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Introduction

Supercomputers are massive in both component count and
complexity, leading to undesirable failure rates and difficulty
in isolating root causes. It is not practically feasible to
monitor all components, and although extensive system
monitoring data exists (i.e. log files and physical sensors),
users are frequently the first to be aware of problems
based on the way their code is performing.

Current practice: rely on system data to identify problems
New idea: include job data to infer component fault rates

Fault rate estimates can then be used to automatically:
I maximize the reliability of high-priority jobs,
I refine confidence intervals regarding suspect components,
I remove components from service when appropriate,
I prioritize maintenance activities.

Notation

event - success or failure of job j
n - number of jobs in system
Tj -random length of the event associated with job j
sj - set of components in job j
Tij -random life of component i in job j , where i = 1, . . . mj

Fi, fi -life distribution and density function for component i
Ri(t) = 1− Fi(t)
θi -parameter vector for component i
Kj -true (unknown) cause of job j failure
Mj -a minimum random set of components that contains the

cause of the failure of job j
mj, tj -realizations from Mj and Tj respectively for failed jobs

Problem Definition

Challenge: the true cause of job failure is masked.

Given: table of job pass/fail observations,
graph of connected components

Goal: estimate fault rate distributions of all components

Table: Each row in the table indicates a user job; columns
indicate start and stop time, pass or fail outcome, and set
of computers used.

Graph: Nodes indicate components, including hardware or
software (i.e. computers, cables, network switches,
software libraries, etc). Edges indicate functional
dependencies, including physical or logical (i.e.
connections or configurations). This model is intentionally
general to accommodate a wide variety of possible failure
causes, and application to other complex systems.
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Typical system:
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Likelihood Formulation

Our observations are two dimensional (tj, sj), j = 1, . . . ,n,
and the conditional likelihood function for the observed
data is given by:

L(t |θ) =
n∏

j=1

∑
i∈sj

fi(tj)
|sj|∏

j=1,j 6=i

Rj(tj)P
[
Mj = mj|Tj = tj,Kj = i

]
P
(
Mj = mj|Tj = tj,Kj = i

)
is the conditional probability that

the observed minimum random subset is mj, given that the
job j failed at time tj and the true cause of failure was
component i . P

(
Mj = mj|Tj = tj,Kj = i

)
= 0 if i 6∈ sj.

The inner term fi(tj)
∏|sj|

j=1,j 6=i}Rj(tj) describes the probability
that job j fails at time tj as a result of component i failing.

Intuitively, this is the probability of one component in the
minimum random subset failing and the other components
surviving through tj.

Time to Failure Assumptions

Assume that the time to failure for each of the components
is characterized by a unique exponential distribution
function:

f (t |λ) = λexp (−λt) for t > 0, λ > 0,
and a prior distribution on λi can be approximated by a
Gamma distribution:

π(λi|ai,bi) =
bai

i
Γ(ai)

λ
(ai−1)
i exp [−biλi]

Auxilary Variables

Given the complex conditional likelihood function, it will be
necessary to introduce a set of auxiliary variables. For
1 ≤ j ≤ n and 1 ≤ i ≤ mj , let Iij = I(tj = Tij) be an indicator
variable, where I(·) = 1 when a job j fails as a result of a
failure of component i . Define Ij = (I1j, . . . Imj j), I = (I1, . . . In),
and denote I(−j) = {Ik : 1 ≤ k ≤ n, k 6= j}.

Simulation of Operational Data

job-shared component 
(e.g. network, servers, disks) 

job-dedicated components 
(e.g. compute nodes) 

s3 (job passed)

s2 (job passed)

s2 (job failed)

m3 =(s1      s2)    s3 

Simulated Data
I failure density was assumed exponential for all nodes
I For all nodes λx .x = 5 failures per operating year, except:
λ1.2 = 20.

Experimental Results

Parameter Estimation
The complexity of the likelihood function requires the use of
a Markov Chain Monte Carlo solution methodology.

N = 300   Bandwidth = 1.476

33
●

1.2

0 5 10 15 20 25 30

Node X is faults/year, Y is P(X) 1000 jobs

N = 300   Bandwidth = 1.293

7
●

2.2

0 5 10 15 20 25 30

N = 300   Bandwidth = 0.8634

6
●

4.2

0 5 10 15 20 25 30

N = 300   Bandwidth = 1.082

7
●

1.3

0 5 10 15 20 25 30

N = 300   Bandwidth = 0.8827

7
●

4.1

0 5 10 15 20 25 30

N = 300   Bandwidth = 0.8897

5
●

2.1

0 5 10 15 20 25 30

N = 300   Bandwidth = 0.9772

6
●

1.1

0 5 10 15 20 25 30

N = 300   Bandwidth = 0.8369

7
●

1.5

0 5 10 15 20 25 30

N = 300   Bandwidth = 0.7963

8
●

2.3

0 5 10 15 20 25 30

N = 300   Bandwidth = 0.5828

8
●

8.1

0 5 10 15 20 25 30

N = 300   Bandwidth = 0.6863

6
●

2.4

0 5 10 15 20 25 30

N = 300   Bandwidth = 0.6235

7
●

1.6

0 5 10 15 20 25 30

N = 300   Bandwidth = 0.6407

3
●

1.4

0 5 10 15 20 25 307
●

1.7

0 5 10 15 20 25 304
●

1.8

N = 300   Bandwidth = 1.082

111
●

1.2

0 5 10 15 20 25 30

Node X is faults/year, Y is P(X) 5000 jobs

N = 300   Bandwidth = 0.7303

33
●

1.8

0 5 10 15 20 25 30

N = 300   Bandwidth = 0.4829

25
●

2.3

0 5 10 15 20 25 30

N = 300   Bandwidth = 0.4035

34
●

8.1

0 5 10 15 20 25 30

N = 300   Bandwidth = 0.6226

25
●

1.3

0 5 10 15 20 25 30

N = 300   Bandwidth = 0.7326

31
●

1.1

0 5 10 15 20 25 30

N = 300   Bandwidth = 0.6194

31
●

1.6

0 5 10 15 20 25 30

N = 300   Bandwidth = 0.5661

24
●
1.4

0 5 10 15 20 25 30

N = 300   Bandwidth = 0.6997

27
●

2.1

0 5 10 15 20 25 30

N = 300   Bandwidth = 0.408

28
●

4.1

0 5 10 15 20 25 30

N = 300   Bandwidth = 0.4021

33
●

4.2

0 5 10 15 20 25 30

N = 300   Bandwidth = 0.5312

27
●

1.5

0 5 10 15 20 25 30

N = 300   Bandwidth = 0.5052

32
●

2.4

0 5 10 15 20 25 3030
●

2.2

0 5 10 15 20 25 3031
●

1.7

0 5 10 15 20

0.
0

0.
1

0.
2

0.
3

Fault rate

P
rio

r 
pr

ob
ab

ili
ty

 d
en

si
ty

 fu
nc

tio
n
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Even with unrealistically vague prior distributions, as jobs
begin to accumulate, the components with the high failure
rates begin to emerge.
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As expected, too heavy an emphasis on the prior inhibits
detection of underlying failure mechanism.

Conclusion

Algorithm provides a risk-based identification of failed
components (or software) within an HPC system where the
true source of failure is masked.
MCMC implementation of the algorithm is scalable to large,
complex hardware and software architectures.
Number of jobs required to unmask the true culprit is
unacceptably high, but this is sensitive to the prior and a
history weighted prior will be explored.

The current results are biased toward a high number of jobs
as a result of simulation parameters related to:

I job node assignment in simulation
I job length distribution

Future Efforts

I Assess algorithm using HPC operational data

I Incorporate unstructured data from system log as additional
information to decrease uncertainty in fault identification
and reduce time required to unmask faulty components.

I Include data related to the operational environment, e.g.
temperature, duty cycles

I establish capability for adaptive prior
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