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ABSTRACT 
An important challenge encountered during post-processing of 
finite element analyses is the visualizing of three-dimensional 
fields of real-valued second-order tensors.  Namely, as finite 
element meshes become more complex and detailed, evaluation 
and presentation of the principal stresses becomes 
correspondingly problematic.   

In this paper, we describe techniques used to visualize 
simulations of perturbed in-situ stress fields associated with 
hypothetical salt bodies in the Gulf of Mexico.  We present an 
adaptation of the Mohr diagram, a graphical paper and pencil 
method used by the material mechanics community for estimating 
coordinate transformations for stress tensors, as a new tensor 
glyph for dynamically exploring tensor variables within three-
dimensional finite element models.  This interactive glyph can be 
used as either a probe or a filter through brushing and linking.  
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1 INTRODUCTION 

Tensors play an important role in many types of physically- based 
simulations, including velocity gradients in fluid flow, stress 
analysis in materials mechanics, and geomechanical modeling in 
oil and gas exploration.  Consequently, we are concerned with 
visualizing three-dimensional fields of real-valued second-order 
tensors.   

The motivation for our work is to present tensor information 
in a way that taps into our users pre-existing mental models.  
Since our users are predominantly from the material mechanics 
and geomechanics communities, they have requested that we base 
our visualization on the Mohr diagram, which is a paper-and-
pencil graphic aid that they learned as undergraduates in 
introductory courses.  Although we have modernized the Mohr 
diagram by adding interactivity, and extended it to encode 
additional information about groups of tensors, we have retained 
enough of the original concept for our users to easily understand 
the visualization.  

Our task hinges primarily on the visualization of symmetric 
tensors because any general tensor can be decomposed additively 
into symmetric and skew-symmetric parts, or alternatively, 
multiplicatively decomposed into the product of an orthogonal 
(unitary) rotation tensor and a symmetric (stretch) tensor.  Both 
skew-symmetric and orthogonal tensors may be visualized 
through standard vector visualization tools (for example, the 
skew-symmetric part of a velocity gradient is proportional to the 

vorticity vector field; also, though rotation operations do not 
commute, any rotation tensor can be quantified by a pseudo-
rotation vector through application of the Euler-Rodrigues 
theorem [8]). 

The tensors examined in this paper are stress tensors, which 
can be decomposed into a symmetric part representing local force 
balance plus an anti-symmetric part balancing distributed torques 
(which are usually zero for the vast majority of engineering 
applications, making stress typically symmetric).  

We define a second-order tensor T to be a 3x3 matrix of 
values relative to a given “physical” basis: 
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Any tensor T can be decomposed as T = S + A, where S is 
symmetric (Sij = Sji) and A is skew-symmetric (Aij = -Aji).  There 
always exists an alternative basis – the principal basis – in which 
the off-diagonals of S are zero and the diagonal components equal 
the eigenvalues.   

After diagonalization of S, the eigenvalues are λ1, λ2, and λ3, 
ordered so that λ1 ≥ λ2 ≥ λ3; the corresponding orthonormalized 
eigenvectors are e1, e2, and e3.  The eigenvectors are the principal 
axes of the tensor and are respectively known as the major, 
medium and minor axes.  Eigenvalues and eigenvectors have 
profoundly useful physical meanings that vary depending on the 
definition of the source tensor S.  If, for example, S represents a 
stress, scaling the eigenvectors by the eigenvalues provides a 
measure of the forces per unit area in orthonormal directions.  
There are no shearing stresses on the principal planes; planes of 
extremum shearing stress form equal angles with two principal 
planes.  If S represents the stretch tensor from a multiplicative 
decomposition of material deformation, an eigenvalue equals the 
ratio of deformed length to initial length of the material fiber 
parallel to the eigenvector.  This paper aims to visualize 
eigenvalues and eigenvectors in an ensemble sense.  Our lexicon 
treats S as a stress tensor, but the techniques apply equally well to 
any other type of symmetric tensor. 

We can determine the types of forces acting on a material 
element by examining the signs of its tensor’s eigenvalues.  If the 
eigenvalues are all positive, then the forces are tensile, meaning 
that the element is elongated in tension.  If the eigenvalues are all 
negative, the element is being compressed.  If the eigenvalues are 
of mixed sign, then the element is compressed in some directions 
and pulled in others.  When all of the eigenvalues are equal, λ1 = 
λ2 = λ3, the forces are said to be isotropic, and (if the material is 
also isotropic) the element changes size without changing shape.  
When the eigenvalues are unequal, the forces are anisotropic. 
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2 MOHR DIAGRAMS  

Otto Mohr developed Mohr diagrams, or Mohr’s circles, around 
1900 as a graphical method for performing coordinate 
transformations for stress.  Although they were developed to 
analyze stress, they can be used with any tensor matrix.  The 
method applies to both symmetric and nonsymmetric tensors in 
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two dimensions.  However in three-dimensions, Mohr diagrams 
are limited to describing just symmetric tensors [2]. 

For three-dimensional symmetric tensors, the Mohr diagram 
is actually a triad of circles.  However, we will refer to the entire 
triad as a Mohr’s circle, since each triad represents a single tensor.  
The Mohr diagram is generated by first performing an eigenvalue 
decomposition of the tensor.  For stress tensors, the eigenvectors 
are normal to planes that are subjected to only normal stress (zero 
shear).  However, planes not aligned with the principal directions 
generally experience both normal and shearing stresses.  
Consequently, there exists a state space of shear stress, τ, versus 
normal stress, σ, characterizing achievable solutions over the 
infinity of possible orientations of an arbitrary plane cutting 
through the element.  Otto Mohr proved that the set of achievable 
pairs of τ and σ would always fall within the interior of a circle 
with diameter equal to the difference between largest and smallest 
eigenvalues; furthermore, attainable stress pairs will always fall 
outside the circles formed by differences between the extreme and 
middle eigenvalues.  For symmetric tensors, these circles will 
always fall on the normal stress axis, so constructing them is 
simply a matter of drawing three circles between the eigenvalues.  
Of course, these circles must fall on the σ axis because principal 
planes suffer no shear.  

The outer circle is a measure of the degree of anisotropy of 
the tensor; the larger the circle, the more anisotropic the tensor is 
(i.e., the greater the peak attainable shear stress).  Isotropic tensors 
collapse to a point, meaning that there is no shear stress regardless 
of plane orientation.  The position of the Mohr’s circle on the 
σ axis relative to the origin represents whether the tensor is in 
compression or tension.  Circles that are entirely to the left of the 
origin are in compression; those to the right are in tension.  
Circles enclosing the origin represent tensors with a combination 
of both compressive and tensile forces. 
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Figure 1.  Mohr's circles examples. 

In Figure 1, there are four Mohr’s circles (each illustrating 
different stress tensors) lettered A, B, C, and D.  Both A and B 
represent compression tensors.  D is a tensile tensor.  C has a 
combination of both compressive and tensile forces.  All of the 
tensors are anisotropic, except for B, which is isotropic.  The 
diameter of the outer circle shows the spread between the major 
and the minor eigenvalues, λ1 and λ3.  The intersection of the two 
smaller inner circles shows the value for the medium eigenvector, 
λ2.  Note that in A, λ2 = λ3, so that the larger of the two inner 
circles overlaps the outer circle and the smaller inner circle goes 
to a point.  Both A and B represent degenerate cases used to 
identify features [17].  The shaded regions in C and D show all 
the achievable solutions for τ and σ within tensors C and D.  

3 RELATED WORK 

Most previous work in tensor visualization falls into one of 
several categories: glyphs, feature-based, art-based, volume 
rendered, and deformations.  Since volume rendered and 

deformation approaches bear little similarity to our work, they 
will not be described further. 

A number of glyphs have been developed for viewing tensor 
data.  The most common and intuitive glyph is the ellipsoid, 
which is drawn using the tensor’s eigenvectors to form the 
principal axes and the eigenvalues to scale the ellipsoid along 
those axes [15] [20].  Although color-coding sub-regions of 
ellipsoids to show eigenvalue sign has been tried [26], ellipsoids 
are generally limited to symmetric, real, positive tensors where all 
of the eigenvalues are positive [22], so they are typically not used 
to visualize stress fields.  They are good for visualizing diffusion 
and stretch tensors, though they do have some drawbacks.  For 
data sets where the diffusion rates vary greatly, the smaller 
ellipsoids virtually disappear [16].  Plus, rendering ambiguities 
can make it difficult to distinguish between a flattened ellipsoid 
and a sphere when viewed face-on [25].  To overcome this 
problem, Westin, et al. [25] proposed a glyph that is the union of a 
sphere, a disk and a rod, the relative size of each encoding a 
different eigenvalue.   

The Haber glyph [9] is composed of a bar drawn along the 
principal eigenvector impaling an elliptical disk representing the 
other eigenvector directions, scaled by the respective eigenvalues.  
The principal stress hedgehog [13] simply draws the eigenvectors 
as orthonormal axes scaled by their eigenvalues and colored by 
eigenvalue sign (red in tension, green in compression).  
Livingston [18] uses two glyph types, cylindrical tufts and axis 
tripods, combined with animation and/or depth cueing to visualize 
rotation fields.  The Reynolds glyph is peanut-shaped and because 
the distance from the origin of the glyph surface is determined by 
the magnitude of the normal stress in that direction, the glyph 
emphasizes the anisotropy of the tensor [15].  VisCoRe [10] is a 
framework for visualizing material constitutive relations in 
geotechnical engineering that uses animated three-dimensional 
Reynolds glyphs.  However, all of these glyphs quickly occlude 
one another in three-dimensional fields for models of any size or 
complexity, so they are best when used only on two-dimensional 
data sets.   

Probes overcome the clutter problem by interactively moving 
the glyph through the model and changing it to reflect the local 
tensor characteristics.  De Leeuw and van Wijk’s probe [5] [20] 
for viewing the velocity gradient tensor in flow fields is one well-
known example.  It uses a complex icon consisting of an arrow 
and multiple flexible disks to represent local quantities such as 
velocity, curvature and shear.  Sigfridsson et al.’s [22] hybrid 
technique combines texture-based volume rendering with a single 
ellipsoid glyph to provide continuous context with detailed tensor 
information in a region of interest. 

Delmarcelle and Hesselink’s hyperstreamline glyphs [6] [15] 
are a type of regional probe.  A path is advected through the 
tensor field along one of the eigenvectors, while at each step a 
tubular surface based on the magnitude and orientation of the 
other two eigenvectors is drawn.  Rather than representing the 
value of a single tensor, the trumpet-shaped glyph represents a 
continuum of stresses along the trajectory.  Hesselink et al. [12] 
[17] generated topological skeletons within tensor fields by 
locating singularities and connecting them with hyperstreamlines 
integrated along the separatrices.  However, even this approach 
can become cluttered if there are too many hyperstreamlines in 
the same image.  Weinstein et al. [24] developed tensorlines as an 
alternative feature-following method that better handles 
propagation through isotropic regions by including nearby 
orientation information in the path calculation. 

Kirby et al. [14] present an artistically-based approach that 
encodes seven attributes of diffusion tensors as different colored 
layers and types of simulated brush strokes to visualize a two-
dimensional slice of a mouse spinal cord.  Laidlaw et al. [16] 



apply this technique using layered arrows, ellipses and color to 
simultaneously visualize multiple attributes in a two-dimensional 
simulation of flow around a post.  In both of these papers, the 
various brush strokes, or the arrows and ellipses, can be thought 
of as complex, layered glyphs that provide different information 
when viewed at different distances. 

Although Mohr diagrams are well known within the material 
mechanics and geomechanics communities, they are virtually 
unknown within the visualization community.  The only mention 
of Mohr’s diagrams that we have found in the visualization 
literature was in VizCoRe [10], where Mohr’s circles are used to 
represent stress state while doing stress element analysis.  
However, it appears that their implementation of Mohr’s circles is 
static and does not include interactive features, such as brushing 
and linking.  Some general advantages to using Mohr diagrams 
are that they can be applied to tensors with negative eigenvalues 
[2], and they provide insight into the local tensor behavior by 
showing the shear (anisotropy), compression, and tensile forces.   

 

 

 
Figure 2.  The upper image shows a planar subset of finite 
elements combined with the external faces of the model’s material 
boundaries for context.  The elements are color-coded according to 
the values of the displayed variable.  The lower image shows the 
Mohr’s circles for the entire subset, color-coded to correspond to 
the model view.  The black Mohr’s circle overlaying the colored 
circles is an interactive probe that updates as the mouse moves 
over the elements in the upper window.   

4 IMPLEMENTATION OVERVIEW 

This work adds tensor variables to the suite of tools we previously 
developed for visual debugging of finite element codes [4] [3], 
which had been limited to scalar and vector data types.  In 
contrast to the previous implementation [4], all of the current 
functionality resides in the viewer portion of the system.  So far, 
the geologic simulations we have been working with are small 
enough to be viewed in their entirety, so mesh subsets and the 
parallel implementation of the mesh extraction code have not been 
needed.  The viewer is implemented in C++ using OpenGL as the 
graphics API.  The user interface is written in Tcl/Tk. 

The viewer displays the finite element model in one window 
and the Mohr diagram in another linked window as shown in 
Figure 2.  We use brushing and linking as the interaction 
mechanism connecting the two windows.   

In the model window, context is provided by wire frame 
renderings of the external faces of element groups that have 
significance within the model.  Elements are color-coded based on 
the values of a user-selected element variable.  To provide context 
in the Mohr diagram window, the Mohr’s circle for a particular 
element can be superimposed over color-coded layers providing 
both global and subset information, as shown in Figure 2 and the 
close up in Figure 3.  This assists the user in developing a global 
understanding of the data, as well as locating those elements with 
the largest degree of anisotropy or isotropy, or the greatest 
compressive or tensile forces.  

For nonsymmetric tensors, we visualize the symmetric part 
using Mohr’s circles and the non-symmetric part (from either an 
additive or multiplicative decomposition) using a separate 
hedgehog field, rendered in the model window, showing the 
direction of the principle axis of the rotational vector associated 
with the non-symmetric part, colored by its magnitude.  

 

 
Figure 3.  Zoomed-in image of Mohr's circle detail in Figure 2.  The 
interactive Mohr’s circle glyph is superimposed on both the colored 
subset envelope and the gray envelope showing the anisotropy for 
the entire model.  All of the Mohr’s circles are to the left of the 
origin, so they are all in compression. 

4.1 Contextual Information and Probing 

We expand upon the traditional Mohr diagram by including global 
and subset information for model elements through a series of 
layers that can be drawn in the Mohr diagram window.  These can 
be viewed separately, or in combination.   

First, the user can view global information drawn from the 
entire model.  This view consists of the combined footprints from 
the Mohr’s circles of every element in the model.  This provides a 
filled envelope that shows the global degree of anisotropy at each 
position along the horizontal axis.  This global envelope is drawn 
in gray, as a background image in the Mohr diagram window as 
shown in Figure 2 and Figure 3. 

Additionally, the user can draw color-coded Mohr’s circles 
for a subset of elements over the global envelope using the same 
color-coding as was used to render the subset of elements in the 
model window.  An example of this overlay is shown in Figure 2, 



where the colored Mohr’s circles of the elements in the planar 
subset are drawn over the gray envelope for the entire model.  Part 
of the underlying global envelope is still visible behind the light 
blue section, indicating that there are elements with greater 
anisotropy for that degree of compression elsewhere in the model.  
The circles are drawn in order of size, from large to small, so that 
the smaller, darker blue circles corresponding to the upper rows of 
the subset plane remain visible.  Figure 3 shows a zoomed-in view 
of this detail.   

A third overlay is generated when we probe elements in the 
model window for stress information by using the Mohr’s circle 
as a dynamic glyph that interactively changes as the mouse 
brushes over different elements in the model window.  The glyph 
consists of a triad of black circles drawn over the color-coded 
subset envelope, as shown in the lower image in Figure 2 and the 
zoomed in version of the same image in Figure 3.  The glyph can 
move along the horizontal axis, changing both its overall size 
(anisotropy) and the relative proportions of the three circles as the 
eigenvalues shift relative to each other.   

Upon reading in a new data set, the viewer calculates the 
eigenvalues and eigenvectors for each tensor.  The center point for 
each Mohr’s circle is calculated as needed and the circles are 
sorted, first according to their size, then according to their 
position along the compression/tension (horizontal) axis.  The 
circle extrema, circles with the largest and smallest sizes and the 
leftmost and rightmost coordinates along the horizontal axis, are 
found.  These circles are the elements whose tensors represent the 
extremes in the anisotropic and/or isotropic distribution of forces, 
and the extremes in compressive and/or tensile forces, 
respectively.  An example of the four Mohr’s circle extrema and 
their associated elements is given in Figure 4.  The Mohr’s circles 
for the two red elements are so close to each other that they 
overlap.  They can be seen as the largest, leftmost circle at the 
bottom of Figure 4.  

 

 
 

 
Figure 4.  The four Mohr's circle extrema and their associated 
elements within the model window are shown.  Note that the red 
elements produce overlapping circles in the Mohr diagram window. 

 

 
Figure 5.  Elements are color-coded by similarity to the selected 
element, which is highlighted in white.  Red elements are most 
similar, while blue elements are least similar.  

Clicking on an element within the model window selects it.  A 
new variable can then be created to represent the distance between 
the eigenvalues of the selected element and the eigenvalues of the 
other elements in the model.  We compute the distances by 
treating each element’s eigenvalue triplet as a point in three-
space, then calculating the Euclidean distance from each point to 
the selected cell’s point.  Re-coloring the elements by this derived 
variable, as in Figure 5, shows at a glance those elements that are 
most similar to the selected element (in red) and those that are 
most different (in blue). 

4.2 Filtering 

Selecting circles or specifying Mohr’s circle parameters within 
the Mohr diagram window provides a filtering mechanism that 
links back to the model display window.  For instance, all of the 
elements whose degree of compression is within some tolerance 
of a selected circle can be chosen, or all the elements whose outer 
Mohr’s circle radius (and degree of anisotropy) is equal to some 
value can be displayed.  

Alternatively, an element can be selected from within the 
model window and all elements whose Mohr’s circle parameters 
are within some percentage of its parameters can be selected, as is 
shown in Figure 6.  Filtering operations can be used to create new 
sets and to describe new element groups.  These sets can be turned 
on and off interactively, or combined with built-in sets from the 
simulation (things like elements grouped by material type or 
processor identifier).  These new filtering operations are 
performed in combination with the filtering functions we 



developed previously for scalar and vector variables.  This 
provides a rich mechanism for querying the data set for elements 
that meet various criteria.  

This filtering capability can be used, for example, to show 
only those elements in a calculation that are deforming elastically.  
Conversely, filtering can be used to display only elements that 
have yielded plastically, or even to locate inadmissibly behaving 
elements such as finite elements on the verge of inverting.    

 

 
 

 
Figure 6.  The selected element is outlined in white in the top image 
of the model window.  In the lower image, the model window has 
been updated to display the same element along with all of the 
elements whose Mohr’s circles fall within .2% of its Mohr's circle 
parameters. 

 
Figure 7.  The principal direction vector pairs (eigenvectors) for the 
plane of elements shown in the upper image of Figure 6, are shown 
color-coded by the eigenvalues. 

 
Figure 8.  Axis of rotation colored by the angle of rotation.  This is 
the alternative representation of the same information as shown in 
Figure 7. 

The filtering of the elements in the model based on Mohr’s 
circle parameters helps reduce clutter in a three-dimensional 
environment.  Feature detection can be performed by filtering on 
either the isotropic extreme given by the Mohr’s circle with the 
smallest radius, or on circles that have two of the three 
eigenvalues equal to one another [17].  This will locate the 
elements in the model containing degenerate points.   

4.3 Rotational Information 

For three-dimensional tensor values, principal orientations cannot 
be readily encoded into Mohr diagrams.  Instead, we present this 
information in the model window.  To visualize principal 
orientations in the viewer, the user can select from the two options 



shown in Figure 7 and Figure 8.  Each of the two options was 
developed to support a different user community.  

The option most readily understood within the mechanics 
community is a simple plot of the field of principal stress 
directions.  Even though such a plot shows only two principal 
directions at a time, the orientation of the third eigenvector is 
implied by the relative orientations of the two directions that are 
seen.  We draw the eigenvectors as a cross to reduce the visual 
clutter and make the image more intelligible.  The user can easily 
understand the orientation by interactively changing the view.  
This option is shown in Figure 7.  

The second option for visualizing principal directions in three 
dimensions considers the matrix of direction cosines to be a 
rotation matrix and applies the Euler-Rodrigues theorem to plot 
the axis of rotation colored by the angle of rotation.  This option 
has considerable appeal to the geomechanics community because 
the direction cosine matrix can be made unique by using 
eigenvectors that are orthonormalized projections of the 
laboratory base vectors onto the eigenspaces (allowing 
visualization of the unique smallest rotation angle needed to 
transform the laboratory basis into the principal basis).  Applying 
this to the same data as Figure 7 is demonstrated in Figure 8. 

5 APPLICATION  

The deepwater Gulf of Mexico is the most active deepwater 
region in the world, currently providing some of the greatest 
challenges in scope and opportunity for the petroleum industry.  
The region is estimated to contain undiscovered recoverable 
resources of at least 13 billion barrels of oil.  However, the 
complexity of salt tectonics exacerbated by the extreme depths, 
results in high development costs and the necessity for innovative 
technology to successful exploit these resources. 

In addition to being central to the geologic evolution of 
important oil and gas provinces such as the Gulf of Mexico, salt 
bodies affect the present-day geomechanical environment by 
altering the local state of stress [7].  This is fundamentally due to 
the fact that salt cannot sustain deviatoric stress; rather, at mean 
stresses above about 5 MPa, it deforms via plastic (isovolumetric) 
creep in response to any imposed deviatoric stress.  

In passive sedimentary basins, gravitational loading drives the 
state of stress such that the vertical stress SV is due to the weight 
of the overburden and the horizontal stress SH is equal to some 
fraction of the vertical stress SV [19].  However, this state of stress 
cannot be sustained within salt bodies, where the stresses relax so 
as to reach an isotropic state of stress with SH = SV.  The isotropic 
state of stress that exists within the salt body is at odds with the 
stress state in the surrounding materials that can support a 
deviatoric state of stress with SH ≠ SV.  The requirement for the 
salt body to be in equilibrium and to maintain continuity with the 
surrounding formations therefore causes the stress state near the 
interface to be highly complex and perturbed from the far field 
stress state.  The only way to determine the local stress state is to 
solve the complete set of equilibrium, compatibility, and 
constitutive equations with the appropriate initial and boundary 
conditions.  

Lack of consideration of the geomechanical interaction 
between salt bodies and surrounding formations has led to 
documented drilling failures adjacent to salt diapers [1] [21] [23], 
some cases resulting in individual well abandonment costs of tens 
of millions of dollars.  To address this critical knowledge gap, a 
three-dimensional non-linear finite element geomechanical 
simulation effort was initiated to analyze the in situ stress state 
existing in, and adjacent to, salt bodies both before drilling, as 
well as under producing conditions.  This work leverages unique 
expertise in salt mechanics and computational geomechanical 

modeling acquired through Sandia National Laboratories’ mission 
work for the U.S. Department of Energy.   

The goal is to find a drilling path to the oil or gas that would 
reduce the shear on the well bore that often results in response to 
drawing down the reservoir during production.  Thus far, we are 
only examining static configurations.  We have examined two 
small test problems showing idealized salt structures.  One data 
set models the salt as a sphere (Figure 2), and the other data set 
models the salt as a pillar (Figure 4).  The salt sphere data set 
consists of 8,136 elements, while the salt pillar model is larger at 
10,128 elements. 

With each data set, we are interested in examining the tensor 
information for the elements near the salt formation.  For the salt 
sphere, we have located a group of elements, shown in Figure 9, 
whose degree of rotation is small.  Filtering the model window to 
display just these elements, we superimpose their Mohr’s circles 
on the envelope (shown in gray) for the entire model.  As we 
interactively probe the cells, the black Mohr’s circle overlays the 
colored circles for the subset.  The current element is drawn in 
white in the model view.  Similarly, in Figure 10, we have further 
reduced the subset to just a plane of values through the middle of 
the clump shown in Figure 9.  The Mohr diagram window updates 
to display just the color-coded circles from that plane.  We 
continue to interactively explore plane elements.  The new current 
element is drawn in white and its circle is overlaid in black. 

In the salt pillar data set, we have filtered on those elements 
that display a high degree of rotation.  Then we have colored 
coded the subset elements based on the degree of rotation and 
scaled by their magnitude within the selected range.  This is 
shown in Figure 11. 

 

 
 

 
Figure 9.  Filtering on the amount of rotation, we have isolated this 
clump of elements in the vicinity of the salt sphere.  The Mohr’s 
circles for the subset were then overlaid on the envelope from the 
entire model.  The Mohr’s circle for the element shown in white is 
displayed in black. 



 

 

 
Figure 10.  Planar subset of Figure 9, with Mohr’s circles reflecting 
the current subset and selected element (in white). 

 

 
Figure 11.  Salt pillar elements of highest rotation. 

6 RESULTS 

The tensor visualization algorithm presented in this paper has 
helped us draw the following conclusions about the in-situ stress 
field perturbations near salt bodies in the Gulf of Mexico.  

The isotropic state of stress that exists within salt bodies in the 
subsurface is at odds with the stress state in the surrounding 
materials that can support a deviatoric stress state with SH ≠ SV. 
The requirement for the salt body to be in equilibrium and for it to 
maintain continuity with the surrounding formations causes the 
stress state near the salt interface to be spatially variable and 
perturbed from the far field stress state, including the 
amplification of shear stresses adjacent to salt bodies. 

Three-dimensional nonlinear finite element geomechanical 
codes that implement sophisticated constitutive models for salt 
creep in conjunction with tensor visualization software can 
successfully quantify the character of stress perturbations within 
and surrounding the salt bodies. 

Vertical and horizontal stresses can be significantly perturbed 
around (and within) salt bodies so that the vertical stress is not 
equal to the value that would be calculated by integration of a 
density log.  A stress arching phenomena can naturally exist prior 
to drilling or production that is similar in character to that which 
develops in the overburden during depletion of compactable 
reservoirs.  The common assumption that the horizontal stress 
within a salt body is equal to the lithostatic stress is shown for 
some cases to be incorrect.  For some geometries, anisotropy in 
the horizontal stresses may be induced, which can be as high as 
35% of the far field horizontal stress. 

Principal stresses may rotate away from the vertical and 
horizontal planes close to the interface with a salt body, i.e., the 
vertical stress may not necessarily be the maximum principal 
stress.  Rotations up to 20° can occur in some locations. 

Geomechanical modeling of the type employed here can 
enable more rigorous planning of well paths by providing accurate 
estimates of vertical and horizontal stresses around and within salt 
bodies for well bore stability analyses so as to avoid areas of 
potential geomechanical instability, and to enable accurate 
fracture gradient prediction while entering, drilling through, and 
exiting salt bodies. 

7 CONCLUSIONS AND FUTURE WORK 

The tensor visualization methods developed in this work were 
motivated by interviewing practicing scientists to determine what 
sorts of visualization tools they would like to have available.  
Physicists and engineers have been using Mohr’s circles for the 
last 100 years, so an interactive visualization tool based on Mohr 
diagrams was immediately useful with virtually no learning curve 
for our material mechanics and geomechanics users.  Now, this 
paper seeks to demonstrate the usefulness of Mohr diagrams to 
the visualization community by illustrating their use in a 
geomechanics application. 

Further development of Mohr diagram visualization is already 
underway for advanced applications aimed at debugging finite 
element codes (by locating nearly inverted elements) and 
visualizing differences between solution methods in these codes.  
We are currently working on comparing solutions to the same 
problem generated by both Eulerian and Lagrangian 
implementations in order to quantify the errors introduced by each 
of these approaches. 
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