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Abstract
 Computational performance per unit cost (including energy/cooling 

cost) has improved exponentially over the last > half-century
 Enabled by transistor downscaling and associated energy reductions
 But, physical limits to this scaling path are only ~10 years away

 Intrinsic  limitations of MOSFET technology

 Industry is still looking for the “next” technology that can replace 
CMOS and enable continued efficiency scaling…
 Understanding fundamental (technology-independent) efficiency limits is 

necessary to help guide us in this search

 An important class of energy efficiency limits arises from 
fundamental quantum theory and thermodynamics
 Performing optimally within these limits will require fundamentally new 

computing paradigms (not just “better transistors” for conventional logic)

 This talk will focus on new computing paradigms that may improve 
the efficiency of general-purpose digital computing
 By leveraging principles such as reversibility, nondeterminism, and chaos
 Full-blown Quantum Computing would likely confer even greater benefits, 

but only for more specialized types of applications.  Not our focus here
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Fundamental Physics Implies 
Various Firm Limits on Computing
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Physics Interpreted Computationally

 Many (if not all) physical quantities can themselves be 
interpreted in terms of information processing concepts:
 Entropy

 The amount of unknown or incompressible information in a system.

 Action

 The amount of computational effort exerted in a given transformation.

 Energy

 Rate at which computational effort is being exerted in a given system.

 (Generalized) Temperature

 Rate of computational effort exerted per unit of information capacity.

 Momentum

 “Motional” computational effort exerted per unit distance traversed.

 And so on…
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Some Important Facts of Physics

Bearing on the fundamental limits of computing:

 Information cannot propagate faster than light
 Ignoring here the possibility of exotic spacetime configurations

 Only mutually orthogonal quantum states can be reliably 
distinguished from each other
 Limits the information content of physical systems of given energy

 The complete microscopic (quantum) state of any physical 
system evolves reversibly (more specifically, unitarily).
 No microscopic information loss  2nd law of thermo.

 “Erasure” of digital information  Entropy increase  Energy loss

 Energy itself is a measure of the rate of quantum state change
 Limits the speed of even reversible computations as a function of their 

energy content
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Quantum State Counting,  
Information, and Entropy
 Suppose a given physical system (as defined in a given 

context) has N distinguishable (orthogonal) quantum states, 
 Then we can say its physical information capacity is C = log N.

 The base of the logarithm determines the information unit.

– Base 2:  Unit is 1 bit.   Base e:  Unit is 1 “nat” or kB (Boltzmann’s constant).

 Given a state of knowledge about the system expressed by a 
probability distribution 𝑝𝑖 (where 𝑖 indexes system states),
 Then we say the system’s entropy is its unknown information content,

 and its known information (a.k.a. negentropy) is the remainder,
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Quantum Time-Evolution & 
The 2nd Law of Thermodynamics
 The complete evolution of any quantum system over a time t is 

expressed by some unitary transformation,

 where H is the system’s Hamiltonian operator, an energy-valued 
hermitian (self-adjoint) linear operator.

 Unitary transformations are generalized rotations; they have the 
mathematical property that angles between vectors are preserved 
by the transformation.
 Thus if | ۧΨ1 and | ۧΨ2 are mutually orthogonal, then so are 𝑈| ۧΨ1 and 

𝑈| ۧΨ2 .  States that start distinguishable, stay distinguishable.

 Therefore, the physical information capacity C of a system is 
conserved by its quantum time evolution…
 Moreover, barring measurement from outside, its entropy S can only 

subjectively increase, e.g. if we don’t know H exactly and can’t track the 
exact evolution.  It can never spontaneously decrease.  2nd law

 In other words, physical information cannot be destroyed.
8
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Landauer’s Principle
 Due to the indestructibility of information, all physical 

operations are microscopically one-to-one (injective)…
 Thus, any information that existed in the system before the operation, 

must still exist afterwards

 Whenever we think that we have simply “erased” some information, 
we must have actually only transformed it to another form
 e.g., entropy in the environment

 If a computational operation reduces the entropy of the 
logical state by an amount ∆𝑆, it must increase the entropy of 
some other part of the system or environment by at least ∆𝑆.
 If this entropy ends up in an environment at temperature 𝑇, this 

implies an amount of heat ∆𝑄 = 𝑇∆𝑆 must have been added to the 
environment (by def’n of temperature).

 Erasing 1 bit (𝑘𝐵 ln 2) of information 
 𝑘𝐵𝑇 ln 2 ≈ 18 meV energy dissipated to heat in thermal environment

 Implies ≤ ~350 Eb erased per second (Exa=1018) per Watt in room-T env.
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Reversible Computing
 A general definition of a computational operation on a state 

set 𝑆 is a (possibly partial) mapping from initial states 𝑥 ∈ 𝑆 to 
probability distributions over final states 𝑦 ∈ 𝑆.

 Typically in computing, we wish to carry out deterministic
operations in which the final state distributions are singular.
 However, nondeterministic operations are also possible and useful.

 Call a computational operation reversible if and only if all of 
its final state distributions are non-overlapping.
 Every possible final state has (at most) one predecessor.

 Reversible computing refers to computing with reversible 
operations.
 Wherever reversible operations are used, the entropy of the logical 

state is not decreased, and so Landauer’s principle does not require 
any minimum energy dissipation for those operations.
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Types of Computational Operations
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Unconditionally Reversible Gates

 Any complete reversible, deterministic operation is simply a 
permutation (bijective transformation) of the state set.

 Some example reversible operations (“gates”) on binary-
encoded states:

 NOT(a) a := a In-place bit-flip

 cNOT(a,b) if a=1 then b := b Controlled NOT

 ccNOT(a,b,c) if ab=1 then c := c A.k.a. Toffoli gate

 cSWAP(a,b,c) if a=1 then b ↔ c A.k.a. Fredkin gate

 ccNOT and cSWAP are each universal gates
 The latter in the case of functions on dual-rail-encoded bit-strings

 No set of 1- and 2-bit reversible gates is universal
 However, cNOT plus 1-bit quantum (unitary) gates is a universal set

12



Conditional Reversibility (CR)
 Definition:  An operation 𝑂 is conditionally reversible under 

precondition 𝑃 ⊆ 𝑆 if and only if the restriction of 𝑂 to 𝑃 is a 
reversible operation (as a partial function).
 Given an initial probability distribution 𝑝 over states in 𝑆 such that 
𝑝 𝑥 = 0 for all 𝑥 ∉ 𝑃, the application of the operation O does not 
reduce the entropy of the computational state, and so incurs no 
minimum dissipation under Landauer’s principle.

 Examples of some conditionally reversible operations:
 Green denotes the restriction of the operation to the precondition

 Red:  States that would result in dissipation b/c precondition not met
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Implementing CR Operations
 Not very difficult!

 Easy to do with adiabatic switching
 This structure can be used to do/undo

rOR operations
 Example of 2LAL logic family

 Based on CMOS transmission gates
 Implicit dual-rail complementary 

signals (PN pairs) in this notation

 Operation Sequence:
 Initial state:

 a, b are inputs, other nodes are logic 0

 Latch control LPN goes high (open)
 i and c tied together (purple)

 Gate drive DPN goes high
 i & c go high, dependent on ab (yellow)

 Latch control LPN goes low (closed)
 c is now disconnected, independent

 Gate drive DPN reverts low
 i returns to intermediate state

14

aPN

bPN cPN

a

b

c(=0)

iPN

i(=0)

Spacetime Diagram

Hardware Schematic

LPN
DPN

c = ab



7/25/2016

15

Simulation Results (Cadence/Spectre)
 Graph shows power 

dissipation vs. frequency
 in 8-stage shift register.

 At moderate frequencies 
(1 MHz),
 Reversible uses 

< 1/100th the power of 
irreversible!

 At ultra-low power 
(1 pW/transistor)
 Reversible is 100× faster

than irreversible!

 Minimum energy dissip. 
per nFET is < 1 eV!
 500× lower than best 

irreversible!
 500× higher 

computational energy 
efficiency!

 Energy transferred is still 
~10 fJ (~100 keV)
 So, energy recovery 

efficiency is 99.999%!
 Not including losses in 

power supply, though

Power vs. freq., TSMC 0.18, Std. CMOS vs. 2LAL
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Some Possible Uses for 
Nondeterminism
 Given appropriate device mechanisms, can be used to 

temporarily reduce entropy of environment (cooling it)
 Entropy is moved from environment into computational bits

 Source of randomness for use in probabilistic (randomized) 
algorithms.
 In some cases, such algorithms have computational complexity 

advantages over the best-known fully-deterministic algorithms

 Can’t prove the same results for pseudo-random number generators

 In cases where nondeterminism doesn’t hurt, allowing it to 
occur permits us to use operations that are less reliable due 
to lower signal energies which may be contaminated by 
thermal noise.  Doing so may improve energy efficiency
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Boltzmann Distribution
 Derived from very general thermodynamic arguments about 

the interaction of a system at equilibrium with a much larger 
thermal environment at some temperature 𝑇.
 I.e., independent of the technology used in the system

 Apart from quantum-mechanical corrections for assemblages of fermions 
(Fermi-Dirac distribution) or bosons (Bose-Einstein distribution)

 The probability that the system will be found in any given 

state having energy 𝐸 is proportional to 𝑒−𝐸/𝑘𝑇.
 Thus, if we wish for the probability that a system at equilibrium is not

in a certain desired state to be less than some small amount 𝑝𝜖 ≪ 1, 
then we must arrange for any non-desired state to have energy

𝐸 > 𝑘𝑇 ln
1 − 𝑝𝜖
𝑝𝜖

≈ 𝑘𝑇 ln
1

𝑝𝜖
,

or even higher than this if there are multiple non-desired states.

 Less energy  Greater likelihood of thermally induced error
17



Quantum Speed Limit
 The energy 𝐸 of any quantum system (above its ground state) 

determines the rate at which it exerts a certain quantum-
theoretic measure ℱ of computational effort.
 Average angular distance traversed by the state’s complex coefficients = 

Twice the total complex-plane area swept out = Imag. trajectory length.

𝑑ℱ

𝑑𝑡
=
𝐸 𝑡 − 𝐸0

ℏ
.

 E.g.:  An excitation of 1 eV corresponds to 1.52 × 1015 rad/s.

 A minimum effort of ℱ ≥ 𝜋/2 (rad), applied appropriately, is 
required to flip a bit, and we need ℱ ≥ 𝜋 to progress one step 
along a non-repeating sequence of distinguishable states.
 Any specific computational task has a minimum worst-case effort or 

difficulty, which determines the minimum energy-time investment 
required to carry out that computation on worst-case input states. 18

(here dimensioned in 

angular velocity units)



Temperature as “Clock Speed”
 Thermodynamically, temperature 𝑇 is defined by

1

𝑇
=
𝜕𝑆

𝜕𝐸

 Partial derivative of the system’s entropy 𝑆 (at equilibrium) with respect 
to the thermal energy 𝐸 of the system.

 For simple systems with heat capacity proportional to temperature 
(e.g. an ideal Fermi gas), we find that 𝑇 ∝ 𝐸/𝑆.
 With a constant factor determined by a constant of integration.

 Equilibrium (maximum) entropy is just information capacity.

 Temperature is thus (∝) energy per unit information capacity…
 Computational effort per bit.

 Note this quantity is well-defined even for non-equilibrium states!

 Example:  Room-temperature Fermi gas 
 Rate of effort sufficient for at most 4.33 × 1012 transitions / sec. / bit
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Chaos
 Typically, the dynamical behavior of real-world physical 

systems exhibits chaos
 Extreme sensitivity to initial conditions

 When the microstate is not known precisely, the long-term evolution 
cannot be accurately predicted even when the macroscopic state is 
known fairly accurately.   System behavior appears nondeterministic.

 This feature persists despite the underlying determinism and 
reversibility of the microscopic quantum-mechanical dynamics!

 It’s simply too hard to know the parameters of a system’s Hamiltonian 
precisely enough to predict its macroscopic dynamics exactly

 Also, imperfect isolation of a system means that unavoidable interactions 
with its unknown environment will cause decoherence of its quantum 
state, effectively increasing its entropy 

 Given that some degree of chaos appears unavoidable, can 
we harness it for computation, rather than be harmed by it?
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Chaotic Computing?
 What are some potential advantages of utilizing chaotic dynamical 

systems for computation?
 In a conservative chaotic system, the strange attractor to which the 

dynamics converges represents a thermodynamic equilibrium state
 Once converged onto the attractor, there is no further energy dissipation

 This remains true even if the system is interacting with an external thermal 
environment once the system and 
environment temperatures equilibrate, 
due to the fluctuation-dissipation theorem

 The identity of the attractor reflects
information about the initial state and
the time-series of external forcings being
applied to the system
 Automatically computes a function of

these inputs (possibly a useful one)

 Cheaply maps a simple input into a much 
higher-dimensional space of trajectories

– This can be useful for learning, as in 
reservoir computing
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Computing Below the Noise Floor

 Shannon teaches us that reliable communication remains 
possible when SNR << 1, just at a low bit rate

 A computational dataflow can be considered as just a special 
case of a communication channel that happens to transform 
the data in transit!

 Therefore, it ought to be possible to carry out reliable 
computations as well using signals that have less than the 
thermal energy, just at a correspondingly slow rate

22
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Chaotic Network Model of Logic
 Combinational logic via nonlinearly 

interacting degrees of freedom in 
classical conservative dynamical systems
 Let each “node” be a generalized position 

coordinate qi, continuous range incl. 0,1
 There is a corresponding momentum pi

 Init. w. a thermally distributed kinetic energy

 Logic “gates” become terms in a classical 
Hamiltonian energy function
 Coupling neighboring degrees of freedom
 Potential energy minimized 

 Each node traverses a complex (generally 
chaotic) trajectory in its phase space
 Overall configuration is thermally distributed 

around the global ground state configuration

 Network inputs can be tightly constrained
 Deep potential well – low error probability

 Although outputs fluctuate randomly,
 Long-term average statistical behavior still 

conveys information about ideal result

 Adiabatic updating in one step:
 Gradually transition inputs 0 ↔ 1
 System remains close to a thermally 

distributed equilibrium state 
throughout the transition
 Asymptotically zero heating of the 

system  no energy dissipation

 Measure final state over a long 
period  learn result
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Example of a Nonlinear Interaction
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Example Interaction Functions

 Here are some simple quadratic interactions:
 NOT gate coupling input xj to output xi:

 AND gate coupling inputs xj, xk to output xi:
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DYNAMIC simulator

 I am currently prototyping (in Python) a simple simulator 
called DYNAMIC for these types of dynamical networks.
 Nodes interacting via arbitrary Hamiltonian interactions

 Centered-difference leapfrog-style updates of fixed-point coordinates

 Ensures reversibility of simulation (no entropy loss)

 Plan is to simulate chaotic dynamical network model with this 
simulator to validate that it can be used to do logic
 Visualizations

 phase portraits, equilibrium distributions

 Current status:
 Core simulation framework is working

 Testing on complex networks is still needed

 Visualizations still needed
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DYNAMIC Software Architecture
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Some Possible Next Steps

 Add an external thermal environment to the model

 Parallelize simulator so that simulating very large networks 
becomes feasible

 Explore possible implementation technologies 
 Superconducting circuits

 Other?
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Conclusions
 Certain physical limits of computing are fundamental.

 Independent of implementation technology!

 Reflect fundamental aspects of the computing paradigm used.

 Performing as well as possible requires new computing paradigms!

 Not simply “better devices.”

 We saw some examples of fundamental limits:
 Energy dissipation limit from Landauer’s Principle

 Can be avoided by (at least conditionally-) reversible computing

 Quantum-mechanical limit on parallel step rate per unit temperature

 On the order of 15 GHz / degree Kelvin

 Unavoidable, but still fairly far away

 We must maintain awareness of the above factors when 
developing future computing technologies
 It seems likely that the best new technologies will be those that 

closely reflect the computational structure of physics itself
29


