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Topology Optimization & Additive Manufacturing
Given V0 ∈ (0, 1) compute a density that solves:

Minimize
0 ≤ z ≤ 1

R
(∫

D
F · S(z) dx +

∫
Γt

t · S(z) dx
)

s.t.
∫

D z(x) dx ≤ V0|D|, where S(z) = u solves

the linear elasticity equations

−∇ · (E(z) : εu) = F, in D, a.s..

εu =
1
2

(∇u +∇u>), in D, a.s..

εun = t, on Γt, a.s.

u = g, on Γd, a.s.

I Uncertain external forces (loads) and boundary conditions.
I Uncertain internal forces, e.g., residual stresses due to AM.
I Uncertain material properties (porosity, etc.) due to AM.
I Reliability formulation: Compute light-weight designs that minimize

the probability of structural failure.
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Reservoir Optimization: Secondary Oil Recovery
Given D ⊂ R3 and interest rate r ≥ 0:

Minimize
z = (q, q̂)

R
(∫ T

0
e rt C([S(z)](t), z(t), t) dt

)
where S(z) = (s, v, p) solves the reservoir equations

−Kλ(s)∇p = v, in D, a.s..

∇ · v = q, in D, a.s..

φ ∂ts +∇ · ( f (s)v ) = q̂, in D, a.s..

(plus initial and boundary conditions).

I Porosity, φ, and permeability, K, are estimated from data (e.g.,
seismic inversion).

I Total mobility, λ, and fractional flow function, f , may be uncertain.
I Risk-neutral formulation: Determine injection rates that minimize

cost on average.
I Risk-averse formulation: Determine injection rates that minimize

the average of the 10% worst costs.
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Control of Chemical Vapor Deposition Reactors

D

In/Outflow

Substrate

C
on

tro
l C

ontrol

Consider the optimal control problem

min
z

1
2
R
(∫

D
(∇×U(z)) dx

)
+
γ

2

∫
Γc

|z|2 dx

where S(z) = (U(z),P(z),T(z)) = (u, p, t) solves
the Boussinesq flow equations

−ν∇2u + (u · ∇)u +∇p + ηtg = 0 in D, a.s.

∇ · u = 0 in D, a.s.

−κ∆t + u · ∇t = 0 in D, a.s.

κ∇t · n + h(z− t) = 0 on Γc, a.s.

(plus additional boundary conditions).

I Uncertain viscosity, thermal conductivity, substrate temperature, etc.
imply flow velocity, pressure and temperature are uncertain.

I Risk-averse formulation: Determine wall temperature that
minimizes the average of low-probability, large vorticity scenarios.

D. P. Kouri Optimization and Control Under Uncertainty 5



Direct Field Acoustic Testing

Consider the optimal control problem

min
z

1
2
R
(∫

Do

(U(z)− w)(U(z)− w) dx
)

+
γ

2

∫
Dc

|z|2 dx

where U(z) = u solves the Helmholtz equation

−∆u− κ2(1 + σε)2u = 1Dc z in D, a.s.

∇u · n = iκu on ∂D, a.s.

I The refractive index of the device under investigation is often
uncertain.

I Risk-neutral formulation: Determine speaker output that produces
a material response that matches a desired vibration profile on
average.

I Risk-averse formulation: Determine speaker output that produces
a response that is “good” on average for the 10% worst scenarios.
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Optimizing Your Short Game
Vanderbei 2001

Determine initial velocity yeilding a trajectory with minimal speed at the hole:

min
z
R
(

1
2

(v1(T)2 + v2(T)2)

)
where S(z) = (x, v, a,T) solves the equations of motion

ma = N + F−mge3

ẋ = v, v̇ = a
x(0) = x, v(0) = Bz

where the normal N = N(x, v, a) and friction F = F(x, v, a) forces are

Ni = −∂x3

∂xi
N3, N3 = m

g− a1
∂x3
∂x1
− a2

∂x3
∂x2

+ a3

(∂x3/∂x1)2 + (∂x3/∂x2)2 + 1
and F = −µ‖N‖ v

‖v‖
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General PDE-Optimization under Uncertainty
Making Deterministic Problems Stochastic

Deterministic PDE-Constrained Optimization:
U and Z are reflexive Banach spaces, Zad is a closed convex subset of Z, Y
is a Banach space, J : U × Z→ R and c : U × Z→ Y:

Minimize
z∈Zad

Ĵ(z)

where Ĵ(z) := J(S(z), z) and S(z) = u ∈ U solves the PDE

c(u, z) = 0.

Stochastic PDE-Constrained Optimization:
(Ω,F ,P) is a probability space. Objective function and PDE are now
parametrized, i.e., J : U × Z× Ω→ R and c : U × Z× Ω→ Y:

Minimize
z∈Zad

J (z) = R(̂J(z))

where Ĵ(z) := J(S(z), z, ·) and S(z) = u : Ω→ U solves the PDE

c(u, z, ω) = 0.
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Notation

(Ω,F) is a measurable space

P, P : F → [0, 1] are probability measures

1. Expectation: EP[X] =

∫
Ω

X(ω) dP(ω) and E[X] = EP[X]

2. Variance: VP[X] = EP[(X− EP[X])2] and V[X] = VP[X]

3. Standard Deviation: σP[X] = VP[X]1/2 and σ[X] = σP[X]

4. Distribution: FX(x) = P(X ≤ x)

5. Quantile: qβ(X) = inf {t ∈ R | FX(x) > β} = F−1
X (β)
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Tensor Product Function Spaces
Lebesgue Spaces: For 1 ≤ p <∞,

Lp(Ω,F ,P) :=

{
v : Ω→ R | v F -measurable,

∫
Ω
|v(ω)|p dP(ω) <∞

}
,

L∞(Ω,F ,P) := {v : Ω→ R | v F -measurable, ess sup |v(ω)| <∞} .

If f , g ∈ Lp(Ω,F ,P) then f = g ⇐⇒ f (ω) = g(ω) for P almost all ω ∈ Ω.

Tensor Spaces: Given a real Banach space W then

Lp(Ω,F ,P)⊗W := span {vx | v ∈ Lp(Ω,F ,P), x ∈ W} .

Many norms exist for the vector space Lp(Ω,F ,P)⊗W and given a norm
Lp(Ω,F ,P)⊗W is not necessarily complete.

Bochner Spaces: For 1 ≤ p <∞ and W a real Banach space

Lp(Ω,F ,P; W) :=

{
v : Ω→ W | v strongly F -measurable,

∫
Ω
‖v(ω)‖p

W dP(ω) <∞
}

and similarly for p =∞. Lp(Ω,F ,P; W) is the completion of Lp(Ω,F ,P)⊗W with
respect to the Bochner norm

‖u‖Lp(Ω,F,P;W) :=

(∫
Ω
‖u(ω)‖p

W dP(ω)

) 1
p

and ‖u‖L∞(Ω,F,P;W) := ess sup ‖u(ω)‖W .

Again, if f , g ∈ Lp(Ω,F ,P; W) then f = g ⇐⇒ f (ω) = g(ω) for P almost all ω ∈ Ω.
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Assumptions on PDE Solution Map S(z)

1. For each z ∈ Z, c(u, z, ω) = 0 is well posed, i.e.,
(i) ∃! S(z) : Ω→ U such that c(S(z), z, ·) = 0 a.s. for all z;
(ii) ∃ 0 < c(·) ∈ Lq(Ω,F ,P), 1 ≤ q ≤ ∞ and an increasing function

ρ : [0,∞)→ [0,∞) both independent of z such that

‖S(z)‖U ≤ cρ(‖z‖Z) a.s. ∀z ∈ Zad.

2. S(z) is strongly measurable ∀z ∈ Zad =⇒ S(z) ∈ Lq(Ω,F ,P; U).
3. z 7→ S(z) satisfies the continuity property

zn ⇀ z in Z =⇒ S(zn) ⇀ S(z) in U, a.s.

4. ∃V ⊇ Zad, V open, such that S : V → Lq(Ω,F ,P; U) is
continuously Fréchet differentiable.

Senstivity Equation: To compute the sensitivity of S(z) in the
direction h ∈ Z solve:

cu(S(z), z, ·)S′(z)h + cz(S(z), z, ·)h = 0 a.s.
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Example: Linear Elliptic PDE
Let D ⊂ Rn be a bounded Lipschitz domain, U = H1

0(D), Y = Z = H−1(D)
and A : Ω→ Rn×n:

〈c(u, z, ω), v〉U∗,U :=

∫
D

(A(ω)∇u(x)) · ∇v(x) dx− 〈z, v〉U∗,U for v ∈ H1
0(D).

If ∃ 0 < c ≤ c <∞ such that

c ≤ ζ>A(ω)ζ

ζ>ζ
≤ c a.s.

then Lax-Milgram =⇒ existence of a unique solution u ∈ H1
0(D) to

c(u, z, ·) = 0 for fixed z a.s. Moreover,

c‖∇S(z)‖2
L2(D) ≤ ‖z‖H−1(D)‖S(z)‖H1

0(D) a.s.

Hence, Poincaré’s inequality guarantees that

‖∇S(z)‖L2(D) ≤ Cd,D‖z‖H−1(D) a.s.

and S : H−1(D)→ L∞(Ω,Σ,P; H1
0(D)).

Note: S with domain restricted to L2(D) is compact since L2(D) ⊂⊂ H−1(D).
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Uncertain Objective Functions

General Assumptions:
1. Integrability: Ĵ(z) ∈ Lp(Ω,F ,P) for all z ∈ Z;

2. Weak Lower Semicontinuity: If zn ⇀ z then

lim inf
n→∞

E[ϑ Ĵ(zn)] ≥ E[ϑ Ĵ(z)]

for all ϑ ∈ (Lp(Ω,F ,P))∗ satisfying ϑ ≥ 0 a.s.

Compare to normal integrands, i.e., the epigraph of Ĵ is measurable
and closed valued.
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Uncertain Objective Functions

Separable Objective Functions: J(u, z, ω) = g(u, ω) + ℘(z)

1. Carathéodory: g(·, ω) is continuous a.s. and g(u, ·) is measurable
∀ u ∈ U.

2. Growth Condition:
If q <∞, then ∃ 0 ≤ a ∈ Lp(Ω,F ,P) and c > 0 such that

|g(u, ω)| ≤ a(ω) + c‖u‖q/p
U ∀ u ∈ U a.s.

If q =∞, then ∀ c > 0 ∃ γc ∈ Lp(Ω,F ,P) such that

|J(u, ω)| ≤ γc(ω) a.s. ∀ u ∈ U, ‖u‖U ≤ c.

3. Convexity: g(·, ω) is convex a.s. (optional)
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Uncertain Objective Functions
The Separable Case

Superposition (Nemytskii) Operator:
G : Lq(Ω,F ,P; U)→ Lp(Ω,F ,P) where G(u) = g(u(·), ·).

1. If g is Carathéodory and satisfies the growth condition, then
G : Lq(Ω,F ,P; U)→ Lp(Ω,F ,P) is continuous.

2. If, in addition, g is convex, then G is Gâteaux directionally
differentiable.

3. If, in addition, g is locally Lipschitz, then G is Hadamard
directionally differentiable.

4. If g(·, ω) is continuously Fréchet differentiable for a.s. and there
exists α > 0 and K ∈ Ls(Ω,F ,P) with

s =

{
pq/(q− (1 + α)p) if q > (1 + α)p
∞ if q = (1 + α)p

such that

‖gu(u, ω)− gu(v, ω)‖U∗ ≤ K(ω)‖u− v‖αU a.s.

Then G is Fréchet differentiable.
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Example: Quadratic Objective Function

Let W be a real Hilbert space, w ∈W and C ∈ L(U,W). Consider

J(u, z, ω) =
1
2
‖Cu− w‖2

W +
γ

2
‖z‖2

Z, γ > 0.

J is separable with g(u, ω) =
1
2
‖Cu− w‖2

W.

1. Carathéodory: Satisfied since g has no dependence on ω.
2. Growth Condition: Satisfied (using Young’s inequality) with

a = ‖w‖2
W and c = ‖C‖2

L(U,W).

3. Convexity: Clearly satisifed.
4. Differentiability: Satisfied with K = ‖C‖2

L(U,W) and α = 1.

Result: G : Lq(Ω,F ,P; U)→ Lp(Ω,F ,P) is continuous and Fréchet
differentiable as long as q ≥ 2p.
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The Functional R
Assumptions & Existence of Minimizers

R : Lp(Ω,F ,P)→ R ∪ {+∞}
I R is proper, convex and lower semicontinuous
I R satisfies R(C) = C for all constants C;
I R is monotonic, i.e., if X ≥ X′ a.s., then R(X) ≥ R(X′).

Existence: If Zad is convex, closed and bounded, then there exists a
minimizer of J (z) = R(̂J(z)) in Zad.

Proof: Apply the direct method of the calculus of variations.

Note: The same result holds if Z = Zad and Ĵ(z) is a.s. coercive, i.e.,
Zad = Z and Ĵ(z) has the coercivity propery that ∃ r > 0 and coercive
ϕ : Z→ R ∪ {+∞}, such that

‖z‖Z ≥ r =⇒ Ĵ(z) ≥ ϕ(z) a.s.
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‖z‖Z ≥ r =⇒ Ĵ(z) ≥ ϕ(z) a.s.

Note: Need additional/different assumptions if p =∞!
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Modeling Risk Preference
What is risk? Possibility of loss or injury (Merriam Webster)

. . . In our optimization problem, J(S(z; ·), ·) is a risk!

We cannot directly minimize J(S(z; ·), ·) + ℘(z) ∈ X := Lp(Ω,F ,P)

. . . How should we quantify our risk?

I Traditional Stochastic Programming: Minimize on average

R(̂J(z)) = E[̂J(z)].

I Risk-Averse Stochastic Programming: Model risk preferences

R(̂J(z)) = E[̂J(z)] + cE[(̂J(z)− E[̂J(z)])
p
+]1/p.

I Probabilistic Optimization: Minimize the probability of loss

R(̂J(z)) = P(̂J(z) > τ).

I Stochastic Orders: Model risk preference with a benchmark Y

P(̂J(z) ≤ x) ≤ P(Y ≤ x) ∀ x ∈ R.
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Quantifying Risk & Controlling Uncertainty

I Reduce variability of optimized system:

E[(X − E[X])2] or E[(X − E[X])
p
+]1/p

I Control rare events, reduce failure, and certify reliability:

P(X > t) or qβ(X) = inf { t ∈ R : P(X ≤ t) ≥ β }

I Minimize over undesirable events:

CVaRβ(X) =
1

1− β

∫ 1

β

F−1
X (α) dα ≈ E[X |X ≥ qβ(X)]

VaR
β

CVaR
β

0

β

1
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Mitigating Uncertainty by Shaping Distributions
Law Invariance & Stochastic Dominance

Law Invariance:
I R is law invariant if

FX(t) = FX′ (t) ∀t ∈ R =⇒ R(X) = R(X′).

If R is law invariant, then it is a function of distributions.

Stochastic Dominance:
I X dominates X′ with respect to the 1st stochastic order, denoted X �(1) X′, if

FX(t) ≤ FX′ (t) ∀t ∈ R.

I X dominates X′ with repsect to the 2nd stochastic order, denoted X �(2) X′, if∫ t

−∞
FX(η) dη ≤

∫ t

−∞
FX′ (η) dη ∀t ∈ R

⇐⇒ E[(t− X)+] ≤ E[(t− X′)+] ∀t ∈ R.

Here, (x)+ = max{0, x}.

Consequences: Suppose R is law invariant:
I If X ≥ X′ a.s. implies R(X) ≥ R(X′), then X �(1) X′ implies R(X) ≥ R(X′);
I If R is lsc and convex, then −X′ �(2) −X implies R(X) ≥ R(X′).
I Law invariant R prefer dominated random variables!
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Mean-Plus-Variance Risk
Markowitz, Portfolio Selection, 1952

A common risk functional in engineering application is

R(X) = E[X] + cV[X] for c > 0.

Downsides:
I R penalizes variation below the mean.
I R is not monotonic.

Example: Shapiro, Dentcheva, Ruszczynski (2014)
Suppose Ω = {ω1, ω2} with associated probabilities p ∈ (0, 1) and (1− p).
Consider the stochastic program

Minimize
z1, z2

R(−ζ1z1 − ζ2z2) subject to z1 + z2 = 1 and z1, z2 ≥ 0

where ζ1, ζ2 : Ω→ R are

ζ1(ω1) = a > 0, ζ1(ω2) = 0, and ζ2(ω1) = ζ2(ω2) = 0.

If p ≤ 1− (ca)−1, then R(−ζ1) = −pa + ca2p(1− p) > R(−ζ2) = 0
eventhough −ζ1 ≤ −ζ2 for all ω ∈ Ω.
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Coherent Risk Measures
R : Lp(Ω,F ,P)→ R is coherent if

(R1) Subadditivity: For all X, X′ ∈ Lp(Ω,F ,P),

R(X + X′) ≤ R(X) +R(X′)

(R2) Monotonicity: For any X, X′ ∈ Lp(Ω,F ,P) satifying

X ≥ X′ a.s. =⇒ R(X) ≥ R(X′)

(R3) Translation Equivariance: For all X ∈ Lp(Ω,F ,P) and t ∈ R,

R(X + t) = R(X) + t

(R4) Positive Homogeneity: For all X ∈ Lp(Ω,F ,P) and t ≥ 0,

R(tX) = tR(X)

Ph. Artzner, F. Delbaen, J.-M. Eber & D. Heath, Coherent measures of risk. Math. Finance, 1999.
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Coherent Risk Measures
Some Good and Not So Good Properties?

Biconjugate Representation: (Recall R∗(ϑ) = supX{E[ϑX]−R(X)})
I R is proper, convex and lsc ⇐⇒

R(X) = sup {E[ϑX]−R∗(ϑ) | ϑ ∈ dom(R∗)} .
I R is translation equivariant and monotonic ⇐⇒

dom(R∗) ⊆ {ϑ ∈ (Lp(Ω,F ,P))∗ | E[ϑ] = 1, ϑ ≥ 0 a.s.}
I R is positive homogeneous ⇐⇒

R(X) = sup
ϑ∈dom(R∗)

E[ϑX].

Optimal ϑ? ∈ dom(R∗) are called risk identifiers

Example (Conditional Value-at-Risk (CVaR)): R(X) = 1
1−β

∫ 1
β

qX(β) dβ

dom(R∗) =

{
ϑ ∈ (Lp(Ω,F ,P))∗ |E[ϑ] = 1, 0 ≤ ϑ ≤ 1

1− β a.s.
}
.

Differentiability: If R : Lp(Ω,F ,P)→ R is coherent, then R is Fréchet
differentiable ⇐⇒ ∃ϑ ∈ (Lp(Ω,F ,P))∗ with ϑ ≥ 0 a.s., E[ϑ] = 1, and
R(X) = E[ϑX] for all X ∈ Lp(Ω,F ,P).
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CVaR and Kusuoka Representation

Let FX(x) = P(X ≤ x), then CVaR is

CVaRβ(X) :=
1

1− β

∫ 1

β

F−1
X (α) dα

VaR
β

CVaR
β

0

β

1

In fact, all law-invariant coherent risk measures have the representation

R(X) = sup
µ∈M

∫ 1

0
CVaRβ(X) dµ(β)

where M is a set of probability measures on [0, 1].

Spectral Risk Measures: Given a probability measure ν on [0, 1],

R(X) =

∫ 1

0
CVaRβ(X) dν(β)

=

∫ 1

0
h(β)F−1

X (β) dβ where h(β) :=

∫ β

0

1
1− α dν(α)

S. Kusuoka, On law-invariant coherent risk measures, Advances in Math. Econ., 2001.
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Risk Measure Examples
Risk Neutral:

R(X) = E[X]

is law invariant and coherent.

Mean-Plus-Deviation:

R(X) = E[X] + cE[|X − E[X]|p]1/p, c > 0

is law invariant and satisfies (R1), (R3) and (R4), but not (R2).

Mean-Plus-Upper-Semideviation:

R(X) = E[X] + cE[(X − E[X])
p
+]1/p, c ∈ [0, 1]

is law invariant and coherent.

Conditional Value-at-Risk:

R(X) =
1

1− β

∫ 1

β
F−1

X (η) dη = inf
t∈R

{
t +

1
1− β

E[(X − t)+]

}
, 0 ≤ β < 1

is law invariant and coherent.

Entropic Risk:
R(X) = λ−1 lnE[exp(λX)], λ > 0

is law invariant and satisfies (R1), (R2) and (R3), but not (R4).

D. P. Kouri Optimization and Control Under Uncertainty 27



More Measures of Risk
One can quantify risk using the optimized certainty equivalent risk measure

R(X) = inf
t∈R
{t + E[v(X − t)]}

where v : R→ R is a convex regret function that satisfies

v(0) = 0, v(x) > x ∀ x 6= 0

Relation to Utility: u(x) = −v(−x) is a utility function

Properties: R is convex and translation equivariant
R is positive homogeneous ⇐⇒ v is piecewise linear with kink at 0

R is monotonic ⇐⇒ v is nondecreasing

Mean-Plus-Variance

x

v(x)
CVaR

x

v(x)

Entropic Risk

x

v(x)

A. Ben Tal & M. Teboulle, An old-new concept of convex risk measures: The optimized certainty
equivalents, Math. Finance, 2007.
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The Risk Quadrangle

Risk R

Regret V

Deviation D

Error EO
pt

im
iz

at
io

n E
stim

ation

R(X) = E[X] +D(X)

= min
t
{t + V(X − t)}

V(X) = E[X] + E(X)

D(X) = R(X)− E[X]

= min
t
E(X − t)

E(X) = V(X)− E[X]

I R quantifies hazard — Used in optimization as objective function or constraint
I E quantifies nonzeroness — Used in regression analysis, e.g., polynomial chaos
I V quantifies displeasure for positive values — Used to define risk via disutility
I D quantifies nonconstancy — Used to define risk via variability

Quantile Quadrangle: 0 < α < 1

R(X) = CVaRα(X) D(X) = CVaRα(X − E[X])

V(X) = 1
1−αE[X+] E(X) = E[ α

1−αX+ + X−]

S(X) = qα(X)

Safety Margins Quadrangle: c > 0

R(X) = E[X] + cσ(X) D(X) = cσ(X)

V(X) = E[X] + c‖X‖2 E(X) = c‖X‖2

S(X) = E[X]

R. T. Rockafellar & S. Uryasev, The fundamental risk quadrangle in risk management,
optimization, and statistical estimation, Surveys in OR & Managment Science, 2013.
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Superquantile Quadrangle
Choosing the uniform probability measure on [β, 1],

ν(S) =
1

1− β

∫
S
1[β,1](α) dα,

produces the second-order CVaR

R(X) =
1

1− β

∫ 1

β

CVaRα(X) dα β 1

1
1−β

Confidence Level, α

S
pe

ct
ra

lF
un

ct
io

n,
h(
α

)

Second-order CVaR is a product of the risk quadrangle:

R(X) =
1

1− β

∫ 1

β
CVaRα(X) dα D(X) =

1
1− β

∫ 1

β
CVaRα(X − E[X]) dα

V(X) =
1

1− β

∫ 1

0
(CVaRα(X))+ dα E(X) =

1
1− β

∫ 1

0
(CVaRα(X))+ dα− E[X]

S(X) = CVaRβ(X)

R. T. Rockafellar & J. O. Royset, Random variables, monotone relations, and convex analysis,
Math. Programming, 2014.
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Example — CVaR
Optimal Control of 1D Elliptic Equation

Let γ = 10, D = (−1, 1), and w ≡ 1 and consider

minimize
z∈L2(−1,1)

J(z) =
1
2

CVaRβ

[∫ 1

−1
(S(z)(·, x)− 1)2 dx

]
+
γ

2

∫ 1

−1
z(x)2 dx

where S(z) = u ∈ L2(Ω,F ,P; H1
0(−1, 1)) solves the weak form of

−∂x (ε(ω, x)∂xu(ω, x)) = f (ω, x) + z(x) x ∈ D, a.s.,
u(ω,−1) = 0, u(ω, 1) = 0 a.s.

Ω = [−0.1, 0.1]× [−0.5, 0.5] is endowed with the uniform density, and
the random field coefficients are

ε(ω, x) = 0.1 · 1(−1,ω1) + 10 · 1(ω1,1), and f (ω, x) = exp(−(x− ω2)2).
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Example — CVaR
Sample Approximation: Monte Carlo with 10,000 samples.

β = 0.05 β = 0.5 β = 0.95

−0.1 0 0.1
−0.5

0

0.5

ξ
1

ξ 2

−0.1 0 0.1
−0.5

0

0.5

ξ
1

ξ 2

−0.1 0 0.1
−0.5

0

0.5

ξ
1

ξ 2

ϑ∗ = 0 and ϑ∗ = (1− β)−1
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Probabilistic Hazard
Standard Engineering Prospective

X = Ĵ(z) = “cost” signaling “danger”

ω1

ω2

X ≤ x O.K.

X > x failure zone

threshold depending on z

Probability of failure: R(X) = px(X) = P(X > x)

I How to compute or at least estimate?
I How to cope with control variables z in optimization?

Both px(X) and the threshold change with z!

Troubles with this concept:
I Poor mathematical behavior is a serious handicap.
I Failure probability ignores the degree of failure.
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Buffered Probabilities
Rockafellar & Royset (2013), Mafusalov & Uryasev (2014), Norton & Uryasev (2014)

Utilizing CVaR in place of quantile in reliability

ω1

ω2

X ≤ x O.K.

X > x failure zone

buffer zone

X = x+ τ (< x)

X = x

Buffered probability of failure: R(X) = px(X) = P(X > τ(x))
where τ(x) is determined by CVaR(1−px(X))(X) = E[ X |X > τ(x) ] = x.

bPOEx[X] = 1− α where α solves CVaRα[X] = x.

qβ = VaRβ

q̄β = CVaRβ

PDF

qα q̄α = x

α = 1− p̄x

1− px CDF
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Buffered Probability Properties

I Optimization representation:

bPOEx[X] = min
t≥0

E[(t(X − x) + 1)+]

I Takes into account values of outcomes in the distribution tail

I Closed, quasi-convex and monotonic in random variable X

I Lowest quasi-convex (in X) upper bound of POE

I Continuous with respect to threshold x ∈ [E[X], ess sup X)

I Easy to manage (optimize with convex and linear programming)

I CVaRα[X] ≤ x ⇐⇒ bPOEx[X] ≤ 1− α

Objective function in optimization representation is nonsmooth!

Question: Is it possible to account for higher-order tail moments?
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Higher-Moment Coherent Risk Measures
Higher-Moment Coherent Risk (HMCR) measures with p ≥ 1 and β ∈ [0, 1)

HMCRp,β [X] = inf
t∈R

{
t +

1
1− βE[(X − t)p

+]1/p
}

1. As the name suggests, HMCRp,β is coherent and law invariant

2. When p = 1, we have that HMCR1,β [X] = CVaRβ [X]

3. HMCRp,β is generated from the risk quadrangle with regret measure

V(X) =
1

1− βE[(X)
p
+]1/p

Properties of HMCR: Suppose X is not degenerate (constant)

1. p 7→ HMCRp,β [X] is nondecreasing

2. β 7→ HMCRp,β [X] is nondecreasing and continuous

3. In fact, β 7→ HMCRp,β [X] is strictly increasing on [0, 1− πX) with

πX = prob(X = ess sup X)

4. HMCRp,0[X] = E[X] and HMCRp,1[X] = ess sup X

β 7→ HMCRp,β [X] has a nondecreasing and continuous inverse!
P. A. Krokhmal, Higher moment coherent risk measures, Quantitative Finance, 2007.
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Higher-Moment bPOE Properties
Kouri (2018)

I Optimization representation:

bPOEp,x[X] = min
t≥0

E[(t(X − x) + 1)
p
+]1/p

I Takes into account moments of outcomes in the distribution tail

I Closed, quasi-convex and monotonic in random variable X

I Continuous with respect to threshold x ∈ [E[X], ess sup X)

I Objective function in optimization representation is smooth in X

I HMCRp,α[X] ≤ x ⇐⇒ bPOEp,x[X] ≤ 1− α

I bPOEx[X] ≤ (bPOE2,x[X])2 ≤ . . . ≤ (bPOEp,x[X])p
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Example: Second-Moment Buffered Probability
Suppose X ∼ N(0, 1) with cdf Φ and pdf φ. Let x ≥ 0 then

Z := (t(X − x) + 1) ∼ N(1− tx, t) ∀ t > 0

Therefore, the buffered probability of X exceeding x is

bPOEx[X] = min
t≥0
{(1− tx)(1− Φ(x− 1/t)) + tφ(x− 1/t)}

and the second order buffered probability of X exceeding x is

(bPOE2,x[X])2 = min
t≥0
{((1−tx)2+t2)(1−Φ(x−1/t))+t(1−tx)φ(x−1/t)}.

x POEx[X] bPOEx[X] (bPOE2,x[X])2 bPOE2,x[X]
0 0.5 1 1 1
1 0.15866 0.38109 0.46235 0.67996
2 0.02275 0.05799 0.07423 0.27246
3 0.00135 0.00353 0.00463 0.06806
4 0.00003 0.00008 0.00011 0.01056

x = 2

0 1 2 3 4 5

t

0

0.2

0.4

0.6

0.8

1

Order 1 and Order 2
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3D Topology Optimization with Buffered Probability
Given compliance tolerance c0, probability p0 ∈ (0, 1), order q ≥ 1,

min
0 ≤ z ≤ 1

∫
D

z dx =: vol(z) subject to bPOEq,c0

(∫
D

F · S(z)dx
)
≤ 1− p0

where S(z) = u solves the linear elasticity equations

−∇ · (E(z) : εu) = F, in D.

εu = 1
2 (∇u +∇u>), in D.

u = 0, on ΓD

εu : n = 0, on ∂D \ ΓD

Γd ?
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Numerical Results

Spatial Discretization: Q1 FEM on a uniform 32× 16× 16 mesh

Stochastic Discretization: Q = 120 Monte Carlo samples

Problem Data: p0 = 0.75 and c0 = 2E
[∫

D F · S(1)dx
]

Mean Value Risk Neutral bPOE

MV RN bPOE
Volume Fraction 49.061% 47.634% 67.204%
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Numerical Results

Spatial Discretization: Q1 FEM on a uniform 32× 16× 16 mesh

Stochastic Discretization: Q = 120 Monte Carlo samples

Problem Data: p0 = 0.75 and c0 = 2E
[∫

D F · S(1)dx
]

Mean Value Risk Neutral bPOE

Topology changes from beam to shell!

MV RN bPOE
Volume Fraction 49.061% 47.634% 67.204%
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Numerical Results

Spatial Discretization: Q1 FEM on a uniform 32× 16× 16 mesh

Stochastic Discretization: Q = 120 Monte Carlo samples

Problem Data: p0 = 0.75 and c0 = 2E
[∫

D F · S(1)dx
]

bPOEc0 bPOE2,c0 bPOE3,c0

Order 1 2 3
Volume Fraction 67.204% 77.369% 80.075%
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Numerical Results

Spatial Discretization: Q1 FEM on a uniform 32× 16× 16 mesh

Stochastic Discretization: Q = 120 Monte Carlo samples

Problem Data: p0 = 0.75 and c0 = 2E
[∫

D F · S(1)dx
]

bPOEc0 bPOE2,c0 bPOE3,c0

Topology changes from beam to shell!

Order 1 2 3
Volume Fraction 67.204% 77.369% 80.075%
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What if our uncertainty is uncertain?
Distributionally Robust Stochastic Programming

(Ω,F) is a measurable space and prob. measure is unknown.
Consider

min
z∈Zad

R( Ĵ(z)) = sup
P∈A

EP[ Ĵ(z)].

Ambiguity Set: A ⊂ {P : F → [0, 1] | P(Ω) = 1} defined by data.
For example:

I Moment Matching: Given generalized moment data m1, . . . ,mN,

A = {P : F → [0, 1] | P(Ω) = 1, EP[ψi] = mi, i = 1, . . . ,N} .

I Φ-Divergence (e.g., Kullback-Leibler, χ2, TV, Hellinger, . . . ):
Given a nominal P0 and ε > 0,

A = {P : F → [0, 1] | P(Ω) = 1, DΦ(P,P0) ≤ ε} .

I Wasserstein Distance: Given a nominal P0 and ε > 0,

A =

{
P : F → [0, 1] | P(Ω) = 1, sup

f∈L

∫
Ω

f (ω) d(P− P0)(ω) ≤ ε

}
.
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Example: Moment Matching

Let ψi : Ω→ R be F-measurable functions and mi ∈ R for i = 1, . . . ,N

A =

P : F → [0, 1] | P(Ω) = 1,
EP[ψi] = mi, i = 1, . . . ,Ne

EP[ψi] ≤ mi, i = Ne + 1, . . . ,N

 .

Theorem (Rogosinski): If A 6= ∅, then for each z ∈ Z there exists ωi
and pi ≥ 0 with p1 + · · ·+ pN+1 = 1 such that

R( Ĵ(z)) = sup
P∈A

EP[ Ĵ(z)] =

N+1∑
i=1

pi J([S(z)](ωi), z, ωi)

W. W. Rogosinski, Moments of non-negative mass, Proceedings of the Royal Society of London:
Series A, Math. and Phys. Sciences, 1958.
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Example: Φ-Divergence
Supppose

(i) A nominal probability measure P0 is given,

(ii) The random variable X ∈ Lp(Ω,F ,P0), and

(iii) Φ : R→ [0,∞] is convex lower semicontinuous satisfying

Φ(1) = 0 and Φ(x) =∞ ∀ x < 0.

Define, for fixed ε > 0,

A = {ϑ ∈ (Lp(Ω,F ,P0))
∗ | EP0 [ϑ] = 1, ϑ ≥ 0, EP0 [Φ(ϑ)] ≤ ε} .

Then R(X) = sup
ϑ∈A

EP0 [ϑX] = inf
λ≥0, µ

{λε+ µ+ EP0 [(λΦ)∗(X − µ)]}

is a law-invariant coherent risk measure!

Example (Kullback-Leibler Divergence): Φ(x) = xln(x)− x + 1, x ≥ 0

R(X) = inf
λ>0

{
λc + λlnEP0

[
eX/λ

]}
.

A. Ben Tal & M. Teboulle, Penalty functions and duality in stochastic programming via
phi-divergence functionals, Mathematics of Operations Research, 1987.
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Robust Probabilitistic Optimization
Shapiro, Mafusalov, Uryasev, Kouri (2018)

When P is unknown, we can similarly robustify the POE and bPOE.

Probability: In general, we have that

POE?x(X) = sup
P∈A

P(X > x) = sup
P∈A

EP[1A] = R(1A)

where A = {ω ∈ Ω |X(ω) > x} and R is a coherent risk measure!

Buffered Probability: Under mild regularity conditions, we have

bPOE?x(X) = sup
P∈A

min
t≥0

EP[(t(X − x) + 1)+] = min
t≥0

sup
P∈A

EP[(t(X − x) + 1)+]

= min
t≥0
R((t(X − x) + 1)+)

where R is a coherent risk measure! For Φ-divergence ambiguity,

bPOE?x(X) = min
t≥0,λ≥0,µ

{λε+ µ+ EP0 [(λΦ)∗((t(X − x) + 1)+ − µ)]} .
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Distributionally Robust Contaminant Mitigation
Problem Description

Model contaminant spread by advection-diffusion on D = (0, 1)2.
Determine controls that mitigate the contaminant

min
z
R
(
κs

2

∫
D

S(z)2 dx
)

+ ℘(z) subject to 0 ≤ z ≤ 1

where S(z) = u : Ω→ H1(D) solves

−∇ · (ε(ω)∇u(ω)) + V(ω) · ∇u(ω) = f (ω)− Bz, in D, a.s.

u(ω) = 0, on Γd, a.s.

ε(ω)∇u(ω) · n = 0, on ∂D \ Γd, a.s.,

Bz =

9∑
k=1

zk exp

(
−‖x− pk‖2

2

2σ2

)
and ℘(z) = κc‖z‖1 = κc

9∑
k=1

zk.

Control 1 2 3 4 5 6 7 8 9
x1 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75
x2 0.25 0.25 0.25 0.50 0.50 0.50 0.75 0.75 0.75

Total of 37 random variables.
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Risk-Averse Contaminant Mitigation

Nominal Distribution: ξk(ω) ∼ U(−1, 1) with k = 1, . . . , 37

Diffusivity:
log(c ε(ω, x)− 0.5) = 1 + ξ1(ω)

(√
πLc

2

)1/2

+
10∑

n=2

ζkφk(x)ξk(ω)

Advection:

0 0.2 0.4 0.6 0.8 1

0
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0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Source:

f (ω, x) =

5∑
k=1

ξ8+5k(ω) exp
(
−(x1 − ξ9+5k(ω))2

2ξ10+5k(ω)2

)
exp

(
−(x2 − ξ11+5k(ω))2

2ξ12+5k(ω)2

)
.
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Numerical Results
DRO with KL-Divergence Ambiguity

R(X) = inf
λ>0

{
λc + λ ln E

[
eX/λ

]}
Ĵ(z?) + ℘(z?)
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c=10
-3

c=10
-2

c=10
-1

c=1

c=5

log10(c) 1 2 3 4 5 6 7 8 9 obj
10−3 —– 0.410 —– —– 1.000 —– —– —– —– 3.465
10−2 —– 0.560 —– —– 1.000 —– —– —– —– 3.637
10−1 —– 1.000 —– —– 1.000 —– —– —– —– 4.186

1 —– 1.000 —– 0.580 1.000 0.709 —– —– —– 5.939
5 1.000 1.000 0.249 1.000 1.000 1.000 —– —– —– 8.124
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Methods for Stochastic Optimization
Minimizing the Expectation

1. Stochastic Approximation (SA): Stochastic subgradient
descent only requires a single sample at every iteration.

2. Progressive Hedging: Decoupled deterministic optimization via
alternating directions method of multipliers (ADMM).

3. Sample Average Approximation (SAA): (Quasi) Monte Carlo
approximation of expected value.

4. Adaptive Stochastic Collocation: Deterministic quadrature
approximation of expected value. Adaptivity using trust regions.

Note: The convergence of SA and SAA is probabilistic!

Note: Risk measures and probabilistic functionals are often
nonsmooth =⇒ polynomial approximation and derivative-based
optimization may not apply.
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The Finite Noise Assumption

Suppose there exists a random vector ξ : Ω→ Ξ ⊆ RM and functions
J : U × Z× Ξ→ R and c : U × Z× Ξ→ Y such that

J(u, z, ω) = J(u, z, ξ(ω)) and c(u, z, ω) = c(u, z, ξ(ω)).

Moreover, assume the probability law P ◦ ξ−1 has Lebesgue density
ρ : Ξ→ R, i.e., dP ◦ ξ−1 = ρdξ.

This permits the change of variables from ω ∈ Ω to ξ ∈ Ξ.
Analysis now performed in weighted Lebesgue space

Lp
ρ(Ξ) =

{
v : Ξ→ R |

∫
Ξ

|v(ξ)|pρ(ξ) dξ <∞
}
.

L∞ρ (Ξ) and Lp
ρ(Ξ; W) are similarly defined.

Independence: For adaptive stochastic collocation, we will assume
that the components of ξ are independent and

Ξ = [a1, b1]× · · · × [aM, bM] and ρ = ρ1 ⊗ · · · ⊗ ρM.
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Stochastic Approximation

Set Ĵ(z) = J(u(z), z, ·). Let Z be Hilbert and Zad be closed convex.

Given zk ∈ Zad and G(zk, ξ) = Gk(ξ) such that E[Gk(ξ)] ∈ ∂E[̂J(zk)],
the SA iteration is

zk+1 = ΠZad(zk − µkGk(ξk)), µk > 0,

where ξk for k = 1, . . . is an iid sequence of realizations and

ΠZad(z) = arg min
ζ∈Zad

‖z− ζ‖Z.

Note: ΠZad is (firmly) nonexpansive.
Note: For PDE-constrained optimization, SA requires a single
deterministic state and adjoint solve per iteration!

Must solve:

c(u, zk, ξk) = 0 and cu(uk, zk, ξk)
∗λ = −Ju(uk, zk, ξk).

H. Robbins & S. Monro, A stochastic approximation method, An. Math. Statist., 1951.
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Analysis for Linear-Elliptic Quadratic Control

Recall: (Spaces) Z = L2(D) and Zad = {z ∈ Z | za ≤ z ≤ zb},
U = H1

0(D), Y = H−1(D), W is a Hilbert space such that U ↪→W,

J(u, z, ξ) =
1
2
‖Cu− w‖2

W +
γ

2
‖z‖2

Z

where C ∈ L(U,W), w ∈W and γ > 0, and for v ∈ U

〈c(u, z, ξ), v〉−1,1 =

∫
D

(A(ξ)∇u(x)) · ∇v(x) dx−
∫

D
z(x)v(x) dx.

Note: J (z) = E[̂J(z)] is strongly convex with constant γ.

Stochastic Approximation: Given zk ∈ Z and uk ∈ U that solves
c(uk, zk, ξk) = 0

Gk(ξk) = γzk + λk

where λk solves the adjoint equation∫
D

(A(ξk)∇λk(x)) · ∇v(x) dx = −〈Cuk − w,Cv〉W ∀ v ∈ U.
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Analysis for Linear-Elliptic Quadratic Control

Let z∗ ∈ Zad minimize J (z) over Zad then (since ΠZad is nonexpansive)

E[‖zk+1 − z∗‖2
Z] = E[‖ΠZad (zk − µkGk(ξk))−ΠZad (z∗)‖2

Z]

≤ E[‖zk − z∗‖2
Z] + µ2

kE[‖Gk(ξk)‖2
Z]− 2µkE[〈Gk(ξk), zk − z∗〉Z]

zk only depends on ξ1, . . . , ξk−1 (which are iid), thus

E[〈zk − z∗,Gk(ξk)〉Z] = E[E[〈zk − z∗,Gk(ξk)〉Z|ξ1, . . . , ξk−1]] Law of Total Exp.

= E[〈zk − z∗,E[Gk(ξk)|ξ1, . . . , ξk−1]〉Z] Fubini’s Theorem

= E[〈zk − z∗,E[∇F(zk)]〉Z]

≥ E[〈zk − z∗,E[∇F(zk)−∇F(z∗)]〉Z Optimality of z∗

≥ γE[‖zk − z∗‖2
Z]. Strong Convexity of J
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Analysis for Linear-Elliptic Quadratic Control

Since Zad is bounded and u, λ depend continuously on z, we have

E[‖G(z, ξ)‖2
Z] ≤ M2 ∀ z ∈ Zad

=⇒ E[‖zk+1 − z∗‖2
Z] ≤ E[‖zk − z∗‖2

Z] + µ2
kM2 − 2µkγE[‖zk − z∗‖2

Z].

Now, set µk = θ/k, then

E[‖zk+1 − z∗‖2
Z] ≤

(
1− 2γθ

k

)
E[‖zk − z∗‖2

Z] +
θ2M2

k2 Previous Results

≤ max{θ2M2(2γθ − 1)−1, ‖z1 − z∗‖2
Z}

k
. Use Induction

Minimizing the right hand side with θ > 0 gives θ∗ = 1/γ.

Note: The expected decay at each iteration is O(k−1)

=⇒ to reach tolerance ε requires O(ε−1) iterations (on average)!
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Progressive Hedging
Problem Assumptions: Suppose Ĵ(·, ξ) is a convex random loss and ξ is
discretely distributed. Consider the convex program

Minimize
z∈Zad

{
E[̂J(z, ξ)] =

N∑
k=1

pk Ĵ(z, ξk)

}
.

Progressive Hedging Algorithm:
Given ẑ ∈ Z and a Z-valued r.v. W(ξ) with E[W(ξ)] = 0.

1. Compute ζ(ξ) ∈ Zad a.s. that approximately solves

Minimize
z∈Zad

{̂
J(z, ξ) + 〈W(ξ), z〉Z + r

2‖z− ẑ‖2
Z

}
a.s.

2. Update ẑ = E[ζ(ξ)] = p1ζ1 + . . .+ pNζN.

3. Update W(ξ) = W(ξ) + r(ζ(ξ)− ẑ).

Step 1 requires solving decoupled deterministic convex opt. problems!

However, objective function Ĵ(·, ξ) must be convex . . .

R. T. Rockafellar & R. J.-B. Wets, Scenarios and policy aggregation in optimization under
uncertainty, Math. Oper. Res., 1991.
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Sample Average Approximation

Idea: Approximate expected value in J using Monte Carlo.

Let ξ1, . . . , ξN be iid random samples of ξ, then solve

Minimize
z∈Zad

{
ĴN(z) =

1
N

N∑
k=1

Ĵ(z, ξk)

}
.

Apply nonlinear programming algorithms to solve numerically.

Linear-Elliptic Quadratic Control:
(i) Let z∗N ∈ Zad minimize ĴN over Zad

(ii) Let z∗ ∈ Zad minimize J over Zad.
Strong convexity of J and optimality of z∗N, z∗ imply

γ‖z∗N − z∗‖2
Z ≤ 〈z∗N − z∗,∇J (z∗N)−∇J (z∗)〉Z
≤ 〈z∗N − z∗,∇J (z∗N)−∇ĴN(z∗N)〉Z

Therefore, γ‖z∗ − z∗N‖Z ≤
∥∥∥E[λ]− 1

N

∑N
k=1 λk

∥∥∥
Z

“=”O(N−
1
2 ) Probabilistic!
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Stochastic Collocation

Idea: Approximate expected value in J using quadrature.

Let ξ1, . . . , ξN be quad. points with weights w1, . . . ,wN, then solve

Minimize
z∈Zad

{
ĴN(z) =

N∑
k=1

wk Ĵ(z, ξk)

}
.

Apply nonlinear programming algorithms to solve numerically.

Linear-Elliptic Quadratic Control:
(i) Let z∗N ∈ Zad minimize ĴN over Zad

(ii) Let z∗ ∈ Zad minimize J over Zad.
Strong convexity of J and optimality of z∗N, z∗ imply

γ‖z∗N − z∗‖2
Z ≤ 〈z∗N − z∗,∇J (z∗N)−∇J (z∗)〉Z
≤ 〈z∗N − z∗,∇J (z∗N)−∇ĴN(z∗N)〉Z

Therefore, γ‖z∗ − z∗N‖Z ≤
∥∥∥E[λ]−

∑N
k=1 wkλk

∥∥∥
Z

= Quad. Error
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Sparse Grids and Adaptivity
Gerstner and Griebel 2003

I 1D Operators: For k = 1, . . . ,M, E0
k ≡ 0 and

∆i
k ≡ Ei

k − Ei−1
k where Ei

k(g)
i→∞−−−→

∫
Ξk

ρk(ξ)g(ξ)dξ

I Sparse-Grid Operator: For an index set I ⊂ NM,

EI ≡
∑
i∈I

(∆
i1
1 ⊗ · · · ⊗∆

iM
M )

I Admissibility: i ∈ I and i ≥ j =⇒ j ∈ I
I Error: Given the index set I ⊂ NM, the error is

E− EI =
∑
i6∈I

(∆
i1
1 ⊗ · · · ⊗∆

iM
M )

I Adaptivity: Pick i 6∈ I s.t. I ∪ {i} admissible and ∆
i1
1 ⊗ · · · ⊗∆

iM
M “large”
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Trust-Region Algorithm

Given: z0, m0(s) ≈ J (z0 + s), J0 ≈ J , ∆0 ≥ 0, and gtol > 0.
While ‖∇mk(s)‖Z > gtol

1. Model Update: Choose a new mk(s) ≈ J (zk + s). ← ADAPTIVITY

2. Step Computation: Approximate a solution, sk, to the subproblem

min
s∈Z

mk(s) subject to ‖s‖Z ≤ ∆k.

3. Objective Update: Choose a new Jk(z) ≈ J (z). ← ADAPTIVITY

4. Step Acceptance: Compute

ρk =
Jk(zk)− Jk(zk + sk)

mk(0)−mk(sk)
.

If ρk ≥ η ∈ (0, 1), then zk+1 = zk + sk else zk+1 = zk.

5. Trust Region Update: Choose a new trust region radius, ∆k+1.

EndWhile
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Inexact Gradients and Objective Functions
Kouri, Heinkenschloss, Ridzal, and van Bloemen Waanders (2013, 2014)

Inexact Gradients
There exists c > 0 independent of k such that

‖∇mk(0)−∇J (zk)‖Z ≤ c min{‖∇mk(0)‖Z ,∆k}

(Carter 1989, Heinkenschloss and Vicente 2001).

Inexact Objective Functions
There exists K > 0, ω ∈ (0, 1), and θ(z, s)→ 0 as r→ 0 such that

|(J (zk)− J (zk + sk))− (Jk(zk)− Jk(zk + sk))| ≤ Kθ(zk, sk)

θ(zk, sk)
ω ≤ ηmin {(mk(0)−mk(sk)), rk} .

Here, η > 0 is tied to algorithmic parameters and limk→∞ rk = 0.
(Carter 1989, Ziems and Ulbrich 2013).

I Cannot compute J (zk) and ∇J (zk);
I Control a posteriori errors using adaptive sparse grids.
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Optimal Control of Steady Burger’s Equation

Let γ = 10−3, Ωo = Ωc = Ω = (0, 1), and w ≡ 1 and consider

min
z∈L2(0,1)

J (z) =
1
2
E

[∫ 1

0
(u(·, x; z)− 1)2 dx

]
+
γ

2

∫ 1

0
z(x)2 dx

where u = S(z) ∈ L3
ρ(Ξ; H1(0, 1)) solves the weak form of

−ν(ξ)∂xxu(ξ, x) + u(ξ, x)∂xu(ξ, x) = f (ξ, x) + z(x) (ξ, x) ∈ Ξ× Ω,

u(ξ, 0) = d0(ξ), u(ξ, 1) = d1(ξ) ξ ∈ Ξ.

Ξ = [−1, 1]4 is endowed with the uniform density ρ(ξ) ≡ 2−4, and the
random field coefficients are

ν(ξ) = 10ξ1−2, f (ξ, x) =
ξ2

100
, d0(ξ) = 1+

ξ3

1000
, and d1(ξ) =

ξ4

1000
.
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Adaptive Sparse Grid Results

Spatial: Piecewise Linear Finite Elements
Stochastic: Maximum Level 8 Clenshaw-Curtis Sparse Grids

Algorithm NonlinPDE CPobj LinearPDE CPgrad Rel. Err.
Newton-CG 45,224 (1.0) 7,537 489,906 (1.0) 7,537 –
Grad. Adapt. 45,531 (1.0) 7,537 3,405 (143.9) 249 2.89×10−6

Full Adapt. 603 (75.0) 23 3,405 (143.9) 249 2.89×10−6
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The Rapid Optimization Library

Stochastic Optimization Capabilities

1. Risk Measures: CVaR, Expectation,
Mean-Plus-(Semi)Deviation, Mean-Plus-(Semi)Variance,
Entropic Risk, Spectral Risk, Buffered Probability, . . .

2. Distributionally Robust: Φ-divergence ambiguity including
Kullback-Leibler, χ2, Total Variation, Hellinger, . . .

3. Other Features: Numerous measures of regret, deviation and
error, linear regression tool, stochastic constraints, . . .

4. Parallelism and adaptivity through BatchManager,
SampleGenerator and TrustRegionStep.

https://github.com/trilinos/Trilinos
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The Rapid Optimization Library

PDE-OPT Application Development Kit

https://github.com/trilinos/Trilinos
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The Rapid Optimization Library

PDE-OPT Application Development Kit

Physics module Equations # Fields FE space FE order

Convective heat Advection-diffusion 1 H(grad) 1 or 2
Radiative heat Stefan-Boltzmann 1 H(grad) 1 or 2
Semiconductor Poisson-Boltzmann 1 H(grad) 1 or 2
Structural dynamics Linear elasticity d H(grad) 1 or 2
Incompressible flow Navier-Stokes d + 1 H(grad) + H(div) 1 and 2
Thermally convected flow Navier-Stokes+A.D. d + 2 H(grad) + H(div) 1 and 2
Superconductivity Ginzburg-Landau 2 H(grad) 1 or 2
Acoustics Helmholtz 2 H(grad) 1 or 2

https://github.com/trilinos/Trilinos
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