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MOTIVATION22

• ESMs include multiple components for the ocean, 
atmosphere, ice, etc.

• Coupled problem is a complex multi-physics, 
multiscale problem

• Monolithic solutions of the coupled problem not 
computationally feasible

• Need stable and accurate methods for partitioned 
solves

• Challenges:
• Non-conforming grids
• Independent discretizations
• Flux conservation and property preservation
• Stability over long integration times
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OCEAN-ATMOSPHERE COUPLING3

Lemarié, Blayo, Debreu (2015) Proc. Comp. Sci.; M. Gross, et al. (2018) MWR

⇢a,ua, Ta

⇢o,uo, To

• Consider partial differential equations for atmosphere and 
ocean circulation with state variables velocity and 
temperature

• Ocean-atmosphere fluxes are defined by a parameterization 
of the surface layers: “bulk” formulation

• Coupling conditions
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OCEAN-ATMOSPHERE COUPLING4

o Synchronous coupling
• Exchange instantaneous boundary data at largest time step 
• More frequent communication

• Can be unstable

o Asynchronous coupling 
• Exchange time-averaged boundary data 

• Long time intervals require fewer communications between 
models

• Ensures flux conservation

Typical coupling methods

Lemarié, Blayo, Debreu (2015) Proc. Comp. Sci.; M. Gross, et al. (2018) MWR

Both methods can be shown to be equivalent to one step of a Schwartz algorithm

d Synchronicity error: Air–sea fluxes are used as bound-
ary conditions for the vertical turbulent diffusion terms,
which are treated implicitly in time, meaning that the
fluxes at the interface are formally needed at time t1Dt
and not t (Fig. 8a). The explicit exchange of data in the
synchronous coupling leads to an additional condition
for the coupling to be stable even if unconditionally
stable time-stepping algorithms are used for vertical
diffusion (Lemarié et al. 2015; Beljaars et al. 2017). A
way to circumvent these stability issues is to consider a
synchronous coupling with implicit data exchange. In
practice, this approach amounts to solving the local
implicit problems in the ocean and the atmosphere
monolithically as one single implicit solver as often
done for land surface–atmosphere coupling (Polcher
et al. 1998; Ryder et al. 2016). Implicit flux coupling is so
far seldom used in the context of ocean–atmosphere
coupled models.

d Physics–dynamics inconsistency error: The uncer-
tainties in the computation of air–sea fluxes at high

frequency through bulk formulations are huge [see
discussion in section 2 of Large (2006) or Foken (2006)].
The sources of those uncertainties are numerous.
Among them are the assumptions used to derive the
continuous formulation of bulk formulas: for example,
constant-flux layer assumption, horizontal homogene-
ity, quasi stationarity, and the fact that few direct
measurements exist to calibrate those semiempirical
formulations over the ocean. Moreover, the nonlinear
problem associated with the estimation of bulk fluxes is
often solved approximately. In practice, an averaging of
the oceanic and atmospheric inputs to the bulk formu-
las should be required to minimize the uncertainty in
the air–sea fluxes (Large 2006). An internally re-
quired time scale Dtphys,req needs to be assumed for
the parameterization scheme (bulk formulation) to be
valid. Term Dtphys,req is usually greater than the model
dynamical time step Dtdyn. As a result, using a synchro-
nous method can render the model solution sensitive to
the choice for the time step Dtdyn since it is implicitly
assumed that Dtphys 5min(Dtphys,req, Dtdyn), which can
lead to significant errors in the estimation of air–
sea fluxes.

By construction, the asynchronous coupling is ex-
pected to mitigate this latter issue since boundary data
averaged in time are exchanged over a time interval
[ti, ti11] usually much larger than the dynamical time
step. However, the asynchronous coupling algorithm
also suffers from a synchronicity issue. Indeed, the
oceanic state used on [ti, ti11] comes from the previous
time window [ti21, ti] and not the current time window.
The lack of synchronicity is visible in Fig. 8b (oblique
arrow). This error arises from the use of a noniterative
partitioned coupling approach. The asynchronous cou-
pling does not permit an accurate representation of
transient processes on short time scales (e.g., the diurnal
SST cycle), which is undesirable especially when the
space–time resolution is increased. This approach is,
however, still used in numerous coupled climate models,
but research is currently in progress to minimize those
synchronicity issues and allow correct phasing be-
tween the ocean and the atmosphere at a reasonable
computational cost.

b. Reducing physics–dynamics inconsistency and
splitting errors

Possible ways to reduce the errors mentioned above
can be explored using the theoretical framework of the
Schwarz-like domain decomposition methods. These
methods are based on the original work of Schwarz
(1870) and focus on subdividing the space domain into
smaller domains. Over these domains, the equation

FIG. 8. Schematic view of the coupling between the computa-
tional domains of the atmosphere model Vatm and ocean model
Voce, with time advancing to the right. The function Foa(Uo, Ua)
represents the parameterization of air–sea fluxes withUo (Ua), the
oceanic (atmospheric) state vector. Term h!i is a given time aver-
aging operator, and Dto, Dta the dynamical time step of the models
such that N5Dto/Dta.
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Schematic of coupling approaches 
from Gross et al. (2018)



OCEAN-ATMOSPHERE COUPLING5

• Lemarié, Blayo, Debreu (2015):  Global-in-time Schwarz method  

• Beljaars et al. (2017): Stable parametrized implicit flux coupling for 
temperature diffusion equation in the context of ice-atmosphere models

• Pelletier, Lemarié, Blayo (2017): Coupling methods for time-dependent 
Ekman boundary layer model

• Connors, Ganis (2011): Fluid-fluid interaction using a monolithic and a two-
way partitioned method. 

• Connors, Howell, Layton (2012): Partitioned methods for fluid-fluid 
interaction 

Recent work has investigated relationship between coupling schemes and solution 
methods for the monolithic ocean-atmosphere system



PARTITIONED METHOD FOR BULK INTERFACE CONDITIONS6

Atmosphere/ocean tracer
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Ṫo +
@

@x
(uoTo) =

@

@z
Ko

@To

@z

�

• Consider a simplified scalar equation with 
representative coupling conditions

• Starting from the monolithic system, develop 
a non-iterative approach to approximate the 
Neumann coupling condition

• Use a Lagrange multiplier to ensure flux 
continuity at the interface

• Motivated by the Implicit Value Recovery 
(IVR) approach applied to solid mechanics and 
advection-diffusion problems 

Our approach:
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Peterson, Bochev, Kuberry, CAMWA 2018



IMPLICIT VALUE RECOVERY7

'̇1 �r · F1('1) = f1 in ⌦1

F1 · n1 = �� on �
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4.2. An IVR formulation for transmission problems

Development of a partitioned IVR scheme for the model parabolic equation (3.7) follows along the same
lines as for the hyperbolic LSSI problem. In the present context S

h
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Sobolev space H
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�1/2(�) is a (scalar) finite element space for the Lagrange multiplier. We
assume that, with the appropriate modifications to the norms to account for scalar fields, (4.1)–(4.2) hold
for G
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� . For brevity we compress the first two IVR steps into a single one that performs both the spatial

discretization and the index reduction5. To that end we assume that the initial data in (3.8) is continuous
along the interface, i.e.,
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and di↵erentiate the state continuity constraint in (3.9) to obtain the new coupling condition
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(4.24)

The mixed finite element problem (4.24) is equivalent to a DAE
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for the finite element coe�cient vectors '1, '2 and �. Let y = ('1,'2) and z = �. It is straightforward to
see that with f(t, y, z) and g(t, y, z) defined as in Section 4.1.2, but in terms of the matrix blocks in (4.25),
the latter has the canonical Hessenberg index-1 form

ẏ = f(t, y, z)

0 = g(t, y, z)
. (4.26)

The proof of Proposition 4.1 also extends to the present case without a di�culty. Thus, as for the LSSI
problem, assumptions (4.1)–(4.2) are su�cient for @zg to be non-singular.

After grouping interface and internal variables (4.25) assumes the familiar 2 ⇥ 2 block matrix form
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Although (4.27) and (4.9) correspond to di↵erent types of PDEs, their matrices have identical structures.
As a result, step 3 for the TP problem is identical to the one for the LSSI equations. We note that the
consistent mass matrix case is more relevant for the TP problem because (3.7) requires stabilization in the
advection-dominated regime. For time dependent problems, residual-based stabilization methods such as
SUPG [38] contribute terms to the consistent mass matrix, turning it into an unsymmetric one; see Section
6. This makes traditional mass lumping unsuitable for the stabilized equations.

5The second step is necessary because finite element discretization of (3.11) also results in a Hessenberg index-2 DAE.

13

Algebraic Form

Peterson, Bochev, Kuberry, CAMWA 2018

• Defines ! as an implicit function of states: can 
solve for ! and use as Neumann data

• Explicit time integration effectively decouples the 
subdomain equations

• Inf-sup condition verified for mortar elements
• No splitting error or stability issues



IMPLICIT VALUE RECOVERY8

'̇1 �r · F1('1) = f1 in ⌦1

F1 · n1 = �� on �

'̈2 �r · F2('2) = f2 in ⌦2

F2 · n2 = � on �

'1 = '2 on �

Mixed Formulation Discretize 

'1 2 S
h
1 ⇢ H

1
�1
(⌦1)

'2 2 S
h
2 ⇢ H

1
�2
(⌦2)

� 2 G
h
� ⇢ H

�1/2(�)

M1'̇1 +GT
1� = f1('1)

M2'̇2 �GT
2� = f2('2)

G1'̇1 �G2'̇2 = 0

M1'̇1 +GT
1� = f1('1)

M2'̇2 �GT
2� = f2('2)

G1'1 �G2'2 = 0

Mass matrix 

Coupling matrix (Gi)kl = (Ni,k, ⌫l)�

(Mi)kl = (Ni,k, Ni,l)⌦

Force vector fi,k = �(rNi,k, Fi)⌦ + (Ni,k, fi)⌦

4.2. An IVR formulation for transmission problems

Development of a partitioned IVR scheme for the model parabolic equation (3.7) follows along the same
lines as for the hyperbolic LSSI problem. In the present context S

h
i,� is a conforming subspace of the scalar

Sobolev space H
1
�(⌦i) and G

h
� ⇢ H

�1/2(�) is a (scalar) finite element space for the Lagrange multiplier. We
assume that, with the appropriate modifications to the norms to account for scalar fields, (4.1)–(4.2) hold
for G

h
� . For brevity we compress the first two IVR steps into a single one that performs both the spatial

discretization and the index reduction5. To that end we assume that the initial data in (3.8) is continuous
along the interface, i.e.,

'0(x
�) = '0(x

+) 8x 2 �,

and di↵erentiate the state continuity constraint in (3.9) to obtain the new coupling condition

'̇1(x, t) � '̇2(x, t) = 0 on � ⇥ [0, T ]. (4.23)

The compressed IVR step then yields the following semi-discrete in space mixed problem: seek {'h
1 ,'

h
2 ,�

h} 2
S
h
1,� ⇥ S

h
2,� ⇥ G

h
� such that

�
'̇
h
1 , 

h
1

�
0,⌦1

+
�
�
h
, 

h
1

�
0,�

=
�
f1, 

h
1

�
0,⌦1

�
�
F1('h

1 ), r h
1

�
0,⌦1

8 h
1 2 S

h
1,��

'̇
h
2 , 

h
2

�
0,⌦2

�
�
�
h
, 

h
2

�
0,�

=
�
f2, 

h
2

�
0,⌦2

�
�
F2('h

2 ), r h
2

�
0,⌦2

8 h
2 2 S

h
2,��

'̇
h
1 � '̇

h
2 , µ

h
�
0,�

= 0 8µ
h 2 G

h
� .

(4.24)

The mixed finite element problem (4.24) is equivalent to a DAE
2

4
M1 0 G

T
1

0 M2 �G
T
2

G1 �G2 0

3

5

2

4
'̇1

'̇2

�

3

5 =

2

4
f1('1)
f2('2)

0

3

5 (4.25)

for the finite element coe�cient vectors '1, '2 and �. Let y = ('1,'2) and z = �. It is straightforward to
see that with f(t, y, z) and g(t, y, z) defined as in Section 4.1.2, but in terms of the matrix blocks in (4.25),
the latter has the canonical Hessenberg index-1 form
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13

Want to derive a similar scheme 
for bulk conditions on interface:

Peterson, Bochev, Kuberry, CAMWA 2018

F1 · n1 = �F2 · n2 = ↵('1 � '2)

Semi-Discrete System
Index 2 DAE

Conversion to
index 1 DAE

Algebraic Form



BULK IMPLICIT VALUE RECOVERY9

Discretize in Space:   Seek
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Start with monolithic mixed-like formulation obtained by introducing a new flux variable  ! and 
adding the bulk condition as a third equation

Weak form of the additional bulk condition equation



BULK IMPLICIT VALUE RECOVERY10

Semi-discrete System

Mass matrix 

Coupling matrix 

(Mi)kl = (Ni,k, Ni,l)⌦

Interface mass matrix (cM�)kl = (⌫k, ⌫l)�

(Gi)kl = (Ni,k, ⌫l)�
MaṪa +GT

a� = fa(Ta)
MoṪo �GT

o � = fo(To)

↵GaTa � ↵GoTo � cM�� = 0



BULK IMPLICIT VALUE RECOVERY11

Semi-discrete System

Mass matrix 

Coupling matrix 

(Mi)kl = (Ni,k, Ni,l)⌦

Interface mass matrix 

Similar in form to IVR system, but cannot simplify by using time derivative of solution on interface.  

(cM�)kl = (⌫k, ⌫l)�

(Gi)kl = (Ni,k, ⌫l)�
MaṪa +GT

a� = fa(Ta)
MoṪo �GT

o � = fo(To)

↵GaTa � ↵GoTo � cM�� = 0



BULK IMPLICIT VALUE RECOVERY12

Semi-discrete System

Mass matrix 

Coupling matrix 

(Mi)kl = (Ni,k, Ni,l)⌦

Interface mass matrix 

Similar in form to IVR system, but cannot simplify by using time derivative of solution on interface.  

(cM�)kl = (⌫k, ⌫l)�
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Solution: Discretize in time, then solve the fully discrete problem for flux !
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Separate system into internal (I) and interface (!) degrees of freedom
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n
i ) = gi,�(T

n
i )�Mi,�IM

�1
i,IIgi,I(T

n
i )

gi(T
n
i ) = �tfi(T

n
i )�MiT

n
i

2

66666664

Ma,�� 0 �tGT
a Ma,�I 0

0 Mo,�� ��tGT
o 0 Mo,�I

↵Ga �↵Go �cM� 0 0

Ma,I� 0 0 Ma,II 0

0 Mo,I� 0 0 Mo,II

3

77777775

2

66666664

Tn+1
a,�

Tn+1
o,�

�

Tn+1
a,I

Tn+1
o,I

3

77777775

=

2

66666664

ga,�(Tn
a)

go,�(Tn
o )

0

ga,I(Tn
a)

go,I(Tn
o )

3

77777775
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1. Compute right-hand side terms

2. Estimate interface boundary condition

3. Solve independently in each subdomain

COUPLING ALGORITHM14
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IMPLEMENTATION15 �1

�2

• There is some flexibility in choosing the Lagrange multiplier 
space

• For the original IVR formulation, we followed the mortar 
method approach and chose either one of the interface 
partitions

• Results in a formulation that satisfies the inf-sup condition

• We follow this approach in the bulk IVR method

• Expect to converge optimally, but not pass a patch test



LINEAR SOLUTION16

Ta = x+
y

10
+ 3

To = x+ y + 2

Ko = 0.001

Ka = 0.01

Non-matching grids Matching grids

Error Norm h(⌦o) h(⌦a) BIVR (�o) BIVR (�a)
L
2(⌦) 0.03125 0.03125 1.23e-15 1.23e-15

H
1(⌦) 0.03125 0.03125 1.26e-13 1.26e-13

L
2(⌦) 0.05000 0.03125 7.18e-06 2.14e-07

H
1(⌦) 0.05000 0.03125 7.77e-04 1.64e-05
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To = do exp(�oz) sin(n⇡x) exp(!t)

Ta = da exp(�az) sin(n⇡x) exp(!t)

�o = 2 �a = 1

da = 1do = 5
Ko = 0.001 Ka = 0.01

↵ =
Ko�odo
da � do

uo = ua = 1

Note: developed for testing method convergence and not intended to be physically realistic example.

z
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Mesh (⌦o) Mesh (⌦a) �t L
2(⌦) H

1(⌦)
16⇥ 8 16⇥ 8 1.89e-02 1.44e-00 4.86e01
32⇥ 16 32⇥ 16 9.43e-03 2.50e-01 2.38e01
64⇥ 32 64⇥ 32 4.69e-03 4.55e-02 1.19e01
128⇥ 64 128⇥ 64 1.83e-03 8.76e-03 5.92e00
Rate - - 2.38 1.01

To = do exp(�oz) sin(n⇡x) exp(!t)

Ta = da exp(�az) sin(n⇡x) exp(!t)

Matching grid solution
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L2(⌦) Error norm

H
1(⌦) Error norm

0 0.5 1 1.5 2
x
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-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

Mesh

Non-matching grids

Solution

Mesh (⌦o) Mesh (⌦a) �t BIVR(�o) BIVR(�a)
16⇥ 8 12⇥ 6 1.33e-02 2.09e-00 2.09e-00
32⇥ 16 24⇥ 12 6.67e-03 3.40e-01 3.40e-01
64⇥ 32 48⇥ 24 3.32e-03 6.18e-02 6.18e-02
128⇥ 64 96⇥ 48 1.66e-03 1.30e-02 1.30e-02
Rate - - 2.25 2.25

Mesh (⌦o) Mesh (⌦a) �t BIVR(�o) BIVR(�a)
16⇥ 8 12⇥ 6 1.33e-02 5.66e01 5.66e01
32⇥ 16 24⇥ 12 6.67e-03 2.78e01 2.78e01
64⇥ 32 48⇥ 24 3.32e-03 1.37e01 1.37e01
128⇥ 64 96⇥ 48 1.66e-03 6.84e00 6.84e00
Rate - - 1.01 1.01



CONCLUSIONS20

Next steps

Ṫa +
@

@x
(uaTa) =

@

@z
Ka

@Ta

@z

Ṫo +
@

@x
(uoTo) =

@

@z
Ko

@To

@z

�

CONCLUSIONS

Extended IVR to a Bulk-IVR partitioned scheme for a scalar 
equation with bulk coupling conditions

• Starts with a well-posed monolithic mixed-like formulation

• Explicit time integration results in an IVR-like structure

• This structure enables solving for the flux on the interface

• Results in a non-iterative partitioned scheme

• Proof-of-concept tested on simple manufactured solutions

• Extend Bulk-IVR to simplified coupled fluid equations

• Extend to conjugate heat transfer with imperfect transmission 
conditions

• Investigate extensions to non-linear coupling conditions

• Evaluate accuracy and stability of method for different spatial and 
time discretizations
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