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Latin Hypercube Sampling (LHS) and Jittered Sampling (JS) both achieve better convergence than stan-
dard Monte Carlo Sampling (MCS) by using stratification to obtain a more uniform selection of samples,
although LHS and JS use different stratification strategies. The “Koksma-Hlawka-like inequality” bounds the
error in a computed mean in terms of the sample design’s discrepancy, which is a common metric of unifor-
mity. However, even the “fast” formulas available for certain useful L2 norm discrepancies requireO

(
N2M

)
operations, where M is the number of dimensions and N is the number of points in the design. It is intuitive
that “space-filling” designs will have a high degree of uniformity. In this paper we propose a new metric of
the space-filling property, called “Binning Optimality,” which can be evaluated inO (N log(N)) operations. A
design is “Binning Optimal” in base b, if when you recursively divide the hypercube into bM congruent disjoint
sub-cubes, each sub-cube of a particular generation has the same number of points until the sub-cubes are
small enough that they all contain either 0 or 1 points. The O (N log(N)) cost of determining if a design is
binning optimal comes from quick-sorting the points into Morton order, i.e. sorting the points according to
their position on a space-filling Z-curve. We also present a O (N log(N)) fast algorithm to generate Binning
Optimal Symmetric Latin Hypercube Sample (BOSLHS) designs. These BOSLHS designs combine the best
features of, and are superior in several metrics to, standard LHS and JS designs. Our algorithm takes signif-
icantly less than 1 second to generate M = 8 dimensional space-filling LHS designs with N = 216 = 65536
points compared to previous work which requires “minutes” to generate designs with N = 100 points.

Nomenclature

M the number of input dimensions
N the number of sample points
x a M by 1 input vector
X the set of N points, x, in a sample design
X a N by M sample design matrix, each row represents a point, xT

f(x) a black box function (simulator) or one of its output variables
CM the unit hypercube [0, 1]M

cM a M dimensional rectangular subset of CM

Vol
(
cM
)

the hypervolume or “content” of cM

E(f) the true mean of function f(x) over CM

EX (f) the sample mean of f evaluated at all x ∈ X
Dp (X ) a Lp discrepancy of the sample design X
Vq(f) a Lq variance of the function f(x) over CM

WD2 (X ) the wrap around L2 discrepancy of the sample design X
CD2 (X ) the centered L2 discrepancy of the sample design X
b a prime number base, b = 2 is used
(t, m, s) the (t, m, s)-net rating of a design, t =quality rating, N = bm, s = M
P the smallest integer such that bMP ≥ N
(g, s) the quality metrics for the degree of binning non-optimality (a different s than in the (t, m, s)-net rating)
g the generation of the smallest bin size that all contain the same number of points
s the maximum number of points contained by a bin with edge length b−P

Subscript
iX , jX indices for the row in matrix X , i.e. the point in X
k the index for the column of X , i.e. the factor or input dimension
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Figure 1. Examples of N = 16 points M = 2 dimensional designs. From left to right these are: Jittered Sampling (JS), Latin Hypercube
Sampling (LHS) with randomly paired dimensions, and Binning Optimal Symmetric Latin Hypercube Sampling (BOSLHS). Jittered
Sampling is space-filling in the full M dimensional space but not in its 1 dimensional projections. Latin Hypercube Sampling is space-
filling in the 1 dimensional projections but not in the full M dimensional space. BOSLHS is space-filling in the full M dimensional space
and the 1 dimensional projections; BOSLHS is also symmetric with respect to reflection through the center of the design which reduces
correlations between dimensions. Unlike Jittered Sampling, BOSLHS is not restricted to a number of samples, N , that is exponential in
the number of dimensions, M .

I. Introduction

Pure random sampling, also referred to as Monte Carlo Sampling (MCS), is the most robust and universally ap-
plicable method of uncertainty quantification. Unfortunately, the error in a mean computed by MCS decreases very
slowly as the number of samples, N , increases. The “Koksma-Hlawka-like inequality” bounds the error in a computed
mean in terms of the sample design’s discrepancy, which is a common metric of uniformity. However, even the “fast”
formulas available for certain useful L2 norm discrepancies require O

(
N2M

)
operations, where M is the number of

dimensions. Latin Hypercube Sampling (LHS) and Jittered Sampling (JS) both achieve better convergence than stan-
dard MCS by using stratification to obtain a more uniform selection of samples, although LHS and JS use different
stratification strategies. As illustrated in Figure 1, JS is space-filling in the full M dimensional space but not in the 1
dimensional projections, while LHS is space-filling in the 1 dimensional projections but not in the full M dimensional
space.

In this paper, we define “binning optimality,” a new metric of the space-filling property which can be evaluated in
O (N log (N)) operations, and present anO (N log (N)) fast Binning Optimal Symmetric Latin Hypercube Sampling
(BOSLHS) algorithm. BOSLHS combines the best features of JS and LHS to produce designs that are space-filling
in the full M dimensional space and the 1 dimensional projections (see Figure 1). In addition, BOSLHS designs are
symmetric with respect to reflection through their center, which reduces correlation between dimensions. Experimental
results show that BOSLHS designs are superior to conventional JS and LHS in several quality metrics. Compared to
other algorithms which are reported in the literature to require “minutes” to generate a M = 10 dimensional space-
filling LHS designs with N = 100 points, our BOSLHS algorithm can generate N = 216 = 65536 point M = 8
dimensional designs in significantly under a second. Our algorithm is currently limited to a power of 2 dimensions,
however high quality LHS designs with non-power of 2 dimensions can be obtained by discarding excess dimensions,
and the degree of binning non-optimality can be used to quickly screen candidate combinations of dimensions.

A. Background

A common standard case within the broad field of sample design is that of Uniform Design (UD). Let f(x) be a black
box function of M different inputs, x, with one or more outputs, whose domain is the unit hypercube CM = [0, 1]M ,
i.e., x ∈ CM . The objective of uniform design is to select a sample design, X , that is appropriate for the task of inte-
grating (with respect to uniformly weighted x) and/or constructing a response surface of one or more of the function’s
outputs over the unit hypercube. A priori, we do not know which regions in input space are most important, i.e. cause
the most significant variation in the output, nor do we know which of the M inputs are more important for which
outputs. The subset of important inputs could potentially vary among the different outputs. X should be selected in
such a way as to produce an accurate representation of the output of f(x) ∀ x ∈ CM . Each point in X is represented
by a row of the N by M design matrix X .

High quality uniform designs are important because
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• For many problems with non-uniform distributions of inputs, an appropriate sample design can be obtained
from a design for inputs uniformly distributed over the unit hypercube by a suitable combination of mappings
(frequently through a cumulative distribution function, CDF) and/or importance sampling.

• If access to a supercomputing cluster is available, it may take significantly less time to concurrently execute
simulations at a preselected set of sample inputs than to use a “sequential design,” i.e. a set of input points
chosen sequentially between runs based on the knowledge obtained from simulations at earlier points in the
sequence.

• It may also be desired to use a cluster to concurrently evaluate f(·) at sequential batches of inputs, and check
the output between batches to determine if “enough” data has been obtained to satisfy some stopping criteria.
It is reasonable to use Uniform Design to generate the final design, Xfin, in such a sequence. Here “final”
means having the maximum number of samples/runs that is feasible given the available computational resources.
Successively earlier members of the sequence could be obtained by a separate pruning process.

Since x is uniformly distributed over the unit hypercube, the samples in X should also be “uniformly distributed”
over the unit hypercube. A quantitative measure of uniformity is required, and discrepancy is one such popular metric.

B. Discrepancy

Conceptually, a sample design’s discrepancy is an appropriate norm of the difference between the number of points
per sub-volume and a uniform smearing of points. This norm is taken over all M -dimensional hyper-rectangular sub-
volumes within the unit hypercube. As such, discrepancy is a measure of the non-uniformity of a sample design. Let
|S| denote the number of points in a set, S, then discrepancy

D (X ) =

∣∣∣∣∣
∣∣∣∣∣
∣∣X ⋂ cM

∣∣
N

−Vol
(
cM
)∣∣∣∣∣
∣∣∣∣∣ (1)

where ||·|| represents an appropriate norm over all M dimensional rectangular subsets, cM , of CM . Notationally, this
compares a subset’s fraction of the total number of points to its fraction of the total volume. The more uniform a
sample design X is, the smaller its discrepancy will be.

Using a Lp-discrepancy as a measure of uniformity is popular is because it can be used to bound the error resulting
from the numerical integration of a function f (x). This is the “Koksma-Hlawka-like inequality” which Hickernell1

proved
|E(f)− EX (f)| ≤ Dp (X ) Vq(f)

(
p−1 + q−1 = 1

)
, (2)

here E(f) is the expectation of the function f(x)

E(f) =
∫

CM

f (x) dx,

EX (f) is the sample mean of f(x)

EX (f) =
1
N

N∑
iX=1

f
(
xiX

)
,

Dp (X ) is the Lp discrepancy of sample design X , and Vq(f) is the Lq variance of function f(x).

While this bound holds for all Lp-discrepancies, the choice of which discrepancy to use to measure uniformity
is an important one. Fang, Li, and Sudjianto note that both the star discrepancy and the star L2-discrepancy are
unsuitable for searching UDs2. The star discrepancy (for which all cM have the point 0 as one of their corners) is

insufficiently sensitive and the star Lp-discrepancy (p < ∞) ignores differences
∣∣∣∣∣∣∣∣ |X⋂[0,x)|

N −Vol ([0, x))
∣∣∣∣∣∣∣∣ on any

low-dimensional subspace. That the lower dimensional structure of a design is more important than the high dimen-
sional structure is known from the so-called hierarchical ordering principle of Wu and Hamada3: lower-order effects
are more likely to be important than higher-order effects; main effects are more likely to be important than interactions;
and effects of the same order are equally likely to be important.

Furthermore, because the origin plays a special role, the star Lp-discrepancy is not invariant under rotating coor-
dinates of points. This makes it necessary to place additional restrictions on acceptable measures of uniformity. The
following requirements are paraphrased from Fang, Li, and Sudjianto2:

1. invariance under permutation of factors and/or runs;
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2. invariance under coordinate rotation;

3. ability to measure not only uniformity of X over CM but also the projection uniformity of X over Cu, where u
is a non-empty subset of {1, ...,M} ;

4. some reasonable geometric meaning;

5. easy to compute;

6. applicability in the Koksma-Hlawka-like inequality, Eqn. (2) above;

7. consistency “with other criteria in experimental design.” This vague statement means that criteria 1-6 are nec-
essary but not sufficient to define an acceptable metric of uniformity.

Fang, Li, and Sudjianto2 further state that Hickernell1 proved that the centered L2-discrepancy and wrap-around
L2-discrepancy satisfy requirements 1 through 6.

The wrap around L2-discrepancy, WD2 (X ), proposed by Hickernell4 is a modified L2 discrepancy defined as in
Eqn. (1) where the L2 norm is used and the definition of the set of subsets cM of CM has been expanded to include
all hyper-rectangles which can be drawn on a periodic version of CM . In other words, it includes rectangles with an
edge that starts at coordinate x0 < 1 increases to 1, wraps around to 0 and the increases to x1 < x0.

The wrap-around L2-discrepancy satisfies the “easy to compute” requirement of Fang, Li, and Sudjianto2 because
its square can be computed via the following equivalent analytical form

(WD2 (X ))2 = −
(

4
3

)M

+ ...

1
N2

N∑
jX=1

N∑
iX=1

M∏
k=1

(
3
2
− |XjX ,k −XiX ,k| (1− |XjX ,k −XiX ,k|)

)
(3)

Note that Eqn. (3) requiresO
(
N2M

)
operations to evaluate. The centered L2 discrepancy also has an analytical form

similar to Eqn. (3)

(CD2 (X ))2 =
(

13
12

)M

− 2
N

N∑
iX=1

M∏
k=1

(
1 +

1
2

∣∣∣∣XiX ,k −
1
2

∣∣∣∣+ 1
2

∣∣∣∣XiX ,k −
1
2

∣∣∣∣2
)

...

+
1

N2

N∑
jX=1

N∑
iX=1

M∏
k=1

(
1 +

1
2

∣∣∣∣XjX ,k −
1
2

∣∣∣∣+ 1
2

∣∣∣∣XiX ,k −
1
2

∣∣∣∣− 1
2
|XjX ,k −XiX ,k|

)
(4)

Although Eqn. (4) is slightly more expensive to compute than Eqn. (3), the centered L2 discrepancy is generally the
more appropriate metric for sample designs unless the inputs are periodic variables, i.e., unless the variables wrap-
around.

Unfortunately, O
(
N2M

)
operations is still quite expensive when the number of sample points, N , is large. Since

this can prohibit the strategy of randomly generating a large number of sample designs and selecting the one with the
lowest discrepancy, it is desirable to find a faster way to generate uniform designs. Some other common design quality
metrics are:

• the t quality metric: (lower is better, worst possible is t = m) when a design is considered to be a (t, m, s)-net;
in our notation, M = s and N = bm for a base b, in what follows we use b = 2; the cost of computing t is
O (bms nchoosek(m− t + 1 + s, s)), where nchoosek(n, k) is the number of combinations of n items taken k
at a time. Niederreiter5 provides an excellent account of quasi-Monte Carlo methods, and pays special attention
to (t, m, s)-nets generated from t− s sequences;

• the “coverage”: (larger is better) of the design; Hemez, Atamturktur, and Unal6 define coverage as the ratio of
the content (hyper-volume) of the convex hull of X to the content of the domain of inputs; for small M this can
be quickly computed, even for large N , by using an algorithm such as qhull, however, the cost quickly grows
with dimension;
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• the condition number of the sample design’s correlation matrix: (smaller is better, a condition number of
1 means the input dimensions are uncorrelated/orthogonal with respect to each other) the covariance matrix is
defined as

(
X − 0.5

)T (
X − 0.5

)
; the correlation matrix can be obtained from it by normalizing with respect

to the diagonal entries; the cost of the required matrix multiplication is linear in N , specifically O
(
M2N

)
; the

cost of computing the condition number of an M by M matrix is generally negligible for typical values of M ;
Cioppa and Lucas7 used this as part of the criteria for their “computer-intensive algorithm to generate Latin
hypercubes (LHs) that have good space-filling properties and are nearly orthogonal;” however, orthogonality by
itself is not a sufficient metric of the “goodness” of a design,

Part of what made Cioppa and Lucas7 LHS designs (not the generation of them) “efficient” is their space-filling
property. Space-filling designs have a high degree of uniformity, so generating space-filling Latin Hypercubes has
long been an active area of research7–20.

II. A New Space-Filling Metric: Binning Optimality

The literature on the topic of space-filling designs is quite extensive. While maximin‡, minimax§, and some other
types of optimal designs¶ are unanimously agreed to be space-filling designs, notably absent from the literature is a
technical definition of the space-filling property. The most specific definition we could find was this quote from Lin et
al21:

Computer experiments commonly use space-filling designs. As the number of factors increases, the sparsity of the
design points increase. Space-filling designs place all the points about the same distance (quite far) apart.

Motivated by this lack of technical specification and a desire to quantify the space-filling property, we propose the
Boolean metric of binning optimality which can be computed efficiently even for large designs.

Let b be a prime number ≥ 2, and P be defined as

P = ceil
(

logb (N)
M

)
Then, a design is “binning optimal” with respect to base b if 2 conditions are met.

1. When CM is divided into an uniform grid of cube bins with volume vol = b−PM no bin contains more than 1
point.

2. When CM is divided into an uniform grid of cube bins with volume vol = b−(P−1)M (i.e. one generation
larger) every bin contains the same number of points.

Binning optimality can be computed efficiently in the following way

1. compute the bin identifiers (henceforth “ids”) of each point at depths d = P and d = P − 1

2. tally the number of occurrences of each bin id between 0 and bdM−1; quick-sorting (which costsO(N log(N))
operations) the bin ids facilitates this process

3. check if the tallied number of points per bin satisfy the two requirements for binning optimality

One way to assign ids to bin is
bin = floor

(
bdX

)
β (5)

where β =
[
b0, b1, b2, ..., bM−1

]T
. This method costs O (NM) operations and produces bin ids that are not locality

preserving. In rough terms, a bin numbering system is locality preserving if sorting by the identifiers induces se-
quences of bins that are close to each other in physical space.

A second and slightly more expensive option, which costsO (NMP ) operations, is to compute locality preserving
bin ids, for example the index of the point’s location on a space-filling curve (SFC). If b = 2, two possible candidates
for the SFC are the Hilbert curve and the Z-curve (also known as a Morton-order curve). The Hilbert curve is known
to possess better locality preserving properties than the Z-curve. However, Z-curve indices are significantly faster to
compute. For those wishing to use Hilbert curve indices, we recommend Moore’s “fast” C program22. For the purpose
of illustration, the following MATLAB code computes Z-curve ids

‡A maximin design maximizes the minimum distance between points
§A minimax design minimizes the maximum distance between points
¶An optimal design is a design found by optimizing for some criteria. Some examples of space-filling criteria are maximum entropy, minimum

Integrated Mean Square Error (IMSE), minimum Audze-Eglais potential energy, and minimum discrepancy 16.
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function z=ComputeZId(X,nBitsPerDim)
%0<x<1 is required for the matrix of N points "X" in
%all M dimensions

[N,M]=size(X);
if(nargin<2)

nBitsPerDim=max(ceil(log2(N)/M),1);
end
TwoToM=2ˆM;
X=floor(X*(2ˆnBitsPerDim));
xbittozbit=2.ˆ(0:M-1)’;
z=bitget(X,1)*xbittozbit;
for iBitPerDim=2:nBitsPerDim;

xbittozbit=xbittozbit*TwoToM;
z=z+bitget(X,iBitPerDim)*xbittozbit;

end
end

The Z-curve ids needed to check the first condition for binning optimality can be computed as z=ComputeZId(X,P);.
These are then sorted. The bin ids to check the second condition can then be computed by z=floor(z*(2ˆ-M));.
One advantage of using locality preserving bin ids is that you only need to sort the ids once, i.e for first condition.
This ordering can be reused when checking the second condition. Also, as will be seen in section IV. below, sorting
by locality preserving bin ids, particularly the Z-curve ids, is extremely useful in the fast generation of space-filling
Latin hypercube designs.

Four subtle issues qualify the applicability of binning optimality:

First, binning optimality is a rather weak sort of optimality. It verifies that there are the “right” number of points
in bins with an edge length of b−P or larger. It does not verify that the subgrid-scale location of each point is optimal
in any sense. Said another way, binning optimality does not imply the optimal spacing of bins that contain points for
bins of edge length b−P or smaller. Therefore there is no uniqueness guarantee and some other means must choose
between binning optimal designs.

Second, although maximal spacing of the smallest bins is not measured by binning optimality, we can use SFC
index bin ids to engineer locally (within bins of edge length 2−(P−1)) maximal spacing of bins of edge length 2−P

into the LHS construction procedure. The Z-curve’s simpler mapping from SFC index to<M makes it more conducive
to implementing this locally maximal spacing than the Hilbert SFC.

Third, a design which is binning optimal is space-filling (in the limit of N → ∞), however, a design need not be
binning optimal to be space-filling.

Fourth, although binning optimality is a binary criteria, the degree of binning non-optimality can be used to com-
pare designs that are not binning optimal. The degree of binning non-optimality can be represented by a pair of integers
(g, s). The first, g, is the minimum number of generations above bins of the smallest size, i.e. bins of edge length b−P ,
at which all bins will contain the same number of points, these bins have edge length b−P+g . The second, s, is the
maximum number of points, s, contained by any of the bins of the smallest size. The smaller each of these numbers is,
the more space-filling the design. A binning optimal design has (g, s) = (0, 1). The degree of binning non-optimality
can also be determined in O (N log(N)) operations.

III. Prior Work on Sampling Methods

This section reviews prior work done on sampling methods to motivate a new approach proposed in Section IV..

A. Tensor Product Sampling (TPS)

When sampling in one dimension, a reasonable first thought is to equally space points, i.e. put N = q samples at
the centers of q equal bins. Indeed, this obtains both minimum discrepancy and binning optimality. When sampling
in multiple dimensions, a reasonable first thought is to to use a tensor product grid of points. While a tensor product
sampling (TPS) grid is binning optimal, it also has large wrap-around and centered L2 discrepancies.
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Figure 2. Plots of the centered L2-discrepancy as a function of the number of samples for various methods of sampling in 2 dimensions.
In order of approximately decreasing discrepancy, these methods are: Monte Carlo Sampling (MCS), Tensor Product Sampling (TPS),
Jittered Sampling (JS), cell centered Latin Hypercube Sampling (LHS) with randomly paired dimensions, and Binning Optimal Symmetric
Latin Hypercube Sampling (BOSLHS) generated by our algorithm.

The slow decrease in discrepancy for tensor product sampling can be explained by the hierarchical ordering prin-
ciple and requirement 3 of Fang, Li, and Sudjianto2 presented in Subsection I.. When projected into a u dimensional
subspace there are only qu unique points with qM−u duplicates of each of the unique points, and lower dimensional
projections are more important. The wrap-around L2-discrepancy for a tensor product grid XTPS is given by

WD2 (XTPS) =

√
−
(

4
3

)M

+
(

4
3

+
1
6
N−2/M

)M

(6)

The centered L2 discrepancy for tensor product sampling in M = {2, 4, 8} dimensions is plotted as the dotted red line
with squares in Figures 2, 3 and 4 respectively.

B. Monte Carlo Sampling (MCS)

Monte Carlo Sampling (MCS) is the name given to the practice of generating design points through purely random
sampling. Drawing from a uniform distribution naturally produces sample designs that are approximately uniform.
Unfortunately, the standard error in a mean computed by random sampling converges as σ√

N
, which means that in

general, 1 million samples will be needed for 3 significant figures of accuracy. Fang and Ma23 obtained a similar
result (the upper bound on the error is proportional to N−1/2) by deriving the following formula for Monte Carlo’s
expected wrap-around L2- discrepancy

E (WD2 (XMCS)) =

√√√√ 1
N

((
3
2

)M

−
(

4
3

)M
)

(7)

Note that for more than two dimensions, the discrepancy for MCS decreases at a faster rate than does the discrepancy
for TPS. This can be readily seen for M = {2, 4, 8} dimensions in Figures 2, 3 and 4 respectively, where the centered
L2 discrepancy for MCS is plotted as the solid magenta line. An obvious way to improve the quality of Monte Carlo
designs is to constrain the random sampling to be more uniform. This has been and continues to be the focus of much
active research.
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Figure 3. Plots of the centered L2-discrepancy as a function of the number of samples for various methods of sampling in 4 dimensions.
In order of approximately decreasing discrepancy, these methods are: Tensor Product Sampling (TPS), Monte Carlo Sampling (MCS),
Jittered Sampling (JS), cell centered Latin Hypercube Sampling (LHS) with randomly paired dimensions, and Binning Optimal Symmetric
Latin Hypercube Sampling (BOSLHS) generated by our algorithm.

C. Jittered Sampling (JS)

“Jittered Sampling” (JS) is a hybrid of tensor product and Monte Carlo sampling. An example of JS is the design
resulting from perturbing each point in a tensor product grid by a random amount equal to (α(w − 0.5))/q where
w ∼ U [0, 1], α scales the magnitude of the perturbation, and q is the number of bins in each direction. The expected
wrap around L2 for this design is

E (WD2 (XJS)) =

(
−
(

4
3

)M

+
(

4
3

+
(1− α)2

6N2/M

)M

...

− 1
N

(
3
2
− α

3N1/M
+

α2

6N2/M

)M

+
1
N

(
3
2

)M
) 1

2

(8)

A JS design is binning optimal and its discrepancy for α = 1 decreases at a faster rate than that of MCS. This can be
readily seen for M = {2, 4, 8} dimensions in Figures 2, 3 and 4 respectively, where the centered L2 discrepancy for JS
is plotted as the dotted blue lines with diamonds. A disadvantage of JS is the number of samples must be exponential
in the number of input dimensions, i.e. N = qM (assuming q is the same for all dimensions).

D. Latin Hypercube Sampling (LHS)

“Latin Hypercube Sampling” (LHS) was developed by McKay et al.24, and later Stein25 showed that the variance of
the LHS sample mean is asymptotically (i.e. in the limit of a large number of samples) lower than traditional MCS.
Owen26 extended Stein’s work to prove a central limit theorem for LHS. LHS is similar to JS in that it achieves
better convergence than MCS through a “better” choice of samples. In fact, LHS is equivalent to JS when there is
only one dimension. Both involve stratifying the distribution of the random variable, and selecting randomly inside
each stratum. However, they differ in the multidimensional case. JS is a perturbation on a full tensor product grid of
samples. In LHS, each dimension is stratified separately and then values from each dimension are paired to form the
coordinates of points in the M -dimensional sample space. McKay et al.24 used a random pairing of dimensions, this
type of LHS can be implemented as follows.
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Figure 4. Plots of the centered L2-discrepancy as a function of the number of samples for various methods of sampling in 8 dimensions.
In order of approximately decreasing discrepancy, these methods are: Tensor Product Sampling (TPS), Monte Carlo Sampling (MCS),
Jittered Sampling (JS), cell centered Latin Hypercube Sampling (LHS) with randomly paired dimensions, and Binning Optimal Symmetric
Latin Hypercube Sampling (BOSLHS) generated by our algorithm.

1. For each random direction (random variable or input), divide that direction into n bins of equal proba-
bility.

2. Select one random value in each bin.

3. Divide each bin into 2 bins of equal probability; the random value chosen above lies in one of these
sub-bins.

4. Select a random value in each sub-bin without one.

5. Pair the newly generated coordinates to form points in the multidimensional space.

6. Repeat steps 3, 4 and 5 until desired level of accuracy is obtained.

The advantage of LHS is can be explained in terms of reducing the discrepancy. The hierarchical ordering princi-
ple states that low order effects are more likely to be important, that is it is crucial to have samples uniformly distributed
in low dimensional projections of the sample space. Using a LHS design with samples placed at bin centers obtains
optimal uniformity in each one-dimensional projection, i.e. in the lowest, and therefore most important, dimensional
projections. This allows LHS to readily capture the non-linear influence of a relative few dominant input variables.

Fang and Ma23 derived the following analytical formula for the expected wrap-around L2-discrepancy for cell
centered LHS with randomly paired dimensions

E (WD2 (XLHSrandom
)) =

√
1
N

(
3
2

)M

−
(

4
3

)M

+
(

1− 1
N

)(
4
3
− 1

6N

)M

(9)

The centered L2 discrepancy for cell centered LHS with M = {2, 4, 8} randomly paired dimensions can be seen in
Figures 2, 3 and 4 respectively, where it is plotted as the dashed aqua line. In these plots, LHS is everywhere lower
than MCS, but after the first few samples it has the same slope as MCS. Although LHS has an early advantage over
JS, the latter’s steeper slope will eventually overtake LHS as the number of samples becomes large.
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Centered L2-Discrepancy for M = 4 Dimensions: Average of 40 runs
N Binning Optimal Cell Centered Monte Carlo Jittered Tensor Product

Symmetric LHS Random LHS Sampling Sampling Sampling
8 0.155417 0.192171 0.361553

16 0.109056 0.126985 0.255332 0.19617 0.341986
32 0.066096 0.0841458 0.18077
64 0.0426463 0.058953 0.129307

128 0.0273056 0.040291 0.0913536
256 0.0171111 0.029254 0.0640173 0.0348634 0.164806
512 0.0107588 0.0206964 0.0452712

1024 0.00714498 0.0148297 0.0317103
2048 0.00466168 0.0102545 0.0225104
4096 0.00298355 0.00737347 0.0167189 0.00623625 0.0816321
8192 0.00188375 0.0050792 0.0111803

16384 0.00124693 0.00369942 0.00819728
32768 0.000820843 0.00253052 0.00564142
65536 0.000526777 0.00184354 0.00402392 0.00110992 0.0407197

Table 1. The average, over 40 trials (except for Tensor Product Sampling which is completely deterministic), of the Centered L2-
Discrepancy (lower is better) of designs generated by Binning Optimal Symmetric LHS, Cell Centered Random LHS, Monte Carlo Sam-
pling, Jittered Sampling and Tensor Product Sampling as a function of the number of samples.

LHS also allows for better representation of all of the input variables through more even coverage of the hyper-
dimensional input space. However, achieving this, and hence the increase in speed of convergence, largely depends
on the quality of the pairing of coordinates from the different dimensions used to form points in the multidimensional
input space. Consequently, any estimate of the asymptotic error would need to specifically account for how the dimen-
sions are paired.

To determine the minimum possible centered L2 discrepancy for M = 2 dimensional cell centered LHS designs
with N = 4, 8 points, we performed an exhaustive search. Both designs were (0,m, s)-nets, orthogonal, binning
optimal and symmetric. In symmetric designs, each sample point has a counterpart which is its reflection through
the center of the design. Symmetry is known to help reduce the correlation between input dimensions. Due to there
being 16! ≈ 2.09 × 1013 different cell-centered LHS designs in M = 2 dimensions, it was not possible to conduct
and exhaustive search for N = 16 points. However, we were able to exhaustively search among 16 point symmetric
LHS designs. The best of these designs was also an (0,m, s)-net, orthogonal, and binning optimal. Based on these
3 data points, the centered L2 discrepancy for minimum discrepancy designs in 2 dimensions appears to decay as
approximately O(N−0.943).

Unfortunately, solving the hyper-dimensional pairing problem efficiently is non-trivial. A common practice is to
randomly generate a “large” number of sets of pairings and the selecting the best, according to some criteria, set. Some
common criteria are

• maximizing the minimum, abbreviated as maximin, (of some measure of) distance between sample points

• minimizing the maximum, abbreviated as minimax, (of some measure of) distance between sample points

• minimizing the correlation between coordinates of points in input space

Note that the first 2 of these 3 criteria is that the design be space-filling, and the third targets orthogonality.

The pairing algorithm of Iman and Conover27 which is employed in Sandia National Labs’ non-cell centered
“LHS” package28,29 was designed to (approximately) induce user specified correlations between input dimensions. It
does not attempt to minimize discrepancy. Despite this, empirical experiments indicate that requesting an LHS with
uncorrelated uniform random variables appears to have an O(N− 1

2 ) discrepancy “line” (not shown) that is slightly
lower than randomly paired cell centered LHS.

Owen’s30 method of pairing attempts to minimize the root mean square of the correlations between different
dimensions. Owen reported that the rate of convergence in that “error metric” for his method empirically appeared to
be

errorLHSOwen ∼ O
(
N− 3

2

)
. (10)
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Wrap Around L2-Discrepancy for M = 4 Dimensions: Average of 40 runs
N Binning Optimal Cell Centered Monte Carlo Jittered Tensor Product

Symmetric LHS Random LHS Sampling Sampling Sampling
8 0.264011 0.263119 0.486157

16 0.145193 0.16434 0.340079 0.308026 0.643404
32 0.0983049 0.108923 0.238759
64 0.0601434 0.0737442 0.173591

128 0.0390652 0.0506619 0.12265
256 0.0251623 0.0357784 0.0874663 0.0599227 0.316115
512 0.0163723 0.0254185 0.060521

1024 0.0106821 0.0179332 0.0437154
2048 0.0070766 0.0124202 0.0298354
4096 0.00463723 0.00887728 0.0223775 0.0111964 0.157365
8192 0.00297308 0.00630293 0.0150964

16384 0.00195182 0.00446912 0.0107136
32768 0.00128037 0.00315229 0.00766298
65536 0.000833047 0.0022078 0.00548722 0.00202252 0.0785962

Table 2. The average, over 40 trials (except for Tensor Product Sampling which is completely deterministic), of the Wrap Around L2-
Discrepancy (lower is better) of designs generated by Binning Optimal Symmetric LHS, Cell Centered Random LHS, Monte Carlo Sam-
pling, Jittered Sampling and Tensor Product Sampling as a function of the number of samples.

However, orthogonal LHS designs have zero correlation between different dimensions and simply being orthogonal
is not a sufficient condition for a design to have zero (or even minimum) error in a computed mean. Indeed, tensor
product sampling, which is generally considered to be a very poor sampling method (evidenced by a slow rate of
decrease in discrepancy), produces designs that are orthogonal.

Morris and Mitchell10 developed an algorithm based on simulated annealing to generate good maximin designs.
Unfortunately finding these pairings proved to be prohibitively expensive for large numbers of points in high numbers
of dimensions. Consequently, finding good pairings efficiently is an area of active research.

Ye et al11 proposed restricting the set of candidate sample point designs to those which are symmetric. Tang31

used orthogonal arrays to generate LHS designs. Loeppky et al32 proposed a Gaussian Process based sequential
updating strategy to add batches of points to existing orthogonal array based LHS designs. Jin et al33 claim that their
enhanced stochastic evolutionary algorithm is able to find a good 100 point 10 dimensional LHS design in a matter of
minutes, and contrasted this against the “hours” spent by the algorithm of Ye et al11. However the computational cost
of determining a good design with a significantly larger number of samples has remained out of reach until now.

IV. Binning Optimal Symmetric Latin Hypercube Sampling (BOSLHS)

Binning Optimal Symmetric Latin Hypercube Sampling (BOSLHS) combines the best features of JS and regular
LHS, i.e., it is space-filling in the full M dimensional space and each of the M dimensions taken individually. In
addition, BOSLHS designs are symmetric with respect to reflection through the center of the design, which reduces
correlations between dimensions. In this section, we present an geometric algorithm that will generate a N point
BOSLHS design in O (N log (N)) operations by quick-sorting SFC index bin ids as was discussed in Section I..

The algorithm can be outlined as follows

1. Start with n = 2M points that are well distributed in (0, 1)M .

2. Select n
2 of the coordinates in each dimension other than the first to negate in such a way as to obtain

n points that are well distributed in (0, 1)⊗ (−1, 1)M−1.

3. Add n mirror points in (−1, 0) ⊗ (−1, 1)M−1 which are reflections of the current n points through the
origin; this ensures that the design is symmetric.

4. Translate the 2n points from (−1, 1)M to (0, 2)M , scale them to (0, 1)M , and then set n = 2n.

5. Repeat steps 2 through 4 until the desired number of points has been obtained, i.e. until n = N .
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Figure 5. This figure shows the step by step progression that generates a N = 32 point design in M = 2 dimensions. The basic logic is that
starting from N points well distributed in (0, 1)M it is possible to obtain N points well distributed in (0, 1) ⊗ (−1, 1)M−1 by negating
the signs of N/2 coordinates in each dimension other than the first. How well the resulting N points are distributed depends on which
coordinates are selected for negation. After having obtained well distributed points in (0, 1)⊗ (−1, 1)M−1, the other half of the (−1, 1)M

hypercube can be filled in by adding mirror points, i.e. reflections of the current points through the origin. The addition of the N mirror
points ensures that the resulting sample design X will be symmetric. Adding 1 to each coordinate and then scaling by half shifts the 2N
points back to (0, 1)M . This process to double the existing points can be repeated until the desired (to within a factor of 2) number of
points is obtained. An initial set of 2M well distributed points can be easily obtained for M = 2p dimension as the end points of a set of
orthogonal axes.

This process is depicted visually for M = 2 and N = 32 in Figure 5. Since a (pseudo) random number was used
to choose between binning optimal alternatives for octant assignment in step 2, it will not be optimal in an absolute
sense. This can be seen in the second row of plots; an optimal quadrant/octant assignment would have put points 1, 3,
6 and 8 in one octant and points 2, 4, 5 and 7 in the other.

The original 2M points in step 1 can be found as the end points of a set of orthogonal axes. This can be easily
done if M = 2p for non negative integer p and the logic will be discussed shortly.

An efficient algorithm for step 2 can be implemented by sorting sample points according to their locality preserving
bin ids and then separating sequential points to ensure “dis-locality” of the samples. To be more specific, nearby points
are sent to octants that are far apart from each other. The logic used also requires a 1 time grouping of sets of axes that
are maximally spaced from each other; this grouping is used to determine the order in which octants will be filled in.

A. Algorithm for Initial Orthogonal Axes LHS Design

In M = 2p dimensions, p = 0, 1, 2, 3, ..., a 2M point symmetric cell centered Latin Hypercube which constitutes a
set of orthogonal axes can be generated by tiling simple patterns. The first pattern is for the magnitudes of coordinates
(or positions within an array of magnitudes for coordinates). The second pattern is for the signs of those coordinate
magnitudes.
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“Coverage” for M = 4 Dimensions: Average of 40 runs
N Binning Optimal Cell Centered Monte Carlo Jittered Tensor Product

Symmetric LHS Random LHS Sampling Sampling Sampling
8 0.0717773 0.027062 0.0178996

16 0.135135 0.104126 0.0916156 0.128427 0.0625
32 0.285717 0.233105 0.219465
64 0.417035 0.372359 0.361626

128 0.56022 0.522201 0.511982
256 0.678416 0.647304 0.645049 0.667668 0.316406
512 0.773748 0.754804 0.749725

1024 0.843177 0.832896 0.831007
2048 0.896093 0.890245 0.886593
4096 0.932229 0.928693 0.927748 0.929509 0.586182
8192 0.956723 0.954248 0.953466

16384 0.97319 0.97129 0.971217
32768 0.983415 0.982499 0.982312
65536 0.989815 0.989387 0.98926 0.98965 0.772476

Table 3. The average, over 40 trials (except for Tensor Product Sampling which is completely deterministic), of the “coverage” (higher is
better) of designs generated by Binning Optimal Symmetric LHS, Cell Centered Random LHS, Monte Carlo Sampling, Jittered Sampling
and Tensor Product Sampling as a function of the number of samples.

Cell centered coordinate magnitudes between 0 and 2M for the first point can be generated as

|X1,k| = 2k − 1 for k = 1, 2, 3, ...,M∣∣x1

∣∣ = [1, 3, 5, ..., 2M − 1]T

(11)

The magnitudes for the second point can be generated by reversing the order within each disjoint pair of consecutive
coordinates in

∣∣x1

∣∣, i.e. ∣∣x2

∣∣ = [3, 1, 7, 5, 11, 9, ..., 2M − 1, 2M − 3]T (12)

The magnitudes for
∣∣x3

∣∣ and
∣∣x4

∣∣ can be generated by reversing the order within every disjoint group of 4 consecutive
coordinates in

∣∣x1

∣∣ and
∣∣x2

∣∣ respectively, i.e.∣∣x3

∣∣ = [7, 5, 3, 1, 15, 13, 11, 9, ..., 2M − 1, 2M − 3, 2M − 5, 2M − 7]T (13)∣∣x4

∣∣ = [5, 7, 1, 3, 13, 15, 9, 11, ..., 2M − 3, 2M − 1, 2M − 7, 2M − 5]T (14)

The magnitudes for
∣∣∣xn+1

∣∣∣ through
∣∣x2n

∣∣, n = 2p, p = 0, 1, 2, , ... are generated by reversing the order within each

disjoint group of n consecutive coordinates for points
∣∣x1

∣∣ through
∣∣xn

∣∣ respectively. For M = 8 dimensions this is

∣∣∣[x1, x2, x3, ..., x8

]T ∣∣∣ =



1 3 5 7 9 11 13 15
3 1 7 5 11 9 15 13
7 5 3 1 15 13 11 9
5 7 1 3 13 15 9 11

15 13 11 9 7 5 3 1
13 15 9 11 5 7 1 3
9 11 13 15 1 3 5 7

11 9 15 13 3 1 7 5


(15)

We use the Sylvester construction of Hadamard matrices to generate the pattern of signs,[
+
][

+ +
+ -

]


+ + + +
+ - + -
+ + - -
+ - - +

 (16)
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Condition Number of the Correlation Matrix for M = 4 Dimensions: Average of 40 runs
N Binning Optimal Cell Centered Monte Carlo Jittered Tensor Product

Symmetric LHS Random LHS Sampling Sampling Sampling
8 1 14.6273 8.23719

16 3.2505 4.14988 3.75258 2.39394 1
32 1.49974 2.27709 2.15406
64 1.37672 1.76306 1.82367

128 1.2064 1.4508 1.49656
256 1.11022 1.32572 1.33407 1.10916 1
512 1.05589 1.21341 1.2108

1024 1.0368 1.1546 1.14725
2048 1.02121 1.09974 1.09939
4096 1.01246 1.07576 1.07075 1.01254 1
8192 1.00717 1.04643 1.04922

16384 1.00403 1.03608 1.03365
32768 1.0027 1.02297 1.02461
65536 1.00166 1.01872 1.01742 1.00145 1

Table 4. The average, over 40 trials (except for Tensor Product Sampling which is completely deterministic), of the condition number of the
correlation matrix (lower is better) of designs generated by Binning Optimal Symmetric LHS, Cell Centered Random LHS, Monte Carlo
Sampling, Jittered Sampling and Tensor Product Sampling as a function of the number of samples.



+ + + + + + + +
+ - + - + - + -
+ + - - + + - -
+ - - + + - - +
+ + + + - - - -
+ - + - - + - +
+ + - - - - + +
+ - - + - + + -


(17)

Pseudo code for the logic to generate this sequence is

signs = [+1]

for i = 1 → log2 (M)

signs =

[
signs signs

signs −signs

]
The Hadamard product (also known as the Schur product and the entrywise product) of the signs in Eqn. (17) and

the magnitudes in Eqn. (15) results in the following set of M = 8 orthogonal vectors

[
x1, x2, x3, ..., x8

]T =



1 3 5 7 9 11 13 15
3 -1 7 -5 11 -9 15 -13
7 5 -3 -1 15 13 -11 -9
5 -7 -1 3 13 -15 -9 11

15 13 11 9 -7 -5 -3 -1
13 -15 9 -11 -5 7 -1 3
9 11 -13 -15 -1 -3 5 7

11 -9 -15 13 -3 1 7 -5


(18)

The vectors in Eqn. (18) are then reflected through zero to add a set of M mirror points and then the 2M points are
translated and scaled to (0, 1)M .

That these initial 2M points constitute an orthogonal BOSLHS design is the reason why the condition number for
the design’s correlation matrix is exactly one for the minimum number of points in Tables 4 and 10.

B. Algorithm For Octant Assignment

The sub-problem in step 2 of the BOSLHS algorithm outlined above is perhaps the most conceptually challeng-
ing to solve efficiently. The above statement of the problem, namely to redistribute the points from (0, 1)M to
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Degree of Binning Non-Optimality for M = 4 Dimensions: Average of 40 runs
N Binning Optimal Cell Centered Monte Carlo Jittered Tensor Product

Symmetric LHS Random LHS Sampling Sampling Sampling
8 ( 0 , 1 ) ( 0.600 , 1.675 ) ( 0.725 , 1.900 )

16 ( 0 , 1 ) ( 1.000 , 2.675 ) ( 1.000 , 3.100 ) ( 0 , 1 ) ( 0 , 1 )
32 ( 0 , 1 ) ( 2.000 , 1.875 ) ( 2.000 , 2.000 )
64 ( 0 , 1 ) ( 2.000 , 2.175 ) ( 2.000 , 2.450 )

128 ( 0 , 1 ) ( 2.000 , 3.225 ) ( 2.000 , 3.425 )
256 ( 0 , 1 ) ( 2.000 , 4.650 ) ( 2.000 , 4.725 ) ( 0 , 1 ) ( 0 , 1 )
512 ( 0 , 1 ) ( 3.000 , 2.825 ) ( 3.000 , 2.600 )

1024 ( 0 , 1 ) ( 3.000 , 3.475 ) ( 3.000 , 3.550 )
2048 ( 0 , 1 ) ( 3.000 , 4.550 ) ( 3.000 , 4.425 )
4096 ( 0 , 1 ) ( 3.000 , 6.175 ) ( 3.000 , 6.300 ) ( 0 , 1 ) ( 0 , 1 )
8192 ( 0 , 1 ) ( 4.000 , 3.600 ) ( 4.000 , 3.475 )

16384 ( 0 , 1 ) ( 4.000 , 4.450 ) ( 4.000 , 4.475 )
32768 ( 0 , 1 ) ( 4.000 , 5.625 ) ( 4.000 , 5.675 )
65536 ( 0 , 1 ) ( 4.000 , 7.625 ) ( 4.000 , 7.575 ) ( 0 , 1 ) ( 0 , 1 )

Table 5. The average, over 40 trials (except for Tensor Product Sampling which is completely deterministic), of the degree of binning non-
optimality (lower is better, ( 0 , 1 ) is binning optimal) of designs generated by Binning Optimal Symmetric LHS, Cell Centered Random
LHS, Monte Carlo Sampling, Jittered Sampling and Tensor Product Sampling as a function of the number of samples.

(0, 1) ⊗ (−1, 1)M−1 by negating N
2 coordinates from each dimension other than the first, suggests a dimension by

dimension algorithm that is likely difficult to implement.

However, reformulating the problem as the assignment of points to 2M−1 octants in (0, 1) ⊗ (−1, 1)M−1 greatly
facilitates its efficient solution. Points which are nearby each other should be sent to octants that are far apart from each
other. Quick-sorting according to SFC index bin ids, as presented in Section I. reorders points so that consecutively
listed points are known to be nearby each other. The remaining task is to generate a listing of receiving octants such
that consecutive octants are maximally spaced from each other. Here, “maximally spaced” is equivalent to the octants’
bit-signs representations being separated by the largest possible Hamming distance that is less than or equal to M/2
(if more than M/2 bits are of different signs, then the signs of one octant are negated for the purposes of calculating
the Hamming distance).

The 2M end points of a M -dimensional orthogonal set of axes are maximally spaced, and therefore the octants
containing those endpoints will also be maximally spaced. Since the problem is to distribute the points to only the
2M−1 octants in (0, 1) ⊗ (−1, 1)M−1, the algorithm only needs to deal with one endpoint from each of the M axes
in an orthogonal set. We will hereafter use the word orientation to refer to a set of M mutually orthogonal axes in
M -dimensional space and also to the set of octants containing the endpoints of those axes. Therefore, it is reasonable
and beneficial for the algorithm to distribute a group of M nearest (within a bin) points so that each of the M endpoint
octants for an orientation receives 1 point.

Given 2M points in a bin, then we should distribute those points to 2 orientations that are maximally spaced from
each other. This is equivalent to rotating or reflecting a copy of the original orientation to be maximally spaced from
the original. Likewise, if there are 4M points in a bin, they should be distributed to 4 orientations that are mutually
maximally spaced from each other. If there are 8M points in a bin, they should be distributed to 8 orientations that are
mutually maximally spaced from each other.

However, the case where a bin contains 2M points has an additional requirement. Since each of the 2M−1 octants
in (0, 1)⊗ (−1, 1)M−1 will receive 2 points, we require for points in opposite sub-bins to be sent to the same octant.
Using Z-curve index bin ids makes this straightforward. Let Zb1 and Zb2 be the Z-curve ids of sub-bins within the bin
with id Zb, then Zb1 = Zb + z1 and Zb2 = Zb + z2 are opposite sub-bins iff z1 + z2 = 2M − 1.

Another requirement of the algorithm is that every octant in (0, 1)⊗ (−1, 1)M−1 must receive 1 point before any
octant receives 2. In other words, the algorithm must not start over from the top of the list of destination octants just
because the next set of points to assign originate from a different bin that the previous set.

For the sake of simplicity and also to avoid regularity, our algorithm randomly permutes the order within sets and
successively smaller subsets of orientations such that maximal spacing of sequentially listed orientations is retained.
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(t, m, s)-net Rating for M = 4 Dimensions: Average of 40 runs
N Binning Optimal Cell Centered Monte Carlo Jittered Tensor Product

Symmetric LHS Random LHS Sampling Sampling Sampling
8 ( 1 , 3 , 4 ) ( 2 , 3 , 4 ) ( 3 , 3 , 4)

16 ( 2 , 4 , 4 ) ( 3 , 4 , 4 ) ( 4 , 4 , 4) ( 3 , 4 , 4 ) ( 3 , 4 , 4 )
32 ( 2 , 5 , 4 ) ( 4 , 5 , 4 ) ( 5 , 5 , 4)
64 ( 3 , 6 , 4 ) ( 5 , 6 , 4 ) ( 6 , 6 , 4)

128 ( 4 , 7 , 4 ) ( 6 , 7 , 4 ) ( 7 , 7 , 4)
256 ( 5 , 8 , 4 ) ( 7 , 8 , 4 ) ( 8 , 8 , 4) ( 6 , 8 , 4 ) ( 6 , 8 , 4 )
512 ( 5 , 9 , 4 ) ( 8 , 9 , 4 ) ( 9 , 9 , 4)

1024 ( 6 , 10 , 4 ) ( 9 , 10 , 4 ) ( 10 , 10 , 4)
2048 ( 7 , 11 , 4 ) ( 10 , 11 , 4 ) ( 11 , 11 , 4)
4096 ( 8 , 12 , 4 ) ( 11 , 12 , 4 ) ( 12 , 12 , 4) ( 9 , 12 , 4 ) ( 9 , 12 , 4 )
8192 ( 8 , 13 , 4 ) ( 12 , 13 , 4 ) ( 13 , 13 , 4)

16384 ( 9 , 14 , 4 ) ( 13 , 14 , 4 ) ( 14 , 14 , 4)
32768 ( 10 , 15 , 4 ) ( 14 , 15 , 4 ) ( 15 , 15 , 4)
65536 ( 11 , 16 , 4 ) ( 15 , 16 , 4 ) ( 16 , 16 , 4) ( 12 , 16 , 4 ) ( 12 , 16 , 4 )

Table 6. The average, over 40 trials (except for Tensor Product Sampling which is completely deterministic), of the (t, m, s)-net rating
(lower t is better, N = bm where b = 2, M = s) of designs generated by Binning Optimal Symmetric LHS, Cell Centered Random LHS,
Monte Carlo Sampling, Jittered Sampling and Tensor Product Sampling as a function of the number of samples.

Within each orientation, the order in which axes endpoint octants receives points is also randomly permuted. Once
the random ordering of 2M−1 octant-point pairs has been generated, the octant order is “reversed”‖ for the next 2M−1

points to ensure that points in opposite sub-bins will be sent to the same octant. An independent random ordering is
generated in this fashion for every 2M points.

C. Generating a List of Maximally Spaced Orientations

As just mentioned, there is a need to generate a listing of orientations that are maximally spaced from each other.
Note that there are 2M end-points/octants per orientation (considering both endpoints of each axis) and a total of 2M

octants in the hypercube. This means there are 2M

2M = 2M−1/M disjoint orientations. The solution to this problem for
8 or fewer dimensions is straightforward:

In M = 2 dimensions there is only 1 orientation so the choice of which orientation to assign the next set of
2M = 4 nearest points is trivial.

In M = 4 dimensions there are only 2 orientations. These can be represented by the sign of the first point in
Eqn. (16). The first orientation is obtained multiplying each row of Eqn. (16) by

[
+ + + +

]
. The second

orientation is obtained by negating the Hadamard product of each row of Eqn. (16) and
[

- + + +
]
.

In M = 8 dimensions there are 16 orientations. The first 8 orientations can be represented by the signs of their
first point.

+ + + + + + + +
- - + + + + + +
- + - + + + + +
- + + - + + + +
- + + + - + + +
- + + + + - + +
- + + + + + - +
- + + + + + + -

Note that these rows are mutually separated by 2
(
i.e M

4

)
of their bit-signs. Any row with a negative in the first dimen-

sion can be negated to ensure that points will only be moved to other octants within (0, 1) ⊗ (−1, 1)M−1 (although,
due to symmetry, this step isn’t strictly required). As with M = 4 dimensions, the rest of the signs for each orientation
can be obtained through a row by row Hadamard product with Eqn. (17).

‖A simple reversal is sufficient for Z-curve but not Hilbert curve index ids. The corresponding “reverse” ordering for Hilbert curves is signifi-
cantly more complicated.
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Centered L2-Discrepancy for M = 8 Dimensions: Average of 40 runs
N Binning Optimal Cell Centered Monte Carlo Jittered Tensor Product

Symmetric LHS Random LHS Sampling Sampling Sampling
16 0.284038 0.34294 0.506724
32 0.210856 0.238596 0.358231
64 0.142917 0.167027 0.254876

128 0.0983407 0.115722 0.180471
256 0.0669426 0.0826593 0.125864 0.0991629 0.60562
512 0.0430124 0.0588062 0.0882444

1024 0.0294717 0.0408708 0.062649
2048 0.0199896 0.0289271 0.0448694
4096 0.0135911 0.0206844 0.0312016
8192 0.00929004 0.0146224 0.0225828

16384 0.00631475 0.010354 0.0156934
32768 0.00423738 0.00724978 0.011234
65536 0.00287464 0.00507716 0.00778369 0.00465929 0.27813

Table 7. The average, over 40 trials (except for Tensor Product Sampling which is completely deterministic), of the Centered L2-
Discrepancy (lower is better) of designs generated by Binning Optimal Symmetric LHS, Cell Centered Random LHS, Monte Carlo Sam-
pling, Jittered Sampling and Tensor Product Sampling as a function of the number of samples.

Note that for these first 8 orientations, the row by row Hadamard product with Eqn. (18) is a rotation matrix. The
second set of 8 orientations can likewise be represented as

- + + + + + + +
+ - + + + + + +
+ + - + + + + +
+ + + - + + + +
+ + + + - + + +
+ + + + + - + +
+ + + + + + - +
+ + + + + + + -

As before, rows with a negative sign in the first dimension (in this case only the first row) would be negated. Note that
the row by row Hadamard product of these sets of signs and (a normalized version of) Eqn. (18) is a direction cosines
matrix rather than a true rotation matrix (these differ from a rotation matrix by the sign of one column, in other words
it represents a reflection of a rotation).

The pattern to use for M = 16 and higher dimensions is significantly more complicated. However, the solution of
this problem has been obtained using group theory and is the subject of a separate forth-coming paper. The MATLAB
implementation of our algorithm to generate the maximally spaced list of orientations for M = 16 dimensions takes
significantly less than 1 minute on a 2.53 GHz Intel quad-core processor. This solution needs only be computed once
and can be saved to a file to be reloaded on subsequent calls of the BOSLHS algorithm.

V. Results

Tables 1 through 12 demonstrate that, BOSLHS designs are typically superior to regular Latin Hypercube, Monte
Carlo, Jittered, and Tensor Product sampling in the metrics of centered and wrap-around L2 discrepancy, coverage,
orthogonality (measured by condition number of the correlation matrix), the degree of binning non-optimality, and the
t quality metric when the designs are considered to be (t, m, s) nets. The exceptions are

• TPS and JS are equivalent in the metric of binning non-optimality,

• TPS designs are strictly orthogonal,

• JS tend to be slightly more orthogonal (evidenced by the condition number of the correlation matrix) for very
low numbers of points and are comparable for larger numbers of points,

• regular LHS had a slightly lower wrap-around L2 discrepancy for the minimum possible number of points
N = 2M in M = 8 dimensions.
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Wrap Around L2-Discrepancy for M = 8 Dimensions: Average of 40 runs
N Binning Optimal Cell Centered Monte Carlo Jittered Tensor Product

Symmetric LHS Random LHS Sampling Sampling Sampling
16 0.732593 0.641005 0.987825
32 0.388246 0.438441 0.702694
64 0.269391 0.303077 0.502062

128 0.184903 0.211267 0.356757
256 0.128041 0.149853 0.249652 0.220813 1.66975
512 0.0889111 0.105794 0.175812

1024 0.0586689 0.0746833 0.123312
2048 0.0403764 0.0523196 0.088177
4096 0.0281528 0.0373708 0.0613596
8192 0.0191316 0.0263039 0.0433192

16384 0.0132848 0.0185744 0.0309117
32768 0.00895188 0.0131266 0.0218121
65536 0.00622988 0.00928822 0.0152641 0.0113352 0.801021

Table 8. The average, over 40 trials (except for Tensor Product Sampling which is completely deterministic), of the Wrap Around L2-
Discrepancy (lower is better) of designs generated by Binning Optimal Symmetric LHS, Cell Centered Random LHS, Monte Carlo Sam-
pling, Jittered Sampling and Tensor Product Sampling as a function of the number of samples.

“Coverage” for M = 8 Dimensions: Average of 40 runs
N Binning Optimal Cell Centered Monte Carlo Jittered Tensor Product

Symmetric LHS Random LHS Sampling Sampling Sampling
16 0.00123468 0.000132215 0.000103482
32 0.00343898 0.00212481 0.00193827
64 0.0143622 0.0112283 0.0105574

128 0.041456 0.0361297 0.0334309
256 0.089389 0.0806103 0.0774927 0.0827604 0.00390625

Table 9. The average, over 40 trials (except for Tensor Product Sampling which is completely deterministic), of the “coverage” of de-
signs generated by Binning Optimal Symmetric LHS, Cell Centered Random LHS, Monte Carlo Sampling, Jittered Sampling and Tensor
Product Sampling as a function of the number of samples.

In order to illustrate that BOSLHS designs are good in the “eyeball metric” Figures 6, 7, and 8 plot the projections
of randomly generated BOSLHS designs onto each pairing of 2 out of M = 4 dimensions for N = 128, 1024 and 4096
points. These figures demonstrate that the randomly generated point sets are visibly well distributed and space-filling.

Figures 2, 3 and 4 show that for M = {2, 4, 8} dimensions respectively, our relatively simple algorithm achieves
both a lower initial discrepancy and a faster decay of discrepancy than both JS and randomly paired cell centered
LHS. In this sense, its performance is greater than that of the sum of its parts. Unlike the Multi-Jittered Sampling of
Chiu, Wang and Shirley8 our BOSLHS is restricted neither to M = 2 dimensions nor to a number of points, N , that
is exponential in the number of random dimensions. Instead, N can be any power of 2 greater than or equal to 2M .
Conceptually, our algorithm can generate BOSLHS designs for M = 2q dimensions where q is any non-negative inte-
ger. However, the memory requirements of simply listing all 2M

2M orientations is prohibitive for M ≥ 32. Generating
a maximally spaced subset of orientations for large numbers of dimensions is a topic of our current research.

High quality designs for non power of 2 values of M can also be obtained by discarding excess dimensions from
a design with the next larger power of 2 number of dimensions. There are nchoosek (2̂ ceil (log2 (M)) ,M) combi-
nations of dimensions to retain and for large N using the discrepancy as a criteria to choose between them would take
an exceedingly long time. Fortunately, most of the combinations of dimensions for which the discrepancy needs to
be evaluated can be eliminated by using the degree of binning non-optimality, (g, s), as a screening criteria, and then
only evaluating the discrepancy for the resulting designs which are tied for the lowest degree of binning non-optimality.

In terms of computational cost, the MATLAB implementation of our algorithm took approximately 0.78 seconds
and O(N log(N)) operations to generate a M = 4 dimensional design with N = 65, 536 points on one core of a
2.53 GHz Intel quad core processor. By contrast it took 137.2 seconds and O(MN2) operations to calculate the cen-
tered L2 discrepancy for the same design. Generating an M = 8 dimensional design with N = 65, 536 points took
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Figure 6. Plots of the projection of a random M = 4 dimensional N = 128 point binning optimal symmetric Latin hypercube sample
design onto each pair of dimensions. When the hypercube is divided into a tensor product of disjoint congruent bins with 2 bins per edge,
each of those bins contains 8 points. When divided into a tensor product of bins with 4 bins per edge, each of those bins contains either 0
or 1 point.
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Figure 7. Plots of the projection of a random M = 4 dimensional N = 1024 point binning optimal symmetric Latin hypercube sample
design onto each pair of dimensions. When the hypercube is divided into a tensor product of disjoint congruent bins with 4 bins per edge,
each of those bins contains 4 points. When divided into a tensor product of bins with 8 bins per edge, each of those bins contains either 0
or 1 point.
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Figure 8. Plots of the projection of a random M = 4 dimensional N = 4096 point binning optimal symmetric Latin hypercube sample
design onto each pair of dimensions. When the hypercube is divided into a tensor product of disjoint congruent bins with 8 bins per edge,
each of those bins contains 1 point.
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Condition Number of the Correlation Matrix for M = 8 Dimensions: Average of 40 runs
N Binning Optimal Cell Centered Monte Carlo Jittered Tensor Product

Symmetric LHS Random LHS Sampling Sampling Sampling
16 1 18.3821 15.234
32 4.90902 5.39655 5.28336
64 2.70441 2.96554 2.82453

128 1.93065 2.10261 2.09155
256 1.52916 1.70239 1.67543 1.43407 1
512 1.17397 1.45548 1.44352

1024 1.15153 1.28963 1.30738
2048 1.10545 1.20011 1.19761
4096 1.05825 1.13816 1.13835
8192 1.04344 1.09823 1.09832

16384 1.02504 1.06745 1.07064
32768 1.01813 1.04631 1.04637
65536 1.00938 1.03061 1.03375 1.01092 1

Table 10. The average, over 40 trials (except for Tensor Product Sampling which is completely deterministic), of the condition number
of the correlation matrix (lower is better) of designs generated by Binning Optimal Symmetric LHS, Cell Centered Random LHS, Monte
Carlo Sampling, Jittered Sampling and Tensor Product Sampling as a function of the number of samples.

approximately 0.32 seconds (not an error, the time for M = 8 dimensions was less than half of that for M = 4 dimen-
sions, we attribute this to better cache use); calculating that design’s discrepancy took 295.9 seconds. For the sake of
comparison, other algorithms to generate space-filling LHS designs are reported in the literature to take “minutes” to
generate a N = 100 point design in M = 10 dimensions.

Algorithms that more tightly constrain the randomness can produce BOSLHS designs with lower discrepancy.
However, the limited constraints on the random assignment of points to octants we employed facilitates direct com-
parison of BOSLHS with JS and randomly paired cell-centered LHS. Our simple random algorithm should also be
viewed as a baseline against which the larger class of BOSLHS designs should be compared. Two potential ways (both
are topics of our current research) that BOSLHS designs could obtain lower discrepancy are by

1. making low dimensional projections binning optimal, and

2. a better selection of orientations of adjacent bins.

VI. Summary

The universal applicability of Monte Carlo Sampling (MCS) as a method of uncertainty quantification is limited
by the slow rate of convergence in the error of its sample mean. The “Koksma-Hlawka-like inequality” bounds this
error in terms of the sample design’s discrepancy, which is a common metric of uniformity and therefore the degree to
which a design is space-filling. However, even the “fast” formulas available for certain useful L2 norm discrepancies
require O

(
N2M

)
operations, where M is the number of dimensions and N is the number of points in the design.

Latin Hypercube Sampling (LHS) and Jittered Sampling (JS) both achieve better error convergence than standard MCS
by using stratification to obtain a more uniform selection of samples, although LHS and JS use different stratification
strategies. JS is space-filling in the full M dimensional space but not in the 1 dimensional projections, while LHS is
space-filling in the 1 dimensional projections but not in the full M dimensional space.

In this paper, we defined “binning optimality,” a new metric of the space-filling property which can be evaluated
in O (N log (N)) operations, and presented an O (N log (N)) fast Binning Optimal Symmetric Latin Hypercube
Sampling (BOSLHS) algorithm. BOSLHS combines the best features of JS and LHS to produce designs that are
space-filling in the full M dimensional space and the 1 dimensional projections. BOSLHS designs are also symmetric
with respect to reflection through their center, which reduces correlation between dimensions. Our experimental results
show that BOSLHS designs are superior to conventional JS and LHS in several quality metrics. Compared to other
algorithms which are reported in the literature to require “minutes” to generate a M = 10 dimensional space-filling
LHS designs with N = 100 points, our BOSLHS algorithm can generate N = 216 = 65536 point M = 8 dimensional
designs in significantly under a second.
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Degree of Binning Non-Optimality for M = 8 Dimensions: Average of 40 runs
N Binning Optimal Cell Centered Monte Carlo Jittered Tensor Product

Symmetric LHS Random LHS Sampling Sampling Sampling
16 ( 0 , 1 ) ( 0.200 , 1.200 ) ( 0.450 , 1.450 )
32 ( 0 , 1 ) ( 0.775 , 1.800 ) ( 0.975 , 2.025 )
64 ( 0 , 1 ) ( 1.000 , 2.275 ) ( 1.000 , 2.350 )

128 ( 0 , 1 ) ( 1.000 , 3.275 ) ( 1.000 , 3.250 )
256 ( 0 , 1 ) ( 1.000 , 4.450 ) ( 1.000 , 4.800 ) ( 0 , 1 ) ( 0 , 1 )
512 ( 0 , 1 ) ( 2.000 , 1.925 ) ( 2.000 , 1.850 )

1024 ( 0 , 1 ) ( 2.000 , 2.050 ) ( 2.000 , 2.050 )
2048 ( 0 , 1 ) ( 2.000 , 2.200 ) ( 2.000 , 2.325 )
4096 ( 0 , 1 ) ( 2.000 , 2.975 ) ( 2.000 , 3.000 )
8192 ( 0 , 1 ) ( 2.000 , 3.325 ) ( 2.000 , 3.525 )

16384 ( 0 , 1 ) ( 2.000 , 4.225 ) ( 2.000 , 4.525 )
32768 ( 0 , 1 ) ( 2.000 , 5.650 ) ( 2.000 , 5.675 )
65536 ( 0 , 1 ) ( 2.000 , 7.375 ) ( 2.000 , 7.600 ) ( 0 , 1 ) ( 0 , 1 )

Table 11. The average, over 40 trials (except for Tensor Product Sampling which is completely deterministic), of the degree of binning non-
optimality (lower is better, ( 0 , 1 ) is binning optimal) of designs generated by Binning Optimal Symmetric LHS, Cell Centered Random
LHS, Monte Carlo Sampling, Jittered Sampling and Tensor Product Sampling as a function of the number of samples.
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