
Kokkos: Enabling performance portability
across manycore architectures

H. Carter Edwards and Christian R. Trott
Sandia National Laboratories
PO Box 5800 / MS 1318
Albuquerque NM, 87185

Abstract—The manycore revolution in computational hard-
ware can be characterized by increasing thread counts, decreasing
memory per thread, and architecture specific performance con-
straints for memory access patterns. High performance comput-
ing (HPC) on emerging manycore architectures requires codes to
exploit every opportunity for thread-level parallelism and satisfy
conflicting performance constraints. We developed the Kokkos
C++ library to provide scientific and engineering codes with a
user accessible manycore performance portable programming
model. The two foundational abstractions of Kokkos are (1)
dispatch work to a manycore device for parallel execution and (2)
manage multidimensional arrays with polymorphic layouts. The
integration of these abstractions enables users’ code to satisfy
multiple architecture specific memory access pattern performance
constraints without having to modify their source code. In this
paper we describe the Kokkos abstractions, summarize its ap-
plication programmer interface (API), and present performance
results for a molecular dynamics computational kernel and finite
element mini-application.

I. INTRODUCTION

The Kokkos library [1]–[3] provides scientific and en-
gineering codes with a user accessible programming model
that enables performance portability across diverse manycore
architectures. We define user accessibility by the degree to
which we can minimize (1) users’ need to have architecture
specific knowledge and (2) pollution of users’ code with
parallel directives. We define performance portability by the
amount of user code which can be compiled for diverse
manycore architectures and obtain the same, or nearly the
same, performance as an architecture specialized version of
that code.

The vision for Kokkos has evolved from a hidden porta-
bility layer for sparse linear algebra kernels in Trilinos [4]
to a hierarchy of broadly usable libraries. The current core
library and programming model provides two fundamental
capabilities: (1) thread parallel execution on manycore devices
and (2) multidimensional arrays. Plans for higher level libraries
include sparse linear algebra, tensor algebra, containers (e.g.,
unordered maps), and finite elements.

Kokkos’ thread parallel execution follows the parallel
dispatch pattern used by Intel Threaded Building Blocks
(TBB) [5], NVIDIA Thrust [6], C++ AMP [7], and oth-
ers. Kokkos’ multidimensional arrays serve the same role
as multidimensional arrays intrinsic to many programming
language (e.g., FORTRAN and C), and are similar in concept
to the flexible storage ordering in Boost.MultiArray [8]. By
combining parallel dispatch and flexible storage ordering in

a single programming model we can portably achieve the
optimal data access pattern for disparate manycore devices.
This concept allows Kokkos to supersede the contemporary
manycore programming dilemma of array of structures (AoS)
versus structure of arrays (SoA) by choosing the best stor-
age ordering for the given device without having to modify
computational kernels.

Kokkos provides a minimal overhead API that isolates user
code from device specific programming models. This allows us
to choose the most performant programming model for each
manycore device and optimize our use of that programming
model without impacting user code. Current back-ends for this
API are Cuda [9], pthreads [10], and OpenMP [11]. Pthreads
and OpenMP back-ends use the portable hardware locality
(hwloc) library [12] for explicit thread placement. Back-ends
for the Intel Xeon Phi co-processor use the self hosted mode –
processes run exclusively on this “device” as opposed to using
the offload model.

We evaluate user accessibility and performance portabil-
ity through unit-level performance tests and miniapplications.
Mantevo [13] miniFE and miniMD (finite elements and molec-
ular dynamics) miniapplications [14] have been ported to
Kokkos for comparison with architecture-specialized versions.
We have found that when using portable Kokkos kernels we
typically obtain within 90% of the performance of specialized
implementations.

In this paper we describe the semantics of Kokkos’ pro-
gramming model, summarize the API, and present perfor-
mance results for the Lennard-Jones force kernel from miniMD
and scaling results for miniFE.

II. MANYCORE DEVICE

Our abstraction of a modern HPC environment is a network
of compute nodes where each compute node contains one
or more manycore devices. An HPC application executing in
this environment has two levels of parallelism: (1) distributed
memory parallelism typically supported through a Message
Passing Interface (MPI) library and (2) thread level parallelism
on the manycore device. We assume that each MPI process
uses at most one manycore device so that Kokkos does not
have to manage the interaction of multiple devices.

A. Processes and Devices

Our abstraction of a single MPI process is a master thread
that dispatches parallel work to a manycore device. This work



dispatch (a.k.a., asynchronous callback) abstraction is common
to numerous programming models; for example, function ob-
jects are dispatched to C++ Standard Template Library (STL)
algorithms [15], Intel Threading Building Blocks, and Thrust.
A key element in this abstraction is that the master thread
executes in the CPU host space and worker threads execute in
the manycore device space. Note that these spaces are the same
when executing on a multicore CPU or self-hosted manycore
device.

B. Execution and Memory Spaces

Threads execute in an execution space and data resides
a memory space. Execution spaces have accessibility and
performance relationships with a memory spaces. For example,
code executing in the Cuda space can access pinned memory
in the Host space but with degraded performance compared to
accessing memory in the Cuda space.

We address memory accessibility and performance con-
cerns through (1) an explicit execution/memory space abstrac-
tion and (2) a design policy to never hide expensive memory
copy operations. Each space is defined by a type (a C++ class)
so that the execution space of a computation and the memory
space of an array are known at compile-time. This enables
Kokkos to, at compile time, prevent code executing in the host
space from accessing memory in the device space, as opposed
to generating a runtime memory fault. When manycore hard-
ware and runtime systems provide virtual unified addressing
across memory spaces (e.g., NVIDIA’s use of pinned host
memory) we can define additional memory spaces that clearly
communicate the execution-memory performance relationship.

III. MULTIDIMENSIONAL ARRAY

A Kokkos multidimensional array consists of a homoge-
neous set of values residing in a memory space, an index space
defined by the Cartesian product of integer ranges, and a layout
– a bijective map between the index space and the set of values.

Programming languages with multidimensional arrays
(e.g., FORTRAN and C) prescribe a layout. As a consequence
a computation’s memory access pattern is dictated by array
declarations and loop ordering. Thus changing a memory
access pattern requires modification of source code.

In contrast, Kokkos multidimensional array layouts are
chosen at compile-time resulting in the associated index calcu-
lations being inserted at every array access. As such changing
the memory access pattern does not require modification of
users’ code as long as (1) their code does not assume a
particular layout and (2) conforms to the Kokkos API. Lifting
the layout from the programming language into Kokkos defines
a separation of concerns between user defined index spaces and
memory access patterns. A similar separation of concerns is
provided by the Boost.MultiArray library.

A. Allocation and Access

Kokkos multidimensional arrays are implemented by the
C++ View template class. As shown in Figure 1 the first
template argument specifies the value type, number of dynamic
dimension denoted by the number of ’*’ tokens, and static
dimensions denoted by ’[#]’ expressions. A second template

argument defines the memory space in which the values of the
array are allocated.

// This View constructor allocates an
// array in ’Device’ memory space with
// dimensions (N,M,8,3). The label "a"
// is used in runtime warning or error
// messages regarding this array.
View<double**[8][3],Device> a("a",N,M);

// The parentheses operator implements
// the layout mapping.
a(i,j,k,l) = value ;

Fig. 1. Syntax for defining, allocating, and accessing members of a Kokkos
multidimensional array.

The View parentheses operator implements the integer
arithmetic of the layout and returns a reference to a member
value. This operation is valid only if the memory space is ac-
cessible to the execution space in which the operator is invoked
and the indices are within the index space. A mix of static
and dynamic dimensions is supported so that the parentheses
operator can be optimized in the presence of static dimensions.
For example, the integer arithmetic associated with a static
dimension and literal value index can be performed at compile-
time.

B. View and Deep Copy Semantics
The class name View is selected to inform and remind

users that these objects have view, or shared ownership,
semantics as shown in Figure 2. In contrast to C++ standard
container semantics, multiple View objects can reference the
same allocated array. The allocated array is deallocated when
the last view of it is destroyed or reassigned. These semantics
are analogous the C++ shared pointer semantics [16].

typedef View<double**[8][3],Device> my_type ;

// parentheses operator returns ’const double &’.
typedef View<const double**[8][3],Device>
my_const_type ;

my_array_type a("a",N,M); // Allocate an array
{
// More views of the same array
my_type a2 = a ;
my_const_type a3 = a2 ;

// ’a’ and ’a2’ are cleared (set to ’null’)
// ’a3’ still views the array
a = my_type();
a2 = my_type();

} // View ’a3’ goes out of scope and its
// destructor is called. It was the last
// view so the array is deallocated.

Fig. 2. View’s shared ownership semantics with last-view delete responsi-
bility.

In view semantics an assignment operator is a shallow copy
operation – only the memory reference and array dimensions
are copied. A deep copy operation copies member values
between two compatible arrays. The deep copy operation is
typically used to copy array values between memory spaces,
from host to device and vice-versa.

Deep copying between arrays with different layouts has a
performance penalty of remapping data and additional penalty



of allocating a temporary array when copying between memory
spaces. Since the layouts chosen by default for a GPU view and
a CPU view are different this performance penalty would occur
frequently. We address this problem by defining HostMirror
views (Figure 3) which are in the host memory space but have
the device’s layout. Figure 3 shows how an array in device
memory space is most efficiently deep copied to/from an array
in the host memory space.

typedef View<double**[8][3],Device> my_array_type;

my_array_type a("a",N,M); // Allocate on Device

// ’my_array_type::HostMirror’ defines an array
// in host space with a layout mirroring
// ’my_array_type’. If the device != host then
// ’create_mirror_view’ allocates a compatible
// array, otherwise the input view is returned.
my_array_type::HostMirror
host_a = create_mirror_view( a );

// Deep copy to a mirror does not require remap.
// If a == a_host deep copy is skipped.
deep_copy( a , host_a ); // Copy device <- host
deep_copy( host_a , a ); // Copy host <- device

Fig. 3. Deep copy performance penalties associated with remapping array
layouts are avoided by using HostMirror views that have the same layout
as a device view but with member values residing in the host space.

C. Advanced Performance Tuning Features

In the previous sections we described fundamental ca-
pabilities for device-aware multidimensional arrays. Kokkos
supports additional data access performance tuning features
through an optional advanced API. These features leverage
extension points in Kokkos’ software design.

Multidimensional arrays have a default layout chosen for
each type of device. A user may override this default layout
by instantiating a View template with a specified layout. In
addition an advanced user may develop and specialize their
arrays with their own layouts.

A device may provide special hardware or runtime features
to tune memory access performance. For example, NVidia
devices have texture cache which can improve performance
of random read access of an array. We define traits for the
functional characteristic of the memory access pattern and then
specialize the View class to use appropriate hardware / runtime
features when available.

In Figure 4 arrays are declared with both a specified layout
and a memory access trait. In this example the read_x view
has const members and RandomRead traits. If the Device
is Cuda then the implementation of read_x is specialized to
use NVIDIA texture cache to speed up random memory read
access. Otherwise the default implementation will enforce the
const condition but will not use special hardware.

IV. PARALLEL EXECUTION

Parallel execution patterns [17] are divided into two cat-
egories: (1) data parallel or single instruction multiple data
(SIMD) and (2) task parallel or multiple instruction multi-
ple data (MIMD). Kokkos currently implements data parallel
execution via parallel for and parallel reduce operations. We
plan to enhance Kokkos to include parallel scan operation and

// Specify the layout and allocate an array:
typedef View< double ** ,

LayoutRight ,
Device > my_multivector ;

my_multivector x("x",N,M);

// Define a View which is optimized for
// random read operations.
// Perform a shallow-copy to that view.
typedef View< const double** ,

LayoutRight ,
Device ,
RandomRead > read_x = x ;

// If Device == Cuda then the access operator
// uses NVIDIA texture cache functionality.
value = read_x(i,j);

Fig. 4. A View with special memory access traits will use available device
hardware or runtime features to optimize access for that trait.

hierarchical task-data parallelism where interdependent data
parallel tasks are scheduled to execute on the manycore device.

A data parallel operation maps NWork independent units of
work onto threads for execution on the manycore device. Units
of work are completely independent if they do not depend upon
data updated by a different unit of work and do not update the
same data. For example, adding two vectors of length N can be
performed in parallel by independently adding its N members.

Units of work may update the same data via global or local
reduction operations. In Kokkos global reductions (e.g., an
inner product) are supported by the parallel reduce operation.
Local reductions (e.g., a map reduce) are supported through
atomic updates.

A. Parallel For Functor API

In C++ a functor is an instance of a C++ class that contains
a callback function, shared parameters, and references to data
upon which the callback function operates. A parallel for
functor has a work callback, shared input parameters, and
views to arrays that are operated on. A data parallel work
functor is called to perform NWork independent units of work
where each unit is identified by a unique work index in the
range [0..NWork). Default array layouts are chosen assuming
that the leading (left-most) index of an array is the parallel
work index.

The C++ implementation of a parallel for functor must
conform to two simple requirements illustrated in Figure 5:
(1) identify the execution space of the functor and (2) provide
a work callback. It is recommended that the functor has the
execution space as a template parameter for portability.

B. Parallel Reduce Functor API

A parallel reduce functor has a work callback, a reduc-
tion callback, shared input parameters, views that are operated
on, and reduction parameters. Each call to a parallel reduce
work callback generates a contribution to the reduction param-
eters that must be reduced by a commutative and mathemati-
cally associative reduction callback. The numerical implemen-
tation of a reduction callback could be non-associative due to
numerical round-off in floating point operations.



// Templating on the Device space allows the
// functor to be compiled for different devices.
template< class Type , class Device >
class AXPY_Functor {
public:
// The execution space of this functor
// is defined by ’device_type’.
typedef Device device_type ;

// The work callback is defined by an
// ’void operator()( integer_type iw ) const’
// where ’iw’ is the work index.
// KOKKOS_INLINE_FUNCTION is a #define macro
// for compiler directives such as
// ’inline __device__’ for Cuda.
KOKKOS_INLINE_FUNCTION
void operator()( int iw ) const
{ y(iw) = alpha * x(iw) + y(iw) ; }

View< Type*,Device> const y ;
View<const Type*,Device> const x ;
Type alpha ;

};

// Call the functor NWork times on up to NWork
// worker threads. Each call is passed a unique
// work index in the range [0..NWork).
parallel_for( NWork ,
AXPY_Functor<double,Cuda>( a , X , Y ) );

Fig. 5. Interface requirements for parallel for functors are illustrated through
an example AXPY functor that performs the “Y = αX + Y ” basic linear
algebra operation.

The parallel reduce functor API is designed so that Kokkos
can provide scalable and deterministic global reductions. For
large thread counts the global reduction follows a traditional
log2(NT ) fan-in algorithm (NT = number of threads). The
fan-in algorithm requires thread-local copies of the reduction
parameters which are reduced to a single global value through
an ordered sequence of concurrent pair-wise reductions. This
ordered sequence is derived from the number of threads
NT and number of work items NWork, and guarantees a
deterministic result given the same NT and NWork.

Requirements for a reduction callback API are given by
example in Figure 6. First, the reduction parameters must
be defined through a C++ type satisfying the plain old data
type conditions; e.g., a bit-wise copy of values will yield
the correct result. This is typically a simple intrinsic type
such as ’double’. Second, the reduction callback consists of
two functions with interface requirements to support correct
inter-thread communication. These requirements are defined
by example in Figure 6.

C. Local Parallel Reductions via Atomics

Kokkos supports local parallel reductions through atomic
reduction operations; e.g., atomic addition. An atomic op-
eration serializes concurrent updates to a values but does
not guarantee the ordering of these updates among threads.
Thus a non-associative reduction operation (e.g., floating point
addition) can yield non-deterministic results for local parallel
reductions.

Atomic operations’ serialization can introduce scalability
bottlenecks. Typically atomic operations should only be used
when the number of atomic updates to a particular variable
is much smaller than the number of work items. Otherwise

template< class Scalar , class Device >
class CentroidFunctor {
public:
typedef Device device_type ;

// Reduction parameters are a plain-old-data
// type defined via a ’value_type’ declaration.
struct value_type { Scalar point[3], mass ; };

View<Scalar*, Device> mass ;
View<Scalar*[3],Device> point ;

// A work callback contributes to the reduction
// result via the ’update’ argument.
KOKKOS_INLINE_FUNCTION
void operator()( int iw ,

value_type & update ) const
{
update.mass += mass(iw);
update.point[0..2] += point(iw,0..2) * mass(iw);

}

// A reduction callback joins an input value
// to the update value from a different thread.
// These arguments are ’volatile’ to force
// communication of values among threads.
KOKKOS_INLINE_FUNCTION
static void join( volatile value_type & update ,

const volatile value_type & input )
{
update.mass += input.mass ;
update.point[0..2] += input.point[0..2];

}

// Initialized thread-local contributions
// to the reduction parameters.
KOKKOS_INLINE_FUNCTION
static void init( value_type & update )
{
update.mass = 0 ;
update.point[0..2] = 0 ;

}
};

// Reduction parameter is output in ’result’.
parallel_reduce( NWork,
CentroidFunctor<double,Cuda>(mass,point), result);

Fig. 6. Interface requirements for parallel reduce functors are illustrated
through an example centroid computation functor that sums the mass and
mass-weighted coordinates of arrays of points and masses. The example code
is abbreviated by omitting the constructor and implying a loop with 0..2.

functors with reductions should be implemented with atomic-
free algorithms where feasible, such as using parallel reduce.

V. PERFORMANCE EVALUATION

We use the Lennard Jones force calculation (LJ-kernel)
extracted from our molecular dynamics mini-application
MiniMD and the finite element proxy code miniFE for two
performance evaluation tests. All tests are carried out on our
Compton and Shannon testbed clusters, with details of their
respective configurations given in Table I. Compton is used
for Xeon and Xeon Phi tests and Shannon is used for Kepler
GPU tests.

Results presented in this paper are for pre-production Intel
Xeon Phi co-processors (codenamed Knights Corner) and
pre-production versions of Intel’s Xeon Phi software stack.
Performance and configuration of the co-processors may be
different in final production releases.



TABLE I. CONFIGURATIONS OF TESTBED CLUSTERS.

Name Compton Shannon
Nodes 32 32
CPU 2x Intel E5-2670 HT-on 2x Intel E5-2670 HT-off
Co-Processor 2x Intel Xeon Phi 57c 1.1GHz 2x K20x
Memory 64 GB 128 GB
Interconnect QDR IB QDR IB
OS RedHat 6.1 RedHat 6.2
Compiler ICC 13.1.2 GCC 4.4.6 + CUDA 5.5 RC
MPI IMPI 4.1.1.036 MVAPICH2 1.9

A. Molecular Dynamics Force Kernel

The LJ-kernel shown in Figure 7 loops over atoms and
calculates the forces between neighboring pairs of atoms with
a distance dij being smaller than a cutoff rcut. To that end a
list of neighbors j for each atom i is precomputed and then
used in the kernel.

// Parallel iteration of all atoms in the system
for(i=0;i<natoms;i++) {
double x_i[3], f_i[3];
x_i[0..2] = x(i,0..2);
f_i[0..2] = 0;
// Iterating the precomputed list of neighbors
for(jj=0;jj<num_neighbors(i);jj++) {
int j = neighbors(i,jj);
double d_ij[3] , d ;
d_ij[0..2] = x_i[0..2] - x(j,0..2);
d = norm(d_ij);
if(d<r_cut) {
const double sr2 = 1.0 / (d*d);
const double sr6 = sr2 * sr2 * sr2;
const double force = 48.0 * sr6 * (sr6 - 0.5) * sr2;
f_i[0..2] += force * d_ij[0..2];

}
}
f(i,0..2) = f_i[0..2];

}

Fig. 7. Pseudo code for the thread safe Lennard Jones molecular dynamics
kernel (LJ-kernel) in MiniMD.

We ran miniMD’s default performance test problem with on
average 77 neighbors of which 55 pass the distance check. This
results in an average of 1408 Flops and 311 memory accesses
per atom i. In the computation neighbors(i,jj) has a
regular memory access pattern and x(j,0-2) has a random
memory access pattern. Even so, when atoms are ordered in
memory according to spatial location, it is possible to achieve
a very high cache reuse for x(j,0-2). This reuse drastically
limits the actual number of loads from main memory.

The importance of layouts in Kokkos is highlighted in the
load of the neighbor index j = neighbors(i,jj). On
Xeon (and Xeon Phi) this should be a LayoutRight (row
major ordering) so that the loaded cache line contains the
values for the next iteration step of the inner loop over jj.
On a Kepler GPU LayoutLeft (column major ordering)
should be used so that the load is contiguous for threads
working on different atoms i. Furthermore on Kepler GPUs it
is important to use texture fetches (via RandomRead attribute)
for x(j,0-2) random accesses.

Figure 8 shows performance in GFlop/s for the kernel on
our Compton and Shannon testbeds using a single node for
both the optimal code and when using the wrong memory
layout on each hardware. The latter causes a performance drop
of 1.9x, 3.4x and 6.6x on the Xeon, Xeon Phi, and Kepler GPU

testbeds. Also, using the correct layout but not using texture
fetches results in a 3.6x slowdown for the Kepler GPU.

Xeon Xeon Phi Kepler0

50

100

150

200

Pe
rfo

rm
an

ce
 in

 G
Fl

op
/s Optimal settings

Texture fetch disabled (Kepler)
Wrong data layout

Fig. 8. LJ-kernel performance in miniMD on a dual Intel Xeon (Sandy
Bridge), a pre-production Intel Xeon Phi co-processors (57 cores), and a
NVIDIA Kepler GPU (K20x) for the miniMD default test problem with
864,000 atoms. The solid bars show performance with optimal access patterns,
the striped bars show performance with the wrong data layout for the
neighbors array, and the checkerboard bar shows performance on the
Kepler GPU with the correct layout but without using texture cache.

We achieve similar fractions of theoretical peak floprate on
both Xeon (14%) and Kepler (17%) testbeds; however, on the
Xeon Phi we achieve only 5% of peak. This small percentage
of peak on the Xeon Phi is obtained even with a well optimized
OpenMP-based version of miniMD.

B. MiniFE

MiniFE is a hybrid parallel (MPI+X) finite element mini-
application that constructs a linear system of equations for
a 3D heat diffusion problem and performs 200 iterations of
a conjugate gradient (CG) solver on that linear system. It
is designed to capture a number of important characteristics
of implicit parallel finite element codes. MiniFE has been
implemented in various programming models some of which
are available at mantevo.org.

We compare the performance of miniFE-Kokkos (portable
variant) with miniFE-OpenMP running on the Xeon and Xeon
Phi testbeds, and with miniFE-Cuda running on the Kepler
GPU testbed. The miniFE-Kokkos back-end for Xeon and
Xeon Phi is OpenMP and the back-end for Kepler GPUs is
Cuda. The miniFE-Cuda variant is based upon miniFE-Kokkos
where all linear algebra subprogram functions are replaced
with calls to NVidia’s cuBLAS and cuSparse functions. Since
the majority of miniFE optimization efforts have concentrated
on the CG-solver, we focus on this phase of miniFE perfor-
mance.

Our miniFE test case is a weak scaling problem with 8M
elements per compute node or device and requires 3.3GB
of main memory per node. Tests are run with a single
MPI process per device, except for Xeon tests with miniFE-
OpenMP which run with one MPI process per NUMA region.
We make this exception because when miniFE-OpenMP is run
with one MPI process per node the execution time more than
doubles. This slowdown is due to the problem construction
phase performing an implicit NUMA first touch on the linear



system that is incompatible with the access pattern of the CG-
solve phase. Consequently threads regularly access memory
in the wrong NUMA domain with the associated bandwidth
penalty. Kokkos transparently handles this NUMA issue by
running a parallel for first touch initialization of each new
data allocation that is compatible with typical data parallel
kernels. For Kepler tests we use the MVAPICH2 1.9 [18], [19]
implementation of MPI to enable GPU-Direct capabilities; i.e.,
MPI can directly access GPU memory. Thus no explicit data
copies are necessary between device and host during the CG-
solve.

In Fig. 9 timings for the CG-solve phase are shown from
a weak-scaling study on our Xeon, Xeon Phi, and Kepler
GPU testbeds (Table I). For each data point the best time
out of 12 runs was used. Overall, Kokkos delivers similar
performance as the native implementations. It is faster than
miniFE-Cuda in Kepler tests by roughly 13%, it is marginally
slower than miniFE-OpenMP in Xeon tests, and it is about
10% slower than miniFE-OpenMP on Xeon Phi. Both on
Xeon and Kepler GPU testbeds excellent scaling is observed,
with miniFE-Kokkos having about 95% parallel efficiency with
32 MPI ranks. MiniFE-OpenMP shows slightly worse scaling
efficiency, which is likely due to using twice as many MPI
ranks. The scaling issue on Xeon Phi can be attributed to
the poor MPI performance on our Xeon Phi testbed. Peak
bandwidth between two Xeon Phi co-processors is as low as
300 MB/s if at least one of the co-processors sits in a socket
without an Infiniband adapter. In comparison the Xeon and
Kepler GPU runs peak MPI bandwidth is about 3.5 GB/s. This
Xeon Phi MPI issue is expected to be solved soon with a new
runtime software stack, so that Xeon Phi based systems should
see similar scaling behavior as the Kepler GPU based system.
Another problem with the Xeon Phi runs were occasional
outliers in the performance. Some of the tests produced timings
which were twice as large as the one from the fastest run. The
cause for this behavior is currently under investigation.

1 2 4 8 16 32 64
# of Nodes/Devices

6

8

10

12

Ti
m

e 
in

 se
c

Xeon - Kokkos
Xeon - OpenMP
Xeon Phi - Kokkos
Xeon Phi - OpenMP
Kepler - Kokkos
Kepler - Cuda

Fig. 9. Time for 200 iterations of a CG-solve with miniFE variants on
different testbeds. The problem size is weak scaled, with 8M elements per
node or device. The solid lines represent runs using miniFE-Kokkos, while
the dashed lines show results with peer variants. For each data point the best
time out of 12 runs was used.

VI. CONCLUSION

The Kokkos C++ library implements our strategy for many-
core performance portable HPC applications and libraries. Two
foundational abstractions are implemented: (1) dispatching
parallel functors to a manycore device and (2) managing the
layout of multidimensional arrays so that those functors have
device optimal memory access patterns. We have described
these abstractions in detail, summarized the API, and presented
performance portability results for a molecular dynamics com-
putational kernels and finite element mini-application. Our test
cases achieve at least 90% of the performance of architecture
specific, optimized variants of those test cases.

Kokkos will update existing, or adopt new, back-end imple-
mentations as manycore architectures and their programming
models evolve. In this way HPC applications and libraries
using Kokkos can immediately benefit from new manycore
capabilities. Furthermore, our ongoing analysis of manycore
architectures’ performance drives continued optimization of
back-end implementations.

Kokkos is under active research and development to in-
corporate new manycore capabilities, array layouts, aggre-
gate “scalar” data types, parallel operations, and higher level
libraries of data structures and kernels. For example, tiled
layouts can be transparently introduced into dense matrices
without modification of user code. Similarly, automatic differ-
entiation or stochastic variable types are transparently incor-
porated into array layouts. Plans for new parallel operations
include parallel scan and hierarchical task-data parallelism.
Finally, development has begun for higher level libraries such
as sparse linear algebra and array-based containers (e.g., hash-
maps).

Kokkos is publicly available through the Trilinos repos-
itory at www.trilinos.org and is being used to migrate the
Trilinos suite of libraries to manycore architectures. MiniMD
and miniFE are available through the Mantevo repository at
www.mantevo.org.

ACKNOWLEDGMENT

Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S. De-
partment of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000. This paper is cross-
referenced at Sandia as SAND2013-5221C.

REFERENCES

[1] H. C. Edwards, D. Sunderland, C. Amsler, and S. Mish, “Multi-
core/gpgpu portable computational kernels via multidimensional ar-
rays,” in Cluster Computing (CLUSTER), 2011 IEEE International
Conference on. IEEE, Sep. 2011, pp. 363–370.

[2] H. C. Edwards, D. Sunderland, V. Porter, C. Amsler, and S. Mish,
“Manycore performance-portability: Kokkos multidimensional array
library,” Scientific Computing, pp. 89–114, 2012.

[3] H. C. Edwards and D. Sunderland, “Kokkos array performance-portable
manycore programming model,” in PMAM, Feb. 2012, pp. 1–10.

[4] C. G. Baker, M. A. Heroux, H. C. Edwards, and A. B. Williams, “A
Light-weight API for Portable Multicore Programming,” in Parallel,
Distributed and Network-Based Processing (PDP), 2010 18th Euromi-
cro International Conference on. IEEE, 2010, pp. 601–606.

[5] J. Reinders, Intel Threading Building Blocks. O’Reilly, Jul. 2007.



[6] “Cuda Toolkit Thrust documentation,” docs.nvidia.com/cuda/thrust/,
Jun. 2013.

[7] K. Gregory and A. Miller, C++ Amp, Accelerated Massive Parallelism
with Microsoft Visual C++. Microsoft Press, Sep. 2012.

[8] R. Garcia, J. Siek, and A. Lumsdaine, “Boost.MultiArray,”
www.boost.org/libs/multi array, Jun. 2013.

[9] “CUDA home page,” www.nvidia.com/object/cuda home new.html,
Jun. 2013.

[10] “IEEE Std 1003.1, 2004 Edition, <pthread.h>,” 2004.
[11] “The OpenMP API Specification for Parallel Programming,”

openmp.org/, Jun. 2013.
[12] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin,

G. Mercier, S. Thibault, and R. Namyst, “hwloc: a Generic Framework
for Managing Hardware Affinities in HPC Applications,” in PDP 2010
- The 18th Euromicro International Conference on Parallel, Distributed
and Network-Based Computing, IEEE, Ed., Pisa, Italie, Feb. 2010.

[13] “Mantevo project home page,” www.mantevo.org/, Jun. 2013.
[14] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.

Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and
R. W. Numrich, “Improving Performance via Mini-applications,” Sandia
National Laboratories, Albuquerque, New Mexico 87185, Technical
report SAND2009-5574, September 2009.

[15] Information Technology Industry Council, Programming Languages —
C++, International Standard ISO/IEC 14882, 1st ed. 11 West 42nd
Street, New York, New York 10036: American National Standards
Institute, 1998.

[16] “Draft Technical Report on C++ Library Extensions,” www.openstd.org
/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf, Jun. 2005.

[17] T. Mattson, B. Sanders, and B. Massingill, Patterns for parallel pro-
gramming, 1st ed. Addison-Wesley Professional, 2004.

[18] “mvapich home page,” mvapich.cse.ohio-state.edu, Jun. 2013.
[19] J. Liu, J. Wu, and D. K. Panda, “High performance rdma-based

mpi implementation over infiniband,” Int. J. Parallel Program.,
vol. 32, no. 3, pp. 167–198, Jun. 2004. [Online]. Available:
http://dx.doi.org/10.1023/B:IJPP.0000029272.69895.c1


