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Abstract: The concept of doing reversible computing in order to avoid information
erasure, and the Landauer minimum energy dissipation associated with it, has been
around for a long time. Unfortunately, the traditional theoretical models of
reversible computing do not translate very easily into hardware. But, it turns out
that those traditional models are more restrictive, and more complicated, than is
necessary. The proper theoretical understanding of Landauer’s principle leads
directly to a more general model of what | call conditionally reversible operations,
which can be mapped directly to simple hardware. The possible adiabatic physical
transformations that can occur in circuits can be shown to correspond exactly to
abstract conditionally-reversible computational operations in this generalized
model. Furthermore, the generalized model, unlike the more restricted traditional
one, can also be used as the foundation for novel asynchronous, ballistic models of
reversible logic, which offer the prospect of being implementable with greatly
reduced clocking overheads compared to all of the known synchronous
implementations of reversible logic.



Revised talk outline ) .

* Fresh prologue for this audience:

= Leveling off of signal energies

= Asimple and rigorous proof of Landauer’s Principle

= What is reversible computing (RC)?

= A concept for fast room-temperature reversible computing
= The original talk:

= Motivation — Fix problems of traditional RC theory

= Generalized Reversible Computing (GRC) theory

= Correspondence between GRC and fully-adiabatic circuits

= Asynchronous Ballistic Reversible Computing

= Conclusion

The first part of the talk was added after the first day of the workshop to give a
better introduction to the field to this audience.



Energy limits for conventional DN

technology are not far away!

=  Energy of min.-width FET
gates affects channel ITRS2015 Node vs. Gate Energy (EV}

fluctuations < ~1-2 eV 1000
* |mpact on leakage
= Real gates are often
wider (~ 20x min.)
= Also there is fanout,
wire capacitance, etc.
= Note: iTRS is aware of
thermal noise issue, and
so has min. gate energy
asymptoting to ~2 eV
= Node energy follows,
asymptoting to ~1 keV
= Practical circuit 10 -
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An important point to be aware of is that reversible computing doesn’t just save
“the last kT”, it can save the entire energy between where we are (10s of thousands
of kTs) and 0.
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Landauer’s Principle in a Nutshell (1 of 4) e
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Over any given time interval At, the operation of the physical dynamics D (At),
which, in quantum models, is a unitary transformation, maps old states one-to-one
onto new states (an injective map).

Every viable quantum theory of fundamental physics (in particular, all
guantum field theories, including the Standard Model of particle physics) have this
property. It’s believed that whenever we have a working theory of quantum gravity,
it will exhibit this property as well.

If multiple distinct states could transform to the same resulting state
over some time interval, then the 2" Law of Thermodynamics would be false,
because the entropy of that pair of states (if they both have nonzero probability)
would necessarily be reduced when they are merged (because plogp~1 is
subadditive), and so entropy could just vanish. Because merging of states is not
possible, entropy cannot decrease.

It’s also believed that fundamental quantum dynamics is
deterministic, and therefore that “true” entropy cannot increase, either; however,
subjectively, we perceive entropy as increasing, because in our models of the world,
we discard information about the state that in principle we could know, if we knew
the exact laws of physics and tracked the evolution exactly.

The bijectivity of fundamental physics is one of the facts of physics
that we are more certain of than anything else! (Hawking eventually conceded that
even black holes are unitary.)



Landauer’s Principle in a Nutshell (2 of 4) e
= 2. A computational state is just an e C )
equivalence class of distinct & P
physical microstates that we FiTh [ ® ® N
interpret alike for computational | .® @ @®® "
purposes. S g N
- E.Q: any state of a circuit norjie'in / @ ¢
which its average voltage V is in : g ,. ;
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represent a logic “1” M e
= But, there are many detailed physical xampleofacomputatlonal
microstates consistent with this! state space C consisting of 3

distinct computational states
€4, €2, €3, €ach defined as a set
of equivalent physical states.

— E.g., at nonzero temperature, many
electron states near Fermi level may or
may not be occupied

Even at zero temperature, for an extended circuit node, there would still be many
distinguishable states (different Fermi levels) between V;;, and V;y.

And, even for quantum computers, wherein we may use a single 2-
state quantum system (e.g. an electron spin) to represent a bit, there are still many
physical states per computational state when we include the thermal state of other
parts of the machine and its environment.




Landauer’s Principle in a Nutshell (3 of 4) @&z

= 3. When we “erase information” in 2 ~
a computer (merge computational N s
states), the underlying physical
microstates remain distinct

= Before the erasure, the entropy of the
detailed state s, conditioned on the
computational state, is given by... ; '
* H(s|c) =H(s)— H(c)
= After the erasure, there is no more

Amtrems i blha e b

entropy in the computationa
* H(s|c) = H(s)
= The physical entropy (from the user’s
perspective) has increased by H(c)!

= Losing computational information
increases physical entropy!

This is the conceptual core of Landauer’s principle.

Before the computational states are merged, the information about
which computational state we are in may, in principle, be known information — not
true entropy — if, for example, it is information that was computed from other
known information. However, if we then run those two state sets through an
erasure mechanism that does not have this a priori knowledge —i.e., a mechanism
that is supposed to change the bit to a 0 regardless of whetheritwasaOoral
originally — all of the entropy that existed in the computational state, from the
device’s perspective, will simply get transferred to the non-computational state;
thus, the entropy in the non-computational state is increased.

Another way of saying this is that the amount of physical entropy
conditioned on knowledge of the computational state, H(s | ¢) = H(s) — H(c),
which is the user’s view of the physical entropy, is increased, because the
information entropy H(c) has gone from some nonzero value to 0.

Another way of describing this process is that some known bit of
physical information (whether the computational state was ¢, or c¢;) got pushed out
into the environment, becoming part of the non-computational state, where that
bit was subsequently randomized, and became entropy.



Landauer’s Principle in a Nutshell (4 of 4) @&z,

= 4. Entropy/information is measured in logarithmic units.

= Two equiprobable computational states - Entropy/information
content of computational state is one factor-of-two logarithmic unit

H(c) = [log2] = [loge]log. 2 = kgIn2

= 5.If entropy AS = H(c) ends up in a thermal environment at
temperature T, this requires adding heat AQ = TAS to the
heat bath, by the definition of thermodynamic temperature:
1 as
T 4Q
= . Merging two equally-likely computational states implies that
we must dissipate this amount of energy to the heat bath:
AEg4iss = kgTIn2 < Landauer limit

Here is the “Landauer limit” in its usual form. As we can see from this and the
previous 3 slides, it’s a simple logical consequence of the bijectivity of physics, the
notion of a computational state, the definition of thermodynamic temperature, and
the definitions of a bit and of Boltzmann’s constant, as logarithmic units.

The expressions in square brackets represent “indefinite logarithm”
guantities, which are dimensioned in generic logarithmic units.




Enter Reversible Computing... =

* Problem: Landauer’s Principle teaches us that losing
computational information (merging computational states)
implies unavoidable energy dissipation.

= Solution: Compute without losing information!
= Don’t ever try to erase bits / merge two distinct computational states.
= |nstead, transform computational states one-to-one into new states.
* No decrease in computational entropy
* No need to eject computational entropy to the physical state
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= Bennett (1973) showed that reversible computations can still

compute any function...

= To get rid of temporary results that are no longer needed, you can
always decompute them instead of erasing/overwriting them

Reversible computing is really the only way to get around Landauer’s principle. The
principle itself applies to any physical system that we may consider as representing
information. It doesn’t matter if we use some nonstandard information encoding
(such as spike timing), or if we think of the device as analog or digital (quantum
mechanics guarantees that any finite system always still has some discrete set of
distinguishable states). Whatever model of computation we use, in order for it to
avoid the energy dissipation limits implied by Landauer’s principle, it must also be
reversible.

A guestion was asked at the workshop about reversible analog
computing. It’s worth noting that one way of achieving reversibility involves
“analog” dynamical systems that are operating in a strongly chaotic regime. This is
because a conservative dynamical system whose dynamical orbit has converged
onto a strange attractor is essentially already in a thermodynamic equilibrium state,
and thus incurs no further dissipation. (This is what | discussed in my Chaotic Logic
talk last October at ICRC.) Another example of a form of analog computation that is
at least partially reversible is reservoir computing, since the dynamical evolution of
the reservoir system is typically at least somewhat reversible, that is, not dissipating
its dynamical energy rapidly, relative to its rate of internal transformation along its
trajectory).



Implications for FLOPS & power =W

Note: The limits suggested by the diagonal lines do not
even include power for interconnects, memory, or cooling!
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If we ever want to progress down into the red area of the chart, we have to move to
some form of reversible computing.



Nanomechanical Rotary Logic =
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An example concept illustrating a general point that the energy-delay product
(which determines energy efficiency at a given speed) of reversible computing is
highly technology-dependent. We can do many orders of magnitude better than
CMOS in a well-designed reversible technology. Merkle, by the way, also invented
the concepts of public-key cryptography, and cryptographic hash functions.

Of course, we don’t yet have the atomic precision manufacturing
technology required to build these structures, but the point is that there is nothing
fundamental in the laws of physics that prevents far more efficient, high-performing
versions of reversible computing from being possible. That is, the limits of
reversible computing are only technology-dependent.



Rotary Logic Lock Operation =

= Videos animate schematic
geometry of a pair of locks
in a reversible shift register

= Molecular Dynamics
modeling/simulation tools
used for analysis include:

= | ARARADC CDNOMMACC
LAIVIIVIE O, 331

VSTV IS,

AMBER Antechamber
= Simulated dissipation:

» ~4 X102 J/cycle at 100 MHz

= 74,000 X below Landauer
limit for irreversible ops!

= Speeds up into GHz range
should also be achievable

The two videos here can be played in the PowerPoint version of the talk. The top
one shows a stage of a reversible shift register. The bottom one shows a set of cam
wheels that can be used to drive the adiabatic mechanical transitions.

Note that based on the dissipation analysis, this technology would be
several orders of magnitude more energy-efficient than any possible irreversible
technology, despite still being able to run at GHz speeds.

One critique of this approach is that the signal propagation speed is
limited to the speed of sound in these nanostructured diamondoid rods (the speed
of sound in bulk diamond is about 12 km/s, which is 12 microns per nanosecond)...
Faster communication speeds would be desirable... Maybe a hybrid of mechanical
components for the logic, and electrical signaling for long-distance communication.

Later in the talk (if | have time) | will mention another implementation
idea involving superconducting circuits. (We didn’t end up getting to this.)
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Structure of the Talk @&

1. Explain the motivations for this work

= Overcoming limitations of traditional reversible computing theory
= Dispelling confusion and facilitating technological progress

2. Develop Generalized Reversible Computing (GRC) theory \rssucpse
= Starting point: Properly understanding Landauer’s principle °':§;~?:}E
= [logically reversible computations: The carrect general concept cuberited Io

RC1T.

3. Show how GRC can be used to model adiabatic circuits
= Adiabatic transitions are conditionally-reversible computational ops
* Building simple designs for truly, fully reversible AND and OR gates )

4. Show how GRC makes possible a novel quasi-asynchronous
ballistic style of reversible logic with reduced clocking needs
= | call this Asynchronous Reversible Computing (ARC)

5. Conclusion

This is the outline of the original talk. | did not have time to get to this material

during my presentation, but perhaps the preface material | showed was more
interesting to this audience.
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Motivations for this Work =

Transcend the limitations of the traditional model of
reversible logic networks

* This model was originated by Landauer (1961)
= Developed in detail by Fredkin and Toffoli (1980)
= Problems with the traditional model:
= |nsufficiently general to express all reversible computations
= Inadequate to represent real reversible physical mechanisms
* Leads to overly complex, hard to implement “primitive” gate ops
= Restricted to synchronous logic = clocking overheads
The traditional model has engendered a lot of confusion...
= “Is logical reversibility really required for physical reversibility?”
Has been a roadblock holding back progress in the field...
= |t's high time to adopt a more comprehensive theoretical model!

e We want to show how to transcend the limitations of the traditional (Landauer-
Fredkin-Toffoli) theoretical model of reversible logic networks, which:
» Are insufficiently general to express the full range of truly logically- and
physically-reversible computations that are in fact possible!
* Are inadequate to represent the inherent computational structure of the
real-world adiabatic logic mechanisms that we can actually build!
» Lead to overly complex “primitive” gate operations that don’t map easily to
device-level implementations! = Resulting designs are inefficient
» Are restricted to synchronous logic schemes requiring extensive clocking
overheads! - Creates an additional level of inefficiencies
e Due to these issues, the traditional reversible logic model has arguably
engendered a lot of confusion, and has unfortunately been somewhat of a
roadblock holding back progress in the field...
* It’s high time that we adopt a more comprehensive theoretical model!

13



Landauer — What he got right! QR

= |Information expelled from the computational state can’t be
destroyed, due to the reversibility of fundamental physics
= Therefore (“Landauer’s principle”), it ends up in environment

= For an operation applied in a given statistical context, the entropy
AS expelled from the device is simply given by the initial state

entropy S' minus the final state entropy S¥
F

i

= Calculate from initial and final state probability distributions pi[; p

AS = S'—SF

={T‘ I i\_/v Fy i\
\Lg'plmg?’i]) \Ai‘pllogpip}

= Logically rigorous consequence of unitarity of quantum physics!

e Information expelled from the computational state cannot be destroyed, due to
the reversibility of fundamental physics
* Therefore (“Landauer’s principle”), it ultimately ends up as thermal entropy
in the environment, if it’s not explicitly preserved somewhere
» For a computational operation applied in a given statistical context, the
amount AS of entropy that must be expelled from the device is simply given
by the initial state entropy S! minus the final state entropy S
o Computable from initial and final state probability distributions 'pg,
pi
AS = ST —SF

I 1 F 1
= Epilog—l - Epi log—
- p; - p;

° There was actually an arithmetic error in the specific numerical
example Landauer computed in his 1961 paper, but his formulas were
correct.
* | emphasize: The validity of this formula follows immediately from the
unitarity of quantum time-evolution, and is absolutely unquestionable!!

14



Landauer — What he got less right... @

= Defines logical (ir)reversibility - RESTORE TO ONE is an
i ; example of a logical truth function which we shall call
fOF an N_blt dEWCE irreversible. We shall call a device logically irreversible if

. the output of a device does not uniquely define the inputs.
= Assumes operatlon on the x . .
... Now assume that the computer is logically reversi-

entire space of 2V ble. Then the machine cycle maps the 2¥ possihlf‘ initial
combinatoriall QOSSfb."E‘ states of the machine onto the same space of 2*
initial states (0": "inputs”) rather than just a subspace thereof.

states,

= But, the initial state probabilities are also important!

L LERN | : L=

= DeBenedictis & Frank previously pointed this out, at ICRC 2016
(http://bit.ly/2hYWLdV)
= Crucial: If some initial states have probability 0, then not all of the
2" combinatorially-possible initial states are statistically possible
= |n such contexts, device operation can map full combinatorial space of 2V
initial states onto a smaller set of final states, while retaining AS = 0
(reversibility)!
* Landauer’s “logical reversibility” tragically obscured this critically important fact!

e Here, he defines logical (ir)reversibility for an N-bit device, which he assumes implicitly to
operate on the entire space of 2V combinatorially possible initial states (or “inputs”)
e However (c.f. prev. slide), what’s actually important for determining the entropic
reversibility of a computation is not just the choice of operation (state mapping)
implemented by the devices, but also the statistical operation context — the probability
distribution over the initial states!
» Landauer appears to be forgetting, here, that in the actual entropy-ejected
formula (as shown on the previous slide), AS depends not just on the operation, but
also on pI, the initial state probabilities!!
o DeBenedictis & Frank previously pointed this out, at ICRC 2016
(http://bit.ly/2hYWLdV)
e Crucial: If some initial states have probability 0, then not all of the 2" combinatorially-
possible initial states are statistically possible, in that context, but it’s the statistical
characteristics that are the actual thing that really matters for entropy purposes!
» Thus, in such contexts, a device operation can, perfectly consistently with known
physics, map the full combinatorial space of 2" initial states onto a smaller set of
final states, while retaining the property that the entropy ejected AS = 0
(reversibility)!
o Landauer’s definition of “logical reversibility” tragically obscured this
critically important fact!
e Landauer also got a few other important things wrong at first, like not realizing that
computed information that is no longer needed can later be reversibly decomputed instead
of erasing it (as Bennett later showed), but that’s already widely known.

15



Logically reversible computations using

(D=
“logically irreversible” devices Rreversivie copy

Initial state Final state
= The operation shown is “logically el o Fie
irreversible” under Landauer’s probs. A ﬁ
original, literal definition 0.6 0.6
* Maps the 2V=4 initial states to
only 2 final states!
= . Merges some states! -
0.4
» But in this specific operating context,
some initial probabilities are zero. 0.4

» Under this distribution, the input is
uniquely determined by the output!
= <2V possible (nonzero-probability!) initial states of the device
= This subset is mapped to a (different) set of states with the same size
= This operation, done in this context, is reversible, because its AS = 0!
= Does not eject any logical entropy into the environment!

e This diagram illustrates a state mapping or “device operation” that is normally
assumed to be “logically irreversible” under Landauer’s original, literal definition
= Maps the 2V=4 initial states to only 2 final states!
.. Merges some states!
e However! Note that, crucially, in the specific operation context shown here, some
of the initial state probabilities are zero.
» Under this distribution, the identity of the input, out of the actually-
possible (that is, nonzero-probability!) inputs, is uniquely determined by the
output!
> Note there are less than 2" possible (nonzero-probability) initial
states of the device, given this distribution, and this subset of states is
mapped onto a (different) set of states with the same size (i.e., smaller
than the full set of 2" states).
* We ought to say that this operation, done in this context, is logically

reversible, because its AS = 0! It does not eject any logical entropy into the
environment!




What’s the implication? o,

Laboratories

= The traditional concept of “logically reversible
computation” we’ve used ever since Landauer is the
wrong one!

= Significantly more restrictive than necessary.

= Need to reconstruct reversible computing theory

= Conceptual elements:
= Distinguish devices, operations, and computations.
= Conditionally-reversible operations.
= Devices supporting conditioned reversible operations.

= Devices and circuits using the new model.

e The concept of “logically reversible computation” that has been used throughout
the bulk of the reversible computing literature, from Landauer on, is simply the
wrong one)!
* In the sense that, it is significantly more restrictive than necessary.
e We need to reconstruct reversible computing theory from scratch, on top of a
new, less restrictive foundation.
* Many applications of the theory will end up changing as a result!
e Some elements of the necessary conceptual progression:
* Distinctions between devices, operations, and computations.
» Concept of devices supporting conditionally-reversible operations.
o Crucially, the correct general concept of reversible computing
includes computing with conditionally-reversible operations, when
operated in design contexts in which their assumed preconditions are
met.
* Thence, we can develop devices and circuits using the new model.
o We'll see that it makes designs much simpler, and enables
completely new styles of reversible circuits, such as asynchronous
styles...

17



Devices, Operations, Computations (@&,

= Let’s distinguish these concepts:

= Device — Can perform one or more operations.

= Associated with local state info. (/O terminal states, internal
states)

= Operation —map O from initial states to final states
" “Input” and “output” are too vague
* Can consider partial maps (undefined=don’t-care)
= Map O could be stochastic € Not our focus

= Computation — an operation performed within an
operating context
= Specifies initial state probabilities, as well as operation
» Essential for a meaningful thermodynamic analysis!

e One thing that is very helpful in understanding this issue, is distinguishing several
fundamentally distinct concepts:
» A device — physical artifact that can perform one or more operations.
o Associated with some local state info. (I/O terminal states, internal states)
= An operation —a mapping O transforming initial states to final states
o The terms “input” and “output” are really too vague for many purposes
Since real hardware devices may use some of their I/O terminals for
both input and output functions (bidirectional), and some for neither,
at times
o We'll also consider partial maps (don’t-care behavior in undefined cases)
In general, the map O may be stochastic, but we’ll not focus on that case
» A computation — an operation performed within an operating context
o Specifies the initial state probabilities, as well as the operation performed
o The probabilities are essential for a meaningful thermodynamic analysis!
- Note that “entropy” always implicitly means “weighted-average
entropy!” It’s the expectation value of the log-improbability of the
state:

S(p) = Ex, [log%] = YiDi logpii

18



Conditionally Reversible Operations @iz,

Nondeterministic

= Focus here on deterministic operations
* Can extend to nondeterministic (randomizing) ops
= Definition: A (deterministic) operation O is _
conditionally reversible if and only if there is any Final sae
non-empty subset A of initial states that it maps
onto an equal-size set of final states. We can
say, of any such 4, that it is a sufficient
precondition for the reversibility of O.

L= WL L e . g

* Theorem: All deterministic operations are
conditionally reversible. Its

conditionally
reversible,

= Proof: Consider any singleton A. [J svdder thé
condition that

* |f n reachable final states, we can have |A| = n. ondition that
is (say) A

e We restrict attention, in this talk, to deterministic operations.
* Nondeterministic (randomizing) operations raise other issues:
o Carrying them out can actually absorb entropy from the environment
Physical example: Paramagnetic cooling
o Computations using operations that are both nondeterministic and
logically irreversible can thus be thermodynamically reversible overall
In the case where the initial state information was already truly
random
o Those points are all very interesting, but are not our present focus...
e Definition: A (deterministic) operation is conditionally reversible if and only if there is any
non-empty subset S of initial states that it maps onto an equal-size set of final states. We
say that such an operation is conditionally reversible under the precondition that the initial
Stateisin S.
* Theorem: All deterministic operations (that are defined over any non-empty set of
initial states) are conditionally reversible.
o Proof: Consider the singleton set consisting of any one initial state, out of
those that the operation is defined over. Since the operation is
deterministic, this set necessarily maps onto a singleton final state.
e This definition may therefore seem a bit vacuous at first,
» but we’ll see that in fact, it has enormous utility...

19



Operation Contexts, Computations, -
and Logical Reversibility (done right!)

= QOperation context - a prob. Dist. p over initial comp. states.
= A statistical situation in which op may be performed.
= Has an associated entropy S(p).

* A (deterministic) computation C is defined by a pair (O,p) of a
deterministic operation O, and an operation context p.

e F o o Amaras #imm ) sasibbim +ha - . ]
LT Ui aliull W WILTTIT LHC CUTTLCAL !J

P T

* (O must be defined over at least all the nonzero-probability initial states
= Definition: A deterministic computation C = (0, p) is logically
reversible if and only if the set of all initial states that are assigned
nonzero probability within the operating context p is a sufficient
precondition for the reversibility of 0.

= Theorem: C = (0, p) is logically reversible if and only if the entropy S(p)
is not changed under the state transformation 0.

® An operation context, for our purposes, simply means a probability distribution p over
initial computational states.
= [t’s just a statistical situation in which a given operation may be performed.
It has an associated entropy S(p).
e A (deterministic) computation C is defined by a pair (O, p) of a deterministic operation O,
and an associated operation context p.
= This represents, performing the operation O within the context p.
O must be defined over at least all the nonzero-probability initial states
e Definition: A deterministic computation C = (O, p) is logically reversible (new
definition!) if and only if the operation O is conditionally reversible under the precondition
that the initial state is contained in the set of all states that are assigned nonzero
probability within the operating context p.
* Theorem: C = (0O, p) is logically reversible (according to this definition) if and
only if the entropy S(p) is not changed under the state transformation O.
o As mentioned previously, the “if” part of this theorem wouldn’t always
hold in the nondeterministic case — since there are nondeterministic,
irreversible operations that also don’t change entropy in some operation
contexts
o The “if” part also wouldn’t hold under the conventional definition of
“logically reversible,” which fails to recognize that unconditional reversibility
isn’t required.

20



Now, we can say this: R

* Theorem: A deterministic computation C = (0, p)
can be carried out in a thermodynamically reversible
way (by some appropriately-designed mechanism) if
and only if C is logically reversible (according to our
new, corrected definition).

» Proof by construction using known physical procedures

* The classic definition of logical reversibility is the
wrong one, because it does not actually satisfy the
above theorem!!

e Theorem: A deterministic computation C = (0, p) can be carried out in a
thermodynamically reversible way (by some appropriately-designed mechanism) if
and only if C is logically reversible (according to our new, corrected definition).
* Proof is by construction using known abstract physical procedures
o Still need to design specific concrete mechanisms with highest
efficiency
e Note that the classic definition of logical reversibility that has been used
throughout most of the reversible computing theory literature, starting with
Landauer, is the wrong one, because it does not actually satisfy the above
theorem!!
* The “only if” part of the theorem would not hold, because the traditional
definition of logical reversibility fails to recognize that even operations that
are only conditionally reversible can also be carried out in a
thermodynamically reversible way, in operation contexts in which their
precondition has probability 1 of being met.
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Almost-Logically-Reversible Computations B

* You might object, “But real probabilities are almost never exactly 0.”
= But, if they're just close to 0, that's good enough to be almost fully reversible.

= Theorem: For any operation that is conditionally reversible under a
given precondition P, if we consider any progression of operation
contexts in which the probability that P is not satisfied approaches
0, the entropy ejected by the computation due to Landauer’s
principle also falls to 0 accordingly.

= Lemma: For a state with any probability g not satisfying P that merges
with some state satisfying P that has a larger probability p = nq (where
n > 1), the contribution As; of this state merger to the total entropy AS
ejected from the computation approaches
the following expression as the probability
ratio n increases (i.e., as the probability g
falls, relative to p), to first order in n:

As; — %(1 + Inn)kg

(And this value itself approaches 0,
almost in proportionto q = p/n as it
falls.)

® You might object, “But real probabilities are almost never exactly 0.”
» But, that’s OK... If they are close to 0, that’s good enough to be almost
fully reversible.
e Theorem: For any operation that is conditionally reversible under a given
precondition P, if we consider any progression of operation contexts in which
the probability that P is not satisfied approaches 0, the entropy ejected by the
computation due to Landauer’s principle also falls to 0 accordingly.
* Lemma: For a state with any probability g not satisfying P that merges
with some state satisfying P that has a larger probability p = ng
(where n > 1), the contribution As; of this state merger to the total
entropy AS ejected from the computation approaches the following
expression as the probability ratio n increases (i.e., as the probability g
falls, relative to p), to first order in n:
As; — %(1 + Inn)kg
° (And this value itself approaches 0, almost in proportion to g =
p/n as it falls.)
= Similarly, states with probability g not satisfying P that merge with
each other (but not with any state satisfying P) each contribute As; <
glogq~! to AS, and this also goes to 0 as ¢ — 0.
* Thus, as >.q — 0, sodoes AS. O
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Conditionally-Reversible Operations are Useful! ) e
Universality does not require unconditional reversibility

Conditionally-Reversible Boolean AND Operation Conditionally-Reversible Boolean OR Operation

Statebefore AN DU State after State before rORﬂ State after
Example operation operation Example operation operation Resulting
initial state input  Outpus Input  Outpat gy crate Initial state Input  Output Input  OMtEE final state

g e ks state tate s
probabties (g a)Eas) (BeQ) (eud)(gas) (20) probabiities | probabiiies (irare (e (gaaiees) (1) probabilies

loloflo] o1

0.1 0.1

0.3

0.3 0.3

0.2 0.2

[
|
|
|
|
|
[.

0.4

0.4

Conditionally-reversible versions of Boolean AND and OR operations. In both of
these examples, the assumed precondition for reversibility is that the output bit is
initially O.



Conditionally-reversible operations can o

. i " Laboratories
have very simple implementations! Reversible COPY

. . . rCOPY(A,B | B
= Variant of rCOPY (reversible copy) w. a single MOSFET! | . ciate ( |=Iina|)state

= Oratransmission gate (2 T’s) if we want a full-swing output In- Out- n- Out-
i —— put  put put put
= Assumed precondition for reversibility: A B A B

= [B=0] - Meaning: Assume B is initially 0 (with prob. 1)
= Semantics (when precondition holds; else, don’t care): [@@I )llEl@

= B:=A - Meaning: Change B to a logical copy of A [@m IEI"‘
= logically reversible under our new definition ) | )
= Here is a procedure by which this simpie device can rll| m‘ l"m@
perform (this particular variant of) an rCOPY operation: [ J
1. Driving node D is initially statically held at 0 ﬂ—"—] I—"—‘“
2. Input A is externally supplied (D&B connected iff A is high) \i ,1 A LL i
3. Externally transition driver D from 0 to (weak) logic high A
4. Voltage level on node B follows D iff A is logic high |
= Bis then afterwards logically equal to A (with a weak swing)
= Asymptotically thermodynamically reversible when B=0 D_’_‘_B
031 034

* Note: Step 2 would have a nonzero average dissipation if the

precondition on B was not satisfied, if A might also be 1 (Here, D and B have a
reduced swing, but a T-gate

can easily fix this)

e A variant of the rCOPY (reversible copy) operation from earlier can be performed by a
single MIOSFET!

* Or a transmission gate (2 T’s) if we want a full-swing output
e Assumed precondition for reversibility:

* [B=0] - Meaning: Assume B is initially 0 (with probability 1)
e Operation semantics (when precondition holds; else, don’t care):

*B:=A - Meaning: Change B to a logical copy of A
e A computation “[B=0] B:=A" (designating, doing this operation in any context satisfying
the precondition in brackets) is logically reversible under our new definition
e Here is a procedure by which this simple device can perform (this particular variant of) an
rCOPY operation:

1. Driving node D is initially statically held at 0

2. Input A is externally supplied (D&B are connected if and only if A is high)

3. Externally transition driving node D from 0 to (weak) logic high

4. Voltage level on node B follows D iff A is logic high

B is then afterwards logically equal to A (with a weak swing)

e Note this process is asymptotically thermodynamically reversible in all operating contexts
that satisfy the precondition [B=0], in the limit of relatively large devices (low leakage) and
slow transitions

» The traditional definition of logical reversibility fails to account for the fact that

this process is, in fact, physically reversible in this context!
e Note: Step 2 would have a nonzero average dissipation if the precondition on B was not
satisfied, if A might also be 1
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* In this design, we use CMOS transmission gates
(parallel complementary MOSFETS) to ensure
the output levels are full-swing

= All signals are dual-rail (complementary wires)
= Use circuit twice to produce dual-rail output

= Computation sequence:
1. Precondition: Output signal Q initially at logic 0
2. Driving signal D is also initially logic 0
3. Attime 1(@1), inputs A, B transition to new levels
= Connecting O to Q if and oniy if A or B is logic 1
4. Attime 2 (@2), driver D transitions from 0 to 1
= Qfollows itto 1 if and only if A or B is logic 1
* Now Q is the logical OR of inputs A,B
= Reversible things that we can do afterwards:
= Restore A, B to 0 (latching Q), or, undo above steps

Another example: Reversible OR

(This is also AND
if we flip polarities)

g

@1
ANP

@1
BNP

® In this design, we use CMOS transmission gates (parallel complementary

MOSFETs) to ensure the output levels are full-swing
= All signals are dual-rail (complementary wires)
Use circuit twice to produce dual-rail output

e Computation sequence:

1. Precondition: Output signal Q initially at logic 0

2. Driving signal D is also initially logic 0

3. At time 1 (@1), inputs A, B transition to new levels
Connecting D to Q if and only if A or B is logic 1

4. At time 2 (@2), driver D transitions from 0 to 1
Q follows it to 1 if and only if A or Bis logic 1

Now Q is the logical OR of inputs A,B
® Reversible things that we can do afterwards:

* Restore A, B to 0 (latching Q), or, undo above steps

@E
National
Laboratories
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More critiques of Landauer ‘61...

= Landauer introduced what’s now
called a Toffoli gate operation, or
controlled-controlled-NOT, an
unconditionally logically reversible
operation:

r =r@pq.

= Landauer describes (correctly) that
AND can be embedded into this
operation. (Given initial r = 0)

* However, his statement here that

tha AND aneration “ic not in itcalf
the AND operation "is not, in iisel,

reversible” is somewhat misleading!
= That would only be true if:

* The input bits were consumed...
— But, CMOS gates never consume
inputs!
= Or, if the output bit was destructively
overwritten with the result

More critiques of Landauer ‘61...

Unconditionally-Reversible Operations e
are only a special case! e

Consider, for example, a particular three.
input, three-output device, i.e., a small special purpose
computer with three bit positions. Let p, g, and r be the
variables before the machine cycle. The particular truth
function under consideration is the one which replaces
rby p - qif r=0, and replaces r by - g if r=1. The vari-
ables p and g are left unchanged during the machine
cycle. We can consider r as giving us a choice of pro-
gram, and p, g as the variables on which the selected
program operates. This is a logically reversible device,
its output always defines its input uniquely. Nevertheless
it ie capable of performing an operation such as anp
which is not, in itself, reversible.

The approach Landauer takes here, of
XOR’ing the result into the output bit, is
indeed one that is logically reversible in all
operation contexts.

= But, it is rather complex to implement...

* The simpler, conditionally-reversible setting
of the output also works fine, in suitably
restricted contexts!

e Here, Landauer introduced what we now refer to as the Toffoli gate operation, or
controlled-controlled-NOT, an unconditionally logically reversible operation:

r=r®pgq.

e Landauer describes (correctly) that AND can be embedded into this operation. (Given

initial v = 0)

e However, his statement here that the AND operation “is not, in itself, reversible” is

somewhat misleading!
» That would only be true if:

o The input bits were consumed...
- But, CMOS gates never consume inputs!

o Or, if the output bit was destructively overwritten with the result
- Merging nonzero-probability states
- As opposed to, being transformed, in a logically reversible way, to
the result
- When the output bit is destructively overwritten, even NOT is
irreversible!

e The approach Landauer takes here, of XOR’ing the result into the output bit, is indeed
one that is logically reversible in all operation contexts.
But, it is rather complex to implement...
The simpler, conditionally-reversible setting of the output also works fine, in
suitably restricted contexts!

Landauer did not consider this.
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All truly, fully adiabatic circuits =
are (at least) conditionally reversible!

Laboratories

= “Dry switching” rules for designing truly adiabatic circuits:
= Never close a switch when there’s a voltage #0 between its terminals
* E.g., don’tturn on a transistor when V. # 0.
= Never open a switch when there’s a current passing through it.
* E.g., don't turn off a transistor when I, # 0.
* Only exception to this rule: If there’s an alternate path for the current.
= Never pass current through diodes (which have a voltage drop)

= Violating any of these rules leads to significant dissipation!

el Rl o~ ol
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cuICInl.
(conditionally) logically reversible computation, in any
operation context where the above rules are always satisfied.

= |t's impossible to erase information in any truly, fully adiabatic logic
operation. = Logically-reversible computing is key to adiabatic design

= But the right definition of “logically reversible” is our generalized one!

® “Dry switching” rules for designing truly adiabatic circuits:
* Never close a switch when there’s a voltage #0 between its terminals
o E.g., don’t turn on a transistor when Vs # 0.
* Never open a switch when there’s a current passing through it.
o E.g., don’t turn off a transistor when [, # 0.
o Only exception to this rule: If there’s an alternate path for the
current.
* Never pass current through diodes (which have a voltage drop)
e Violating any of these rules leads to significant dissipation!
e Theorem: The operation of a switching circuit carries out a (conditionally)
logically reversible computation, in any operation context where the above rules are
always satisfied.
* |t’s impossible to erase information in any truly, fully adiabatic logic
operation. = Logically-reversible computing is key to adiabatic design
o But the right definition of “logically reversible” is our generalized
one!




The “synchrony curse” in e
traditional reversible design

= All traditional, unconditionally-reversible operations (e.g.,
Toffoli gates) are implicitly synchronous in their design...
= Assume that all gate inputs are available at the same time

= Requires extensive clock distribution (in adiabatic implementations),
or unrealistically-precise timing (in ballistic implementations)
* Failure to meet timing assumptions generally leads to irreversibility

= . .. Even our supposedly “unconditionally reversible” gate designs
are actually only conditionally reversible, because we always implicitly
assume the precondition that their timing assumptions are in fact met.
= Since our real-world reversible gate implementations are
really only conditionally-reversible anyway,

= can we come up with timing-related preconditions that are easier to
meet than the usual full-synchrony assumption?

e All of the traditional, unconditionally-reversible operations (e.g., Fredkin & Toffoli
gates) are implicitly synchronous in their design...
» Assume that all gate inputs are available at the same time
* Requires extensive clock distribution (in adiabatic implementations), or
unrealistically-precise timing (in ballistic implementations)

o Failure to meet timing assumptions generally leads to irreversibility
= .. ... Even our supposedly “unconditionally reversible” gate designs are
actually only conditionally reversible, because we always implicitly assume
the precondition that their timing assumptions are in fact met.

® Since our real-world reversible gate implementations are really only conditionally-
reversible anyway,
* can we come up with timing-related preconditions that are easier to meet
than the usual full-synchrony assumption?
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Laboratories

A much looser timing constraint! =

®= Imagine computational information conveyed by time-
limited, near-ballistically-propagating
pulses/particles/wave packets

= To require all incoming pulses to arrive at precisely-aligned + A
times would be an extremely stringent constraint! a
* Any timing uncertainty is exponentially amplified over ‘ B
successive interactions (chaotic instability) G
= Consider the following constraint, instead:
» Suppose all incoming pulses are required to arrive at different, ={A

non-overlapping times! = Much looser constraint
— Only order of pulse arrival may be important ||
= Devices quiescently stable between subsequent pulses =2 o0
— Dynamical response independent of exact arrival time
— Linear growth of timing uncertainty with # devices
= What does all this mean for logic?

l,

® Imagine a scenario in which computational information is conveyed by time-limited,
near-ballistically-propagating pulses/particles/wave packets
* To require all incoming pulses to arrive at precisely-aligned times would be an
extremely stringent constraint!
o Any uncertainty in the relative arrival times of pulses would generally lead
to exponential amplification of uncertainties over successive interactions
(chaotic instability)
- Thus, entropy would increase during the interaction (historically,
this observation goes all the way back to Boltzmann’s H-theorem)
» Consider the following constraint, instead:
o Suppose all incoming pulses are required to arrive at different, non-
overlapping times!
- Much looser constraint
- Instead, we might only require a specific relative order of arrival of
pulses (e.g., first a pulse on terminal A, then one on terminal B)
o If devices are just quiescently stable in between subsequent pulses, then
the dynamical response of a device to a pulse’s arrival is independent of the
exact arrival time of the pulse
- We may plausibly expect that any increases in the timing
uncertainty can be more easily constrained to be limited (growing
linearly rather than geometrically, say) due to this time-
independence
» What are the logical implications of this new, looser constraint?
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Asynchronous Ballistic Logic i

= Given that inputs must arrive at different times,

= this implies that devices must, in general, have internal state
= or else no inter-signal interaction, and thus no logic, would be possible

= Given that the devices must be reversible,

= then each pulse that comes in must (after some delay),
= yield a pulse out that carries away the timing information that was

contained in the input pulse E A
= Given that pulses arrive one at a time, and that the order n g
matters, but the exact arrival time does not matter, L= -
= input stream characterized by sequence of compound [C5, Ci] = [(i) , (p)]

signal characters
= Qutput streams are described in the same way, w.r.t outgoing pulses

= Given the above constraints, these devices’ computational function can
be completely characterized by:

= A (conditionally) logically reversible map of pairs (Ci,,, Sini) = (Stin. Cout)

= These devices are thus conditionally-reversible versions of finite-state Mealy
machines

e Given that inputs must arrive at different times,
» this implies that devices must, in general, have internal state
o or else no inter-signal interaction, and thus no logic, would be possible
e Given that the devices must be reversible,
* then each pulse that comes in must (after some delay),
o yield a pulse out that carries away the timing information that was contained in
the input pulse
e Given that pulses arrive one at a time, and that the order matters, but the exact arrival time does
not matter,
* an input stream can be characterized by a sequence of compound signal
characters (read here from right to left, imagining the data is flowing

towards the right)
_ (T ... (T2} (T2
[Ck, ..., €y, Cq] = [(Vk>' ’(Vz)’<V1)]

where each C; designates which terminal T; the next incoming pulse arrives on,
and (if there is more than one variety of pulse), which variety V; of pulse is arriving.
Output streams are described in the same way, w.r.t outgoing pulses
® Given the above constraints, these devices’ computational function can be completely
characterized by:
* A (conditionally) logically reversible map of pairs (Ciy, Sini) = (Stin, Cout)
o Where the S’s are device states (initial vs. final), and the C’s are signal characters
(incoming vs. outgoing). (Note that we're allowing here that terminals may, in
general, be bidirectional)
» These devices are thus conditionally-reversible versions of finite-state Mealy machines
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What’s the advantage?

= Some amount of timing —47-
uncertainty is still going to
accumulate in each device...

= Eventually, this dispersion can
cause pulses to arrive out-of-order,
and prevent correct operation

= Therefore, it is still necessary to
re-synchronize signals periodically, L H H

= and doing this is irreversible, because ——
exact timing information is discarded N asynchronous

= However! reversibie stages

= [f the rate of pulse dispersion is low enough that we can do
N (>> 1) stages of logic reliably in between synchronization steps,
* Reduce clocking overhead by N X vs. fully-synchronous reversible logic,
* Reduce energy dissipation by N X vs. irreversible logic!

® Some amount of timing uncertainty is still going to accumulate in each device...
» Eventually, this dispersion can cause pulses to arrive out-of-order, and
prevent correct operation
e Therefore, it is still necessary to re-synchronize signals periodically,
* and doing this is irreversible, because exact timing information is discarded
e However!
= |f the rate of pulse dispersion is low enough that we can do
N (>> 1) stages of logic reliably in between synchronization steps,
> then we can reduce clocking overhead by a factor of N X compared
to fully-synchronous reversible logic,
o while reducing energy dissipation by N X compared to irreversible
logic!
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A simple universal set of Q=N
asynchronous reversible (AR) devices

= |t’s easy to catalogue all possible AR

devices for small numbers of terminals, Rotary (Circulator

pulse varieties, and internal states. A
= Among AR devices with no more than 3
terminals, 2 states, and 1 pulse variety, B
the following is the simpiest universai
set of devices that | have found so far: Toggled Barrier
= Arotary or circulator simply routes incoming |
pulses to the next output terminal in a clockwise L

(or counterclockwise) direction. State is fixed.
= The toggled barrier has 2 states, “pass/block”
* When the device is in the “block” state, horizontal pulses reflect off of it
= When the device is in the “pass” state, they pass through
= Pulses to control terminal reflect off, and simultaneously toggle the state

e |t’s easy to catalogue all possible AR devices for small numbers of terminals, pulse
varieties, and internal states.
e Among AR devices with no more than 3 terminals, 2 states, and 1 pulse variety,
the following is the simplest universal set of devices that | have found so far:
* A rotary or circulator simply routes incoming pulses to the next output
terminal in a clockwise (or counterclockwise) direction. State is fixed.
= The toggled barrier has 2 states, “pass/block”
o> When the device is in the “block” state, horizontal pulses reflect off
of it
o> When the device is in the “pass” state, they pass through
o Pulses to control terminal reflect off, and simultaneously toggle the

state
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Example AR circuit construction

= Building a toggling switch gate out of

rotaries and toggled barriers c c
in e out
= Starting from this, we can build more I
complex constructions including normal U
(non-toggling) switch gates L L
= Switch gates were previously shown to be ] & D
universal gates for reversible logic by

Feynman (1986) and others

= Another implementation using a
toggled barrier with a pass-thru Cn Cas
control:

Cin Cout .'/U__
e
N U =
o L Ny
D
(2 primitives)

e Building a toggling switch gate out of rotaries and toggled barriers
= Starting from this, we can build more complex constructions including

normal (non-toggling) switch gates
o Switch gates were previously shown to be universal gates for
reversible logic by Feynman (1986) and others

® Another implementation using a toggled barrier with a pass-thru control:
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Possible implementation technologies @&,

* The pulses in ARC might be implemented by things like:
= SFQ pulses in passive long Josephson junction (LJJ) transmission lines
= More generally, soliton-like excitations of any nonlinear medium

= Single particles or quasiparticles (e.g. excess electrons or excitons)
propagating ballistically in suitable media (vacuum or crystal)

= QOptical pulses in some suitable medium

= Electrical pulses in coaxial transmission lines
= Circulators already exist for microwave circuits and SFQ
= Still-open problem:

s Haw avarthy ta huild a2 taoe
S OW 2Xaclly 1o Sulc a 1088
Vi

device(s) sufficient for universal reversible logic?

= For any AR devices, an engineering challenge will be to get
the pulse dispersion as low as possible in devices and wires

= Reliability of the logical operation is also important to maximize
= Error correction can be done, but is inherently irreversible

® The pulses in ARC might be implemented by things like:
* SFQ pulses in passive long Josephson junction (LJJ) transmission lines
* More generally, soliton-like excitations of any nonlinear medium
= Single particles or quasiparticles (e.g. excess electrons or excitons)
propagating ballistically in suitable media (vacuum or crystal)
» Optical pulses in some suitable mediuma
» Electrical pulses in coaxial transmission lines
e Circulators already exist for microwave circuits and SFQ
e Still-open problem:
* How exactly to build a toggled barrier, or any other simple AR device(s)
sufficient for universal reversible logic?
® For any AR devices, an engineering challenge will be to get the pulse dispersion as
low as possible in devices and wires
» Reliability of the logical operation is also important to maximize
o Error correction can be done, but is inherently irreversible
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Conclusions e,

|ahoratories
= Traditional formalizations of reversible logic are an inadequate
theoretical foundation for engineering real reversible hardware
= The classic definition of logical reversibility is unnecessarily restrictive
= Must be extended to more general notion of conditionally logically reversible
operations, and logically reversible computations meeting the conditions
* The resulting new theoretical model of Generalized Reversible
Computing (GRC) offers many advantages over the old model:
= Rigorous correspondence to asymptotically thermodynamically reversible
physical computing mechanisms
= Foundation for designing much simpler primitive operations out of which
more efficient reversible logic architectures may be constructed

= GRC also is general enough to allow us to build on top of it a new
framework for Asynchronous Reversible Computing (ARC),

= Avoids many of the overheads incurred in clocking synchronous designs

= GRCis an important step towards making reversible computing
practical, which is essential for the future of computing

e The traditional formalizations of reversible logic going all the way back to Landauer, and
further developed by Fredkin and Toffoli, do not, in their existing form, comprise an
adequate theoretical foundation for the engineering of real reversible hardware
* The classic definition of logical reversibility is unnecessarily restrictive
o The classic concept of “logically reversible device operations” must be
extended to encompass the more general notion of conditionally logically
reversible operations, and logically reversible computations that meet the
conditions
- These offer more flexibility for hardware implementations, while
still avoiding incurring any minimum dissipation from Landauer’s
principle
® The resulting new theoretical model of Generalized Reversible Computing (GRC) offers
many advantages over the old model:
» |t offers a precise, rigorous correspondence to the set of asymptotically adiabatic
(thermodynamically reversible) physical computing mechanisms
* [t provides a foundation for designing much simpler primitive operations out of
which more efficient reversible logic architectures may be constructed
» GRC also is general enough to allow us to build on top of it a new framework for
Asynchronous Reversible Computing (ARC),
o which avoids many of the overheads incurred in clocking synchronous
designs
® The reversible computing community really needs to embrace GRC (and models based on
it) as the right foundation for further progress!
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