cfabebee7a95f38); 

293         arcs[0][4] = EncryptedArc(0x11dc9df283fde796d45fef46531da529cf97d4a24f20ae52bf6911f8ef4416c3, 

294                                   0xdb3bde5d94e3a9abc29b52147495141c04be5c9faea544fa117009a7a661ea8d); 

295         arcs[0][5] = EncryptedArc(0xf1d6783650a502a69311e6a0977f12b9af327836f7e91c329f0e00d442ce4aee, 

296                                   0x631b413fbac4e467e9257fb35d92296ac624b26879cd7e7566a8f09bdea049d9); 

297         arcs[0][6] = EncryptedArc(0xd69f5598c13acffe355dfefe2545b3537342c66cdeed3010e66eab11cf014f94, 

298                                   0xeccfa45c5c16ba96c7ef125bc7eb095872125b597f9213a8ed4f2ac53662a260); 

299         arcs[0][7] = EncryptedArc(0x2d9620ecaf2d71deb91a53e8dfa05f383a3e554f2edf449938588e67e52fc43e, 



 

126 

300                                   0xe8e46a6dafc22ac88449c11943f0ece0336e7073ac01c4d2a4f9a7b5fbfc007f); 

301  
302             //------------------------ 
303             // Arcs for time step #1. 
304          
305         arcs[1][0] = EncryptedArc(0x03b2fad218cd8ad00d1a711592f1b6d2dea301496263d18ac648bfe496ba1bb3, 

306                                   0x0eda136e3643f418111ae106e0c25d4d71d13aecd4c658b3997f6e56e4a193e6); 

307         arcs[1][1] = EncryptedArc(0x23d05f1b77598cb73b8acd08f631d7e89a8d8c4f03627a118c321b7dc17625bc, 

308                                   0x4e5dc9430852e5a68992161ab9a536d1d7bb0a648be533de76473ebca81ce3cf); 

309         arcs[1][2] = EncryptedArc(0xc16f9cff901e67d42df73cfe82322bf45d64d1591808010c2e6923931b2a2c5b, 

310                                   0x678970e42b0c5392c18f3a3553a06991876ab3d7fb9e9255abc657d72fbc2665); 

311         arcs[1][3] = EncryptedArc(0x2afb0cacfd12ee9b1c5cb2e5ff61dc294035259a0961e48aac3914caa3dbd589, 

312                                   0xe2808186f052c2169e1f9ae726a992133a03883641ad757828d9901132d07f95); 

313         arcs[1][4] = EncryptedArc(0x048f1ada94021442c86cd4003ad20e8f71fe5d3050daa5ee26008ce160fa784e, 

314                                   0xfd1c377c6a0a5b4c62284cf30385bf5cb58b03d95c686e28c6398c59079cae3d); 

315         arcs[1][5] = EncryptedArc(0xa63511f535b2179fb4a9e53396e22f2152b24fcc0ae6613396a89a352edc0a03, 

316                                   0x3770b5ba56cc4312d2b9652aa982e88a67146f4f2793d79f01860aab0dabc1e1); 

317         arcs[1][6] = EncryptedArc(0x99b7178e2f3f335c52c4ea9c7f4d3d91987ff1d1171083565e3d768dfafd1e42, 

318                                   0x026ad1923bfd2f188d4d4cc59b51d27e74b4da1cf2c79473c6181a5801fd73dc); 

319         arcs[1][7] = EncryptedArc(0xa688463fa814875d38f0ab898e1023cdd6d6198b1c0e41288b34ee04e4308243, 

320                                   0xae74c22adbeadd2e53cfb25432d8b1c3c3d3f3ae72a26e75457edb4942a6bdce); 

321  
322             //------------------------ 
323             // Arcs for time step #2. 
324          
325         arcs[2][0] = EncryptedArc(0x46e846cfaebff04ba5e6c8df507c1cab0daf7943743fddcc000f917f2afae2a2, 

326                                   0x9586c5315eacd3269a43a8c940d9cab3e321a7ae0fc07d1e50ca22cf7ab924c1); 

327         arcs[2][1] = EncryptedArc(0xb061ae21ad730aebca53ddd0b6bc1b7f396b900994ba086ece1a37e8440ec740, 

328                                   0x8e982ce4354fbd39de738c0c07f4cc9a961f1aef61c4a002f068ca0b72c8ac9f); 

329         arcs[2][2] = EncryptedArc(0x59544c40d947f073085ab0b6a8971009646a10d38a6ce8aeff95b9994fd4873c, 

330                                   0xb580c9e321e922ace58b8632fb1e93596589a10f51b6b6e0f28682fc9623bfc7); 

331         arcs[2][3] = EncryptedArc(0xc7af98fe96945c5e2626cc3c365f8b92632677185b7b6707bf0e31d33693feb2, 

332                                   0xfe9fec3537d22e25e42efa7b860b49dea8c0f60d2cb41c3afe61d1f8ad9a6ec1); 

333         arcs[2][4] = EncryptedArc(0x4b45f78492de6cdb1b47e7f800f246658acc2302a4229722ef8c4c3c3646f365, 

334                                   0x8525b9ddef8712107f887830f4f527da2c7ba7d7713d20c32fc512596b997033); 

335         arcs[2][5] = EncryptedArc(0x2fd6feaf770431c648915460fbadfa7ae6f8254d7b6bbaed1bbe7c024b1f67d0, 

336                                   0xe4279ab23f1146924d4bcb331af627452e42da3879c25468655296c8120e94dc); 

337         arcs[2][6] = EncryptedArc(0x888e5939c1f2e33f258755a82a04c3059bb05d70098238cde805a488fa23478f, 

338                                   0x092bedb40d66eae3315dde941bc66ac620906ee0c61bd902ed3dae4248d9c4d2); 

339         arcs[2][7] = EncryptedArc(0x18c2334d393b6f72712d7f9b83c2e35f147c3810d888839d1c037168d13e99dc, 

340                                   0x8afb4c63ed1cd6cd856074f70a4a57b2d4cb2ab74a5a98375eb9085f2c0b079b); 

341  
342             //------------------------ 
343             // Arcs for time step #3. 
344          
345         arcs[3][0] = EncryptedArc(0xbcd68c22c25a3556d8ca266e4895fe5cf13c0779d8a40e72f1fad236a7fdf546, 

346                                   0xcc0dac5034e37a9bdb31c15edb7a2ca4ca44efbe2d435febf23a458691966b56); 

347         arcs[3][1] = EncryptedArc(0xc9841ee351594589d991a071d27833ea7eed2c982116abbcb1585f4ee3c76857, 

348                                   0x811a03a186b70fd65ab80ebcd2a1659bbff02c32097ffd56e4e851f3b1ae2cf7); 

349         arcs[3][2] = EncryptedArc(0x8adc14eb1a2d2c3477a45021f8979a9df17c685b9d0ce2139e0e3ed9520e01bb, 

350                                   0x3e025326175f2e136865824de5ff6a7affaed92e104a22f8f2619369700f01d6); 

351         arcs[3][3] = EncryptedArc(0x24b1288509b3dd76b5929647067f43e4c00eafebfcd5d2f93f6ffed742351775, 

352                                   0x40a6d546be2e991b2b862072e98355daa8f811a6b7d550afe9f24353480cec46); 

353         arcs[3][4] = EncryptedArc(0x41ca3a93f28e07519e121c726d3cc4e23e3debdc04caad401e3589678ef90e83, 

354                                   0xb284ccc085a28f8f60bf6b8478a5739d913d32c8d0fd1ed0b63b940da12d7a82); 

355         arcs[3][5] = EncryptedArc(0xdafc793f3c0844f71715acb1b6f9a3cf20efb7397c226e41a5efdf8826cad5d9, 

356                                   0x3bae35b365fc6dfec401f5d164e31da2b8f7ba128f666b21530a88bac3448602); 

357         arcs[3][6] = EncryptedArc(0x098deb0dd5df7886145f324548a578ab36ecab99fea764780a09fe0ca4ab05fe, 

358                                   0x937f5ad71f7dcd197cd2d6e47597de56ca4c005a16312803980ea3597d5e604a); 

359         arcs[3][7] = EncryptedArc(0x9b6321d7ce2546aff46f40654b9a2567422b48b1acf76560bf8810e9f9a06ea0, 

360                                   0xf314c7600eddbd29ef555fba062d01b7f8d711433802511020f9d1c4c85b97c1); 

361  
362             //------------------------ 
363             // Arcs for time step #4. 
364  
365         arcs[4][0] = EncryptedArc(0xd927964d03001c99f8dd521c6425bfbf1961d9c75a2ae2bbeaf618632db9db50, 

366                                   0x99aa4d78394dca7bbd54b32185d28b2aeb4c75aaae7688832141707dfdb4490b); 

367         arcs[4][1] = EncryptedArc(0xf1a41d45d8de037a0b2658c8e051f0383ad07eea7a377cd4b42f3833a804c0b7, 



 

127 

368                                   0xa0f2a98b3f5a9f84ac29bc61dc386d1673b2e47ff19a7bf83f74eaab749a4440); 

369         arcs[4][2] = EncryptedArc(0xb674008d5d8a68b9bb238e79a6e73bfbe9b3f84f290e3cd5449b9cf8ae0ae03a, 

370                                   0x30980c9bd3e7dcb0360ffd872f184e95a374f44a542b397bde5ed9d0566d04d5); 

371         arcs[4][3] = EncryptedArc(0xf4ee856e1e2cb6df5cce89ac7611bf1a5c5c17e931962b648267d88f4ea9b2d4, 

372                                   0x77fc9eb57d7e46ac0ce471385c8101348ecee1192e86add4a5009028af07cf87); 

373         arcs[4][4] = EncryptedArc(0x730b9b54b2f8f2bf6df88f481449f95143aadc7cfbddcb6e095a7350213d907b, 

374                                   0x10480cb42b3bd0168025aea88702da64cc05bdaea4bf2148688adeea3555d322); 

375         arcs[4][5] = EncryptedArc(0xc77e089408ef1a9a4f2471fde2e767bb44cfe95d8c30a9a3db619b0fadfb939d, 

376                                   0xfd17e608c1df5fb9757cf8e338eb1ab121f9a65c17f865e3518c8fd1ff396849); 

377         arcs[4][6] = EncryptedArc(0x49b070d20ba51e3dad0c0d86537a6a822461528f239e6faf76c976c7390eebd6, 

378                                   0xaf790f0476fef908e9f20ec55014a79c1f05a5c1355b7c7d730ada7313d93318); 

379         arcs[4][7] = EncryptedArc(0x63428633177034a5250c32a7a6712f886246fcdba0fe4ea3ab51a882a8226773, 

380                                   0x876639f3167ca2da27575f3bc31f9541b85115d28e08c2f1987ebb7ebcf3ba14); 

381  
382             //------------------------ 
383             // Arcs for time step #5. 
384  
385         arcs[5][0] = EncryptedArc(0x3f00a9f322ba786a790c8136d2a1c2984101ea2526ab2e8d2f7c4951f0448a9d, 

386                                   0x6ffe8e1e260a4bb48757b5a4d759c415a4ff53105e23b030af80ef64792dda2a); 

387         arcs[5][1] = EncryptedArc(0x6bc9531d4148d7add709da7049639a3c1932d76e8b0cce83485e47d88c0e1413, 

388                                   0xb55576485fff18072fe5c176a8e29d0a8d60b1159281f12b2813dc74d287aee2); 

389         arcs[5][2] = EncryptedArc(0xcc662452073eb6473da63923b72eb5ddb89ad5443793b095c5d8130769953635, 

390                                   0xa4fcd7b89e90eacf5f593a1fe50e36b29f8b9cf1b6f0bd160131771089e46709); 

391         arcs[5][3] = EncryptedArc(0x22dcdc336e18b89a5196f2892f36db020f286e9dd64ec3333722a8fa483935b7, 

392                                   0xea8806b064d1ea6b167240a5371223e839fc0653afefef968df31124184d0dc0); 

393         arcs[5][4] = EncryptedArc(0x281cc1acbc442e23f68f85210f9a829e420d35f9a42d7d01e0b241722ae9435a, 

394                                   0x82cc2dedb0db8c200a2ec8026769d135d6f2ee3061cb4f89976dd17dbcab919c); 

395         arcs[5][5] = EncryptedArc(0xbef6fc12b9dc9c8936fa6479a47b19ae795e59b73f35346770f1c6358a9c81b3, 

396                                   0x306854b22ef33e4f6be9819cfce7bf898eb9c930999794ed81c12dcfe022f97d); 

397         arcs[5][6] = EncryptedArc(0xc030f6e5dc1afd6b8ac2b759ac4766f4b59b750d5b579b6323dbd5023c7daa00, 

398                                   0xf1ff2e6c014bc2c0dd6a45b5c21ab294e406b932f1713141d82168f466adf0c0); 

399         arcs[5][7] = EncryptedArc(0x2bb18f27758cb4c421198684d44606dc074966415934dbc721a1ecbd1e826212, 

400                                   0xecd218fc76872e3612bdfcc19ca8d37295c40f627a1afc908a6147a3803a3a51); 

401  
402             //------------------------ 
403             // Arcs for time step #6. 
404  
405         arcs[6][0] = EncryptedArc(0x1502b9bd4adbc0512ff36ceb20fd8579e64529f97ccde71e79b31a27a9a91cf9, 

406                                   0x257ff8a0f89680d4f3a15a7690d4ccebfbfdce907d8771461aa76a3feccec42c); 

407         arcs[6][1] = EncryptedArc(0x2165495f5d0fcbbf0f4d29ec7b0ddece0a07a47d5e4cf3f7db40d2d81506dacd, 

408                                   0x353211da1ef7703cafc76ef012c5db57198c34ae75b2ba525b999209c1860988); 

409         arcs[6][2] = EncryptedArc(0xc53244e83e80016f91cf86137cc2f2061dbda4f9459b80331c006573a71c334a, 

410                                   0x55019fb5583f49c95b3aba095eb7230500574dbf6748a1957ee1b294175f063a); 

411         arcs[6][3] = EncryptedArc(0xd822103e83f8f30c5430eb565bc9a35e75677ddb954bafe36c1b6141bab99272, 

412                                   0xb27fcf3c5a560e4fbe2398ebf542addb48174ba24316528db19c00f941e8d020); 

413         arcs[6][4] = EncryptedArc(0x9814ec66b5534b4bae57ed7522918a7d45946c47020c30234a0cb746996a6368, 

414                                   0x8f92643b54e67113a52f2b923fc388c6f7d04ad7c247104b94d4feeb1b803ee1); 

415         arcs[6][5] = EncryptedArc(0xc5866c6b4e6300851e7620ebd7ab74c17f79a58a465e99605750ff6a87a254b4, 

416                                   0xd193f457fa26bec095e9aea55037089dad9422a2eab9015e452398b762142f16); 

417         arcs[6][6] = EncryptedArc(0x4a5224a42bee276eb470d348e2cc82fd9a857ff9c6bcd19ca68d9b8bba4738ad, 

418                                   0xff61d44eba8dc5aaee27223e5a6b0916466545813af561a47d71deb11d6161b7); 

419         arcs[6][7] = EncryptedArc(0xcbf6ef7070c9c1c0c2c0e7729376b6d660bafb31cd16365274b8ca2f380e3979, 

420                                   0xb52c335d14896f87a766a98e6a19def4d63ad5d44baa1a78cd6eff2499bc3f0d); 

421  
422             //------------------------ 
423             // Arcs for time step #7. 
424  
425         arcs[7][0] = EncryptedArc(0xfaf26ffd7cce67f825af4bd2c558ffcf7ee544fe1f3b35883b2ce61bc9de77a2, 

426                                   0xd053c69e364debdd415fe30d9d1667e231b0b74d0bca24e60c492ca1fe0aa751); 

427         arcs[7][1] = EncryptedArc(0x522bcf7a9cb8fb0fe58c10ef00d7fb94779206ae27c2912040412af4e42cf1f4, 

428                                   0xe43ca13404b985d1f53331a838245f8a86e686c07adf2be25a10782ea89ce771); 

429         arcs[7][2] = EncryptedArc(0xb29f85010b7b25497de9871811ad31ca21a20291b8c07e276eb1db2c3ead6d2c, 

430                                   0x97614224503910671902b667cad586acec8071bbdee6b2761c20e73055598c1a); 

431         arcs[7][3] = EncryptedArc(0xdba586f5c33b45ff199b00c31b08b001ea7f30d6e17adb38c050b38f6f484b9a, 

432                                   0xf336b026b4dc2e24123f59c36be720cf6b56e5e15f18d8ac78d9f7c71411cbbb); 

433         arcs[7][4] = EncryptedArc(0x99e9dc86426866b4252c3d86f4dde6bde01bdb4e0a03e16c629b249563af6314, 

434                                   0xa5064da2d413865eab0e909be3031208312c03f11037228da39cc614d4c0108e); 

435         arcs[7][5] = EncryptedArc(0x4e88b3300545bc02726ea8308b0351d3294b4ce64735629d681ab68e6bc2a30f, 



 

128 

436                                   0xf981b2e98eb0547e7aa8ec954ba697b584a7b5d2de35c099f3b751ce6b0c6215); 

437         arcs[7][6] = EncryptedArc(0xeb8e0e6900bbe05f64bb03699001444bad9f634d648d15c79462767378528554, 

438                                   0xb84a08095fb7b2f3fe56b2416851b9196b68994ef835a313d07c2c6f5b6ae267); 

439         arcs[7][7] = EncryptedArc(0x447548176eed1bb07cad6a7cf4709943fae684ab30055a7089e9aba386d4a78e, 

440                                   0x83418667cc12d5e991d3b8ac253557336dbc4f8c2ee37063d6f3ae77169441e9); 

441  
442             //------------------------ 
443             // Arcs for time step #8. 
444  
445         arcs[8][0] = EncryptedArc(0xac7d5421dced97d591b586e93b72c451c8f8e024020dca502c0de8eded5026f6, 

446                                   0x5e01b86741ea4334a635edf67b846b6ed079a6aff10b88c991dcf3722a492669); 

447         arcs[8][1] = EncryptedArc(0x8c61459c128560847b477eee44a171247ca42762172f2cf01c6fd98b8fdf333c, 

448                                   0x2f5d56e360dc5af3133faf75c9e80840ae9c2a1dc6aa9f546392f1b0e5fe8ed3); 

449         arcs[8][2] = EncryptedArc(0x931fd553dbf25394e30e5afddc922bf8a894ed823349735fe526ca1bb6cacaa1, 

450                                   0x4da6a7b2482b37899d49425712a9a4de64e9ced0c582c7fccda091539c27a27d); 

451         arcs[8][3] = EncryptedArc(0x0679a866a4d5ba85ffca7a876651fe7e2af8d23c089ef06cfdf095e14835848b, 

452                                   0x2c945e8d34db6485e2cd62f8902d8b2f15c68d6dca17f29337e6e966ffd34132); 

453         arcs[8][4] = EncryptedArc(0x209af3fc995de32e6f3f79305137c2da01448beaac7969249b001f81e6875d38, 

454                                   0xc7f874f25061df7d33d5a3811308b225100620e49774d1aaaec2b67bb9aa5064); 

455         arcs[8][5] = EncryptedArc(0x95bbecd53747a5265c76894b24dc49206273ff66b9db3fa4bcd2a12cdf44efca, 

456                                   0x208d1e9a148dc08d610542756229a3c862b8fc90b41f5e71556872c78b2aaf2d); 

457         arcs[8][6] = EncryptedArc(0x519fbb2d71044d6f9e1c6f63f0dabcbee974f6e1bc1a3c48c8ee147ae265ed36, 

458                                   0xacb6b7907fc733ff281560287cb535175d99d8d125c63244fb70d481c42aa3ae); 

459         arcs[8][7] = EncryptedArc(0xe105580b8c9e63a7b57c01b4bd46161c8416252ad0453db552ec130c16114083, 

460                                   0xc1653b558f907b2cfe589225d2efb2e2f5b812f3da585474c8976cdd4c4a3ea1); 

461  
462             //------------------------ 
463             // Arcs for time step #9. 
464  
465         arcs[9][0] = EncryptedArc(0xd058c55e2da6ab0240f95d213f942c90995f7143a787c0d17ebb44a5b112c8df, 

466                                   0xdc9e34ed3678a2e9f0d6dfd531d86f7e47e513836c68375547fe482057f4ee50); 

467         arcs[9][1] = EncryptedArc(0xac6108c9b1f4ef3733736e65f6c232060f66a2db28f764196f3c82b226b65d7c, 

468                                   0x7524f6488efaf0bffd2d6dc99eb3133756eef346f684d4f3b0d86200ab84eb15); 

469         arcs[9][2] = EncryptedArc(0x98dcc89b5e355bbaf8c422da17e391c7d6eb0d5e96fa4152d179bca282b08bbe, 

470                                   0xb8221fc92271c26877c600bb242c46e81dc3e7f6d6e74435c16c23a7e060751e); 

471         arcs[9][3] = EncryptedArc(0x92fb9772575ce3cd46eeb75e780b4b1af0dfd1795b3b07c51c518bc5c4bdedde, 

472                                   0xfd00a247b11bc933d23a74ae2232ac923995e0f81a6a79a646cca8952808d822); 

473         arcs[9][4] = EncryptedArc(0x27ecdc7a6acc423fc234a1c94679a44fbec1fc210b6e193a5e489f1cf1ecb8f9, 

474                                   0x110cbf7aaced159976155c1f24fdaaf628929a1c9f5ac9f02819129120912bfa); 

475         arcs[9][5] = EncryptedArc(0xd193ab29984d0fb0c27e1dce9ecf9ef251d2d0eb55fe37c38b616ff6a2a09662, 

476                                   0xe8e7b785f41edddde7b001cbad71f08fa55ec0384ee88f2fc444dafb854c98eb); 

477         arcs[9][6] = EncryptedArc(0x56a16d246d5cbb154d33b906e087448b180f02b7655cb31956962c00a654fde0, 

478                                   0x3b1a9460989555bf5eb04829b6a0f792b336ae092d6a632b3bd0e95eb286db6e); 

479         arcs[9][7] = EncryptedArc(0x591b9226470b711584c1347d422f2d3dab0a8e3d52cf68f802d3b6bcfe5ac97e, 

480                                   0x062c9609a1c56660b2b0db27a7937e9c62fb0268d651c31d2cec6d3aa25daf79); 

481      
482     } // End ExecutableMachine constructor. 
483  
484      
485             //|----------------------------------------------------------------| 
486             //|                                                                | 
487             //|     provideInput()                      [public function]      | 
488             //|                                                                | 
489             //|         This public function may be called externally          | 
490             //|         by input providers to supply a specific coded          | 
491             //|         input value v to a specific input variable V           | 
492             //|         for the current time step.  Currently, the             | 
493             //|         input provider is not authenticated.                   | 
494             //|                                                                | 
495             //|         Once values have been received for all input           | 
496             //|         variables, the machine state is updated.               | 
497             //|                                                                | 
498             //|     Arguments:                                                 | 
499             //|                                                                | 
500             //|         uint8 varIndex  - The index, 0 to nInputs-1, of        | 
501             //|                             the input variable V whose         | 
502             //|                             value is being provided.           | 
503             //|                                                                | 



 

129 

504             //|         uint256 value   - The 256-bit encrypted value          | 
505             //|                             (key) of the provided value v      | 
506             //|                             of the provided variable for       | 
507             //|                             the current time-step.             | 
508             //|                                                                | 
509             //|     Error handling:                                            | 
510             //|                                                                | 
511             //|         If varIndex is out of range, or indicates an           | 
512             //|         variable for which we have already received a          | 
513             //|         value on this time step, the function has no           | 
514             //|         effect.                                                | 
515             //|                                                                | 
516             //|         If invalid values are received for any input           | 
517             //|         variables, then after values have been received        | 
518             //|         for all input variables, all provided values           | 
519             //|         will be forgotten, and input collection for this       | 
520             //|         time step starts over.                                 | 
521             //|                                                                | 
522             //|vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv| 
523      
524     /** @dev Provide a value for an input variable for this time step. 
525       * @param varIndex The index, 0 to nInputs-1, of the variable being provided. 
526       * @param value The 256-bit coded representation of the value being provided. 
527       */ 
528     function provideInput(uint8 varIndex, uint256 value) public { 
529  
530             // Check for various error conditions. 
531  
532         if (nInputsRecd == nInputs) return;     // No more inputs needed. (SHOULD NEVER HAPPEN) 
533         if (varIndex >= nInputs) return;        // Variable index out of range. 
534         if (gotInput[varIndex]) return;         // Already got this input. 
535  
536             // This code actually does the work of receiving the input. 
537  
538         nInputsRecd++;                  // Increment number of inputs received. 
539         gotInput[varIndex] = true;      // Remember that we already got this one. 
540         combinedInputs ^= value;        // Merge it in with the ones already received. 
541  
542             // Here, we check whether all the inputs needed for this time step 
543             // have now been provided.  If they have, then we can go ahead and 
544             // actually execute the time step, and then reinitialize our  
545             // input-collection variables to prepare for the next time step. 
546  
547         if (nInputsRecd == nInputs) { 
548              
549             executeStep();              // Private internal function. 
550  
551                 // Reset the input-collection variables. 
552  
553             nInputsRecd = 0; 
554             for (uint i=0; i<nInputs; i++) 
555                 gotInput[i] = false; 
556             combinedInputs = 0; 
557  
558         } 
559          
560     } // End function ExecutableMachine.provideInput(). 
561  
562      
563         //|=============================================================== 
564         //| Private/internal functions.                 [contract section] 
565         //| 
566         //|     These can only be called from within the present  
567         //|     contract, or (in the case of internal functions)  
568         //|     from within derived contracts. 
569         //|vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv 
570  
571             //|----------------------------------------------------------------| 



 

130 

572             //|                                                                | 
573             //|     executeStep()                       [private function]     | 
574             //|                                                                | 
575             //|         This private function is called internally from        | 
576             //|         provideInput() to attempt actually updating the        | 
577             //|         current machine state based on inputs provided.        | 
578             //|                                                                | 
579             //|     Error handling:                                            | 
580             //|                                                                | 
581             //|         If not enough inputs have been provided yet, or        | 
582             //|         no more steps are supported, this function has         | 
583             //|         no effect.                                             | 
584             //|                                                                | 
585             //|         If none of the encrypted arcs for the current          | 
586             //|         time step match the set of provided input values,      | 
587             //|         then this function has no effect.                      | 
588             //|                                                                | 
589             //|vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv| 
590      
591     /** @dev Attempt to carry out the next execution step of the machine. 
592       */ 
593     function executeStep() private { 
594  
595             // Check for various error conditions. 
596  
597         if (nInputsRecd != nInputs) return;     // Wrong # inputs received.  (SHOULD NEVER HAPPEN!) 
598         if (nextStep >= maxSteps) return;       // No more execution steps are supported. 
599  
600             // Construct the arc identifier, by combining the (garbled) 
601             // current state ID with the combined input keys. 
602  
603         uint256 arcID = curState ^ combinedInputs; 
604  
605             // Construct the entry identifiers for the 'next-state' and 
606             // 'valid' entries from the arc identifier by combining it 
607             // with some arbitrary constants. 
608  
609         uint256 nextID = arcID ^ (uint256(bytes32('n')) >> 248); 
610         uint256 validID = arcID ^ (uint256(bytes32('v')) >> 248); 
611             // NOTE: The '>>248' above is necessary to move the nonzero byte  

612             // representing 'n' or 'v' from the MSB to the LSB position, for 

613             // compatibility with our garbler.py code. 

614  
615             // Search for the arc whose encrypted 'valid' entry is 0. 
616  
617         bool foundIt = false; 
618         uint16 arcIndex; 
619         for (arcIndex = 0; arcIndex < nArcs; arcIndex++) { 
620             uint256 valid = endecrypt(validID, arcs[nextStep][arcIndex].encValid); 
621             if (valid == 0) {   // All 0's is our code meaning "this is the right arc" 
622                 foundIt = true; 
623                 break; 
624             } 
625         } 
626  
627             // If we didn't find it, then return (don't update the state).  
628  
629         if (!foundIt) return; 
630  
631             // If we found it, then unencrypt the next state, and update our state. 
632  
633         curState = endecrypt(nextID, arcs[nextStep][arcIndex].encNext); 
634         nextStep++; 
635  
636     } // End function ExecutableMachine.executeStep(). 
637  
638  
639                 //|------------------------------------------------------------| 



 

131 

640                 //|                                                            | 
641                 //|     endecrypt()                [private pure function]     | 
642                 //|                                                            | 
643                 //|         This private function, called internally           | 
644                 //|         by executeStep(), uses a 256-bit key to            | 
645                 //|         encrypt (or decrypt, if already encrypted)         | 
646                 //|         a 256-bit data entry.  It works similarly          | 
647                 //|         to a one-time pad, by XOR'ing the data             | 
648                 //|         with a 'random' pad that is computed as            | 
649                 //|         the hash of the key.  Unless the full key          | 
650                 //|         is known, the result will appear                   | 
651                 //|         completely random.  This encryption method         | 
652                 //|         is unbreakable given standard assumptions          | 
653                 //|         about the security properties of                   | 
654                 //|         cryptographic hash functions.                      | 
655                 //|                                                            | 
656                 //|     Arguments:                                             | 
657                 //|                                                            | 
658                 //|         uint256 entryID - This 256-bit value               | 
659                 //|             identifies a specific data entry to be         | 
660                 //|             encrypted or decrypted; this value is          | 
661                 //|             used as the encryption/decryption key          | 
662                 //|             for the data entry.  "If you can name          | 
663                 //|             it, you can access it" is the idea.            | 
664                 //|                                                            | 
665                 //|         uint256 data - This 256-bit value is the           | 
666                 //|             (plaintext or encrypted) entry data to         | 
667                 //|             be encrypted or decrypted, respectively.       | 
668                 //|                                                            | 
669                 //|     Return value:                                          | 
670                 //|                                                            | 
671                 //|         uint256 res - The 256-bit result of the            | 
672                 //|             encryption or decryption of the data.          | 
673                 //|                                                            | 
674                 //|vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv| 
675      
676     /** @dev Encrypt/decrypt a data value keyed by a given entry identifier. 
677       * @param entryID The entry identifier, which is a 256-bit derived key. 
678       * @param data The data to be encrypted or (if already encrypted) decrypted. 
679       * @param res Result of the encryption/decryption. 
680       */ 
681     function endecrypt(uint256 entryID, uint256 data) private pure returns (uint256 res) { 
682         res = hash(entryID) ^ data;      // This is like a one-time pad of the data. 
683     } // End function ExecutableMachine.endecrypt(). 
684  
685  
686                 //|------------------------------------------------------------| 
687                 //|                                                            | 
688                 //|     hash()                     [private pure function]     | 
689                 //|                                                            | 
690                 //|         This private function is called internally         | 
691                 //|         from within endecrypt() to compute a 256-bit       | 
692                 //|         cryptographic hash of a 256-bit data value.        | 
693                 //|         Any suitable hash function could be used,          | 
694                 //|         but we use sha256() for the time being.            | 
695                 //|                                                            | 
696                 //|     Argument:                                              | 
697                 //|                                                            | 
698                 //|         uint256 value - A 256-bit data value to            | 
699                 //|                             be hashed.                     | 
700                 //|                                                            | 
701                 //|     Return value:                                          | 
702                 //|                                                            | 
703                 //|         uint256 h - The 256-bit hash of the data.          | 
704                 //|                                                            | 
705                 //|vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv| 
706      
707     /** @dev Hash function to be used in this program. 



 

132 

708       * @param value 256-bit value to be hashed. 
709       * @return h The 256-bit hash of that value. 
710       */ 
711     function hash(uint256 value) private pure returns (uint256 h) { 
712         h = uint256(keccak256(abi.encodePacked(value))); 
713                  // ^^^^^^^^^ sha256 (256-bit SHA-2) is another available option. 
714     } // End function ExecutableMachine.hash(). 
715  
716  
717 } // End contract ExecutableMachine. 
718  
719 //|^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^| 
720 //|                     END OF FILE:   ExecutableMachine.sol                   | 
721 //|============================================================================| 

 
 

 
 
 



 

133 

APPENDIX D DEVELOPMENT TESTING 
Below are some steps for exercising the above example contract ExecutableMachine of an execut-
able smart contract Exec[𝐺𝐺] for a garbled state machine 𝐺𝐺 in a development environment. 

For this, we used the Truffle development environment (https://truffleframework.com/), 
which makes development testing very easy.  Once Truffle has been installed on a development 
machine, the following steps will suffice to exercise the contract. 

1. Create a working directory and cd into it: 
$ mkdir truffle_project 
$ cd truffle_project 

2. Initialize the directory to contain a new Truffle project: 
$ truffle init 

3. Place the contract file ExecutableMachine.sol into the contracts subdirectory. 

4. In the migrations subdirectory, create the file 2_deploy_contracts.js as follows: 
var ExecutableMachine = artifacts.require("ExecutableMachine"); 
module.exports = function(deployer) { 
     deployer.deploy(ExecutableMachine); 
}; 

5. Compile the contract: 
$ truffle compile 

6. Start a development blockchain and enter the Truffle console: 
$ truffle develop 

7. (Within the Truffle console) Migrate the contract onto the blockchain: 
truffle(develop)> migrate 

8. At this point, the contract should be deployed on the development blockchain, and its 
constructor executed.  Now we can type interactive JavaScript commands at the Truffle con-
sole to call functions of the contract, such as the following (but omitting the line breaks): 

truffle(develop)> ExecutableMachine.deployed().then( 
                      inst => inst.curState.call() 
                  ).then( 
                      val => val.toString(16) 
                  ); 
'7128b98ce5a2a8cce5f8db6fc52cbf6c1e7b20b6122e8168650b067d1d194fb6' 

9. This calls the curState getter function and converts the result to a hexadecimal string.  Note 
that the returned value (shown above in green) is the same constant sInit that the curState 
state variable was initialized to in the contract’s constructor function.  This shows that the 
constructor was successfully executed, and the garbled machine is sitting in its initial state. 

10. If the above works, the Machine is ready to be taken through a more complete test.  We can 
write a test bench script to do this, using input keys produced by garbler.py (Appendix B) 
as follows.  This goes in a file named test1.sol in the test subdirectory. 

 
 

https://truffleframework.com/


 

134 

1 pragma solidity ^0.4.24; 

2  

3 import "truffle/Assert.sol";                   // Allows asserting conditions to be tested. 

4 import "truffle/DeployedAddresses.sol";        // For obtaining address of deployed contract. 

5 import "../contracts/ExecutableMachine.sol";   // Allows us to call functions of the contract. 

6  

7 contract test1 { 

8  

9   ExecutableMachine em = ExecutableMachine(DeployedAddresses.ExecutableMachine()); 

10  

11   function hash(uint256 value) private pure returns (uint256 h) { 
12     h = uint256(keccak256(abi.encodePacked(value))); 

13   } 

14  

15   function testRun() public {         // Take the sample machine through a 3-step run. 

16  

17          // Coded keys of provided inputs for time step #0.  State transition:  SInit -> SReset. 

18  

19     em.provideInput(0, hash(0xef45564b403fca79f06082cf6b4eeccf61ab7f55714033efd8ec9c154870257c^em.curState()));  // A:=0 

20     em.provideInput(1, hash(0xa240097f4f00d6cda3441cf759e563b0f9a4d4937cd2d3627e7098bf3b47291d^em.curState()));  // B:=1 

21  

22          // Coded keys of provided inputs for time step #1.  State transition:  SReset -> SInit. 

23  

24     em.provideInput(0, hash(0x7e5e55a46b6a9c9bf4566247e4e6ccb65c704feead2c42faf472e847dc0a1b96^em.curState()));  // A:=1 

25     em.provideInput(1, hash(0x249e225232bf8b3ddd5b2a09a1cfd714a1d3e6a40c137a6eaa4a26ef068d028a^em.curState()));  // B:=0 

26  

27          // Coded keys of provided inputs for time step #2.  State transition:  SInit -> SPass. 

28  

29     em.provideInput(0, hash(0x7ff2e199244f261b1310311ba110371abde167f35c2d97bb0984234ec85313eb^em.curState()));  // A:=1 

30     em.provideInput(1, hash(0x09805b1dd58a23797b847bf9dfe5f2362eaf027d345b892daec89cef238369dd^em.curState()));  // B:=1 

31  

32         // At this point, we should be in the halting state SPass at time t=3, which is 

33         // coded as 0x14eeba216d0cd87ef7ec29449e7fbd1e906b064b438d20f783cf27b7603e1aa1. 

34  

35     uint cs = em.curState(); 

36     uint expectedState = 0x14eeba216d0cd87ef7ec29449e7fbd1e906b064b438d20f783cf27b7603e1aa1; 

37  

38     Assert.equal(cs, expectedState, "curState should be 0x14ee...1aa1"); 

39   } 

40 } 

11. At this point, we can run the test bench as follows: 
$ truffle test test/test1.sol 

12. If it works, we will see output something like the following: 

Using network 'development'. 
 
Compiling ./contracts/ExecutableMachine.sol... 
Compiling ./test/test1.sol... 
Compiling truffle/Assert.sol... 
Compiling truffle/DeployedAddresses.sol... 
 
 
  test1 
    ✓ testRun (821ms) 
 
 
  1 passing (2s) 

The check mark and “1 passing” mean that this single test succeeded.  The machine was 
taken by the inputs through the (coded) state sequence SInit  SReset  SInit  
SPass. 

 
 

 



 

135 

DISTRIBUTION 
Email—Internal 

Name Org. Sandia Email Address 
Nicholas D. Pattengale 05682 ndpatte@sandia.gov 

Michael P. Frank 01421 mpfrank@sandia.gov  

Christopher Cordi 05684 cncordi@sandia.gov  

Carollan Beret Helinski 05646 cbehn@sandia.gov 

Ryan Kao 05683 rkao@sandia.gov  

Technical Library 01977 sanddocs@sandia.gov 

Email—External (encrypt for OUO) 
Name Company Email Address Company Name 

Vladimir Kolesnikov kolesnikov@gatech.edu Georgia Inst. of Tech. 

Kasimir G. Gabert kasimir@gatech.edu Georgia Inst. of Tech. 

Abrahim K. Ladha abrahimladha@gatech.edu  Georgia Inst. of Tech. 

Hardcopy—Internal 
Number of 

Copies Name Org. Mailstop 
    

    

Hardcopy—External 
Number of 

Copies Name 
Company Name and 

Company Mailing Address 
   

   
 
 
 
 
 
  

mailto:ndpatte@sandia.gov
mailto:mpfrank@sandia.gov
mailto:cncordi@sandia.gov
mailto:cbehn@sandia.gov
mailto:rkao@sandia.gov
mailto:kolesnikov@gatech.edu
mailto:kasimir@gatech.edu
mailto:abrahimladha@gatech.edu


 

136 

 

This page left blank 
 



 

137 

 

This page left blank 
 



 

 

Sandia National Laboratories 
is a multimission laboratory 
managed and operated by 
National Technology & 
Engineering Solutions of 
Sandia LLC, a wholly owned 
subsidiary of Honeywell 
International Inc. for the U.S. 
Department of Energy’s 
National Nuclear Security 
Administration under contract 
DE-NA0003525. 

 


	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Executive Summary
	Glossary of Acronyms and Definitions
	1. Document Description
	1.1. Organization of this Document

	2. Motivations and Broad Use-Case Scenarios
	3. Requirements for the GABLE System
	3.1. Assumptions & Limitations

	4. Example Applications
	4.1. Toy Problems
	4.1.1. Millionaires’ Problem
	4.1.2. “Dungeon Race” game

	4.2. Serious Applications
	4.2.1. Supply Chain Provenance Tracking
	4.2.2. Sealed-Bid Auctions
	4.2.3. Transactive Energy
	4.2.4. Data Peering


	5. Technical Outline of the GABLE System Design
	5.1. State-Machine Formalism
	5.2. Garbled State Machine Encoding
	5.3. Garbled State Machine Execution
	5.4. Risks and Vulnerabilities
	5.4.1. Lookahead (a.k.a. Fairness) Problem
	5.4.2. Reconvergent Arcs Problem
	5.4.3. Reconvergent Paths Problem
	5.4.4. Collusion Problem


	6. Technical Details of the Prototype Implementation
	6.1. Prototype Implementation of a Garbler in Python
	6.2. Prototype Implementation of an Executor in Solidity
	6.3. Testing the Prototype Implementation

	7. Demo Applications
	7.1. Supply-Chain Provenance Tracking Demo
	7.2. Millionaires’ Problem Demo
	7.3. Remarks on Red-Teaming

	8. State-Machine Compiler Concept
	8.1. Compilation Stages
	8.2. Software Architecture
	8.2.1. Access Package
	8.2.2. Crypto Package
	8.2.3. Functionality Package
	8.2.4. Garbler Package
	8.2.5. I/O Package
	8.2.6. Machine Package
	8.2.7. Participants Package
	8.2.8. Stagers Package
	8.2.9. Stages Package
	8.2.10. Testing Package


	9. A More Efficient Computation Model
	9.1. Cost Analysis
	9.2. Cost Comparison vs. Garbled Circuits without Functional Privacy
	9.3. Cost Comparison vs. State Machines for Auction Problem
	9.4. Conclusions on Cost

	10. Related Work
	10.1. Secure Multi-Party Computation
	10.2. Homomorphic Encryption
	10.2.1. Brief Review of FHE
	10.2.2. Comparison with FHE

	10.3. Indistinguishability Obfuscation
	10.4. Functional Encryption
	10.4.1. Brief Review of FE
	10.4.2. Comparison with FE

	10.5. Verifiable Computation

	11. Conclusions and Future Work
	References
	Appendix A Tables of Notations
	A.1 Table of Notations—In Order of Appearance
	A.2 Table of Notations—In Alphabetical Order

	Appendix B Reference Garbler Implementation (in Python)
	B.1 Concise version of Garbler code (no comments)
	B.2 Verbose listing of Garbler code (with detailed comments)

	Appendix C Reference Solidity code for Executor
	C.1 Concise version of reference Solidity implementation of Executor
	C.2 Verbose version of reference Solidity code for Executor (with comments)

	Appendix D Development Testing
	Distribution

