
Photos placed in
horizontal position
with even amount

of white space
 between photos

and header

Photos placed in horizontal
position

with even amount of white
space

 between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Enabling Performance Portability
across Manycore Architectures

(Kokkos)

CIS ERB / June 2, 2014

SAND2014-4173P (Unlimited Release)

Increasingly Complex Heterogeneous Future
¿ Performance Portable and Future Proof Codes?

1

PIM DDR

L2*

NVRAM

PIM

L1
*

Te
x

Scr

L1
*

Te
x

Scr

L1
*

Te
x

Scr

NIC L3

Memory Spaces
 - Bulk non-volatile (Flash?)
 - Standard DDR (DDR4)
 - Fast memory (HBM/HMC)
 - (Segmented) scratch-pad on die

Execution Spaces
 - Throughput cores (GPU)
 - Latency optimized cores (CPU)
 - Processing in memory

Special Hardware
 - Non caching loads
 - Read only cache
 - Atomics

Programming
models
 - GPU: CUDA-ish
 - CPU: OpenMP
 - PIM: ??

Vision for Managing Heterogeneous Future
 “MPI + X” Programming Model, separate concerns
 Inter-node: MPI and domain specific libraries layered on MPI
 Intra-node: Kokkos and domain specific libraries layered on Kokkos

 Intra-node parallelism, heterogeneity & diversity concerns
 Execution spaces’ (CPU, GPU, PIM, ...) diverse performance requirements
 Memory spaces’ diverse capabilities and performance characteristics
 Vendors’ diverse programming models for optimal utilization of hardware

 Desire standardized performance portable programming model
 Via vendors’ (slow) negotiations: OpenMP, OpenACC, OpenCL, C++17
 Vendors’ (biased) solutions: C++AMP, Thrust, CilkPlus, TBB, ArrayFire, ...
 Researchers’ solutions: HPX, StarPU, Bolt, Charm++, ...

 Necessary condition: address execution & memory space diversity
 SNL Computing Research Center’s Kokkos (C++ library) solution
 Engagement with ISO C++ Standard committee to influence C++17

2

Programmatics
 ASC/CSSE (FY11 start): Heterogeneous Computing project
 Tight integration with co-design, mini-application, and testbed projects
 Manycore (CPU, GPU, Xeon Phi, ...) performance portable “X” for MPI+X
 Kokkos library is the “X” for fine grain data parallelism

 1.0-1.4 FTE split among ~2 staff + interns (FY14 @ 1.0 FTE)

 LDRD (FY14 start): Unified Task+Data Manycore Parallelism
 For solver-preconditioners, finite elements, informatics, transport sweeps, ...
 0.9 FTE split among ~4 staff

 Internal/external interests, and resource challenge ahead
 Trilinos, LAMMPS, SIERRA, other ASC codes (SNL, LANL, LLNL), AWE, ...
 ISO C++ standards addressing fine grain parallelism (am a voting member)
 Currently under-resourced for expected success

3

Application and Domain Specific Library Layer

4

Kokkos: A Layered Collection of Libraries
 Standard C++, Not a language extension

 In spirit of TBB, Thrust & CUSP, C++AMP, LLNL’s RAJA, ...
 Not a language extension like OpenMP, OpenACC, OpenCL, CUDA, ...

 Uses C++ template meta-programming
 Rely on C++1998 standard (supported everywhere except IBM’s xlC)
 Prefer C++2011 for its concise lambda syntax (LLNL’s RAJA requires this)

 As soon as vendors catch up to C++2011 language compliance

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ...

Kokkos Sparse Linear Algebra
Kokkos Containers
Kokkos Core

5

Performance Portability Challenge:
Device-Specific Memory Access Patterns are Required

 CPUs (and Xeon Phi)
 Core-data affinity: consistent NUMA access (first touch)
 Hyperthreads’ cooperative use of L1 cache
 Array alignment for cache-lines and vector units

 GPUs
 Thread-data affinity: coalesced access with cache-line alignment
 Temporal locality and special hardware (texture cache)

 ¿ “Array of Structures” vs. “Structure of Arrays” ?
This has been the wrong question
Right question: Abstractions for Performance Portability ?

6

Kokkos Performance Portability Answer
 Thread parallel computation

 Dispatched to an execution space
 Operates on data in memory spaces
 Should use device-specific memory access pattern; how to portably?

 Multidimensional Arrays, with a twist
 Layout mapping: multi-index (i,j,k,...) ↔ memory location
Choose layout to satisfy device-specific memory access pattern
 Layout changes are invisible to the user code;
IF the user code uses Kokkos’ simple array API: a(i,j,k,...)

 Manage device specifics under simple portable API
 Dispatch computation to one or more execution spaces
 Polymorphic multidimensional array layout
 Utilization of special hardware; e.g., GPU texture cache

Evaluate Performance Impact of Array Layout

7

 Molecular dynamics computational kernel in miniMD
 Simple Lennard Jones force model:
 Atom neighbor list to avoid N2 computations

 Test Problem
 864k atoms, ~77 neighbors
 2D neighbor array
 Different layouts CPU vs GPU
 Random read ‘pos’ through

GPU texture cache
 Large performance loss

with wrong array layout

Fi= ∑
j , rij< r cut

6 ε[(ςrij)
7

− 2(ςr ij)
13]

pos_i = pos(i);
for(jj = 0; jj < num_neighbors(i); jj++) {
 j = neighbors(i,jj);
 r_ij = pos_i – pos(j); //random read 3 floats
 if (|r_ij| < r_cut) f_i += 6*e*((s/r_ij)^7 – 2*(s/r_ij)^13)
}
f(i) = f_i;

0

50

100

150

200

Xeon Xeon Phi K20x

G
Fl

op
/s

correct layout
(with texture)

correct layout
(without texture)

wrong layout
(with texture)

Evaluate Performance Overhead of Abstraction
Kokkos competitive with native programming models

 MiniFE: finite element linear system iterative solver mini-app

 Compare to versions specialized for programming models

 Running on hardware testbeds

8

0
4
8

12
16
20
24

K20X IvyBridge SandyBridge XeonPhi B0 XeonPhi C0 IBM Power7+

MiniFE CG-Solve time for 200 iterations on 200^3 mesh

NVIDIA ELL NVIDIA CuSparse Kokkos OpenMP
MPI-Only OpenCL TBB Cilk+(1 Socket)

Ti
m

e
(s

ec
on

ds
)

Thread-Scalable Fill of Sparse Linear System

9

 MiniFENL: Newton iteration of FEM: 𝒙𝒏+𝟏 = 𝒙𝒏 − 𝑱−𝟏(𝒙𝒏)𝒓(𝒙𝒏�

 Thread-scalable pattern: Scatter-Atomic-Add or Gather-Sum ?
 Scatter-Atomic-Add

+ Simpler
+ Less memory
– Slower HW atomic

 Gather-Sum
+ Bit-wise reproducibility

 Performance win?
 Scatter-atomic-add
 ~equal Xeon PHI
 40% faster Kepler GPU

 Pattern chosen
 Feedback to HW vendors:

performant atomics

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

1E+03 1E+04 1E+05 1E+06 1E+07M
at

rix
 F

ill
: m

ic
ro

se
c/

no
de

Number of finite element nodes

Phi-60 GatherSum
Phi-60 ScatterAtomic
Phi-240 GatherSum
Phi-240 ScatterAtomic
K40X GatherSum
K40X ScatterAtomic

Thread-Scalable Sparse Matrix Construction
 MiniFENL: Construct sparse matrix graph from FEM connectivity
 Thread scalable algorithm for constructing a data structure

1. Parallel-for : fill Kokkos lock-free unordered map with FEM node-node pairs
2. Parallel-scan : sparse matrix rows’ column counts into row offsets
3. Parallel-for : query unordered map to fill sparse matrix column-index array
4. Parallel-for : sort rows’ column-index subarray

10

0

0.5

1

1.5

2

1E+03 1E+04 1E+05 1E+06 1E+07

M
ic

ro
se

c/
no

de

Number of finite element nodes

Phi-60

Phi-240

K40X

 Pattern and tools generally applicable to construction and
dynamic modification of data structures

Tpetra: Domain Specific Library Layer for
Sparse Linear Algebra Solvers

 Funded by ASC/Algorithms (not funded through Kokkos)
 Tpetra: Sandia’s templated C++ library for sparse linear algebra
 Templated on “scalar” type: float, double, automatic derivatives, UQ, ...
 Incremental refactoring from pure-MPI to MPI+Kokkos

 CUDA UVM (unified virtual memory) codesign success
 Sandia’s early access to CUDA 6.0 via Sandia/NVIDIA collaboration
 Hidden in Kokkos, can neglect memory spaces and maintain correctness
 Enables incremental refactoring and testing

 Early access to UVM a win-win
 Expedited refactoring + early evaluation
 Identified performance issue in driver
 NVIDIA fixed before their release

11

LAMMPS (molecular dynamics application)
Porting to Kokkos has begun

 Funded by LAMMPS’ projects (not funded though Kokkos)
 Enable thread scalability throughout code
 Replace redundant hardware-specialized manycore parallel packages

 Next release with optional use of Kokkos
 Data and device management
 Some simple simulations can

now run entirely on device

 Performs as well or better
than original hardware-
specialized packages

12

13

Takeaways

 Compose data parallel dispatch ○ polymorphic array layout
 Control data access pattern for performance portability
 AoS versus SoA is solved

 Negligible performance overhead versus native implementation

 Lock-free unordered map
 Enable scalable algorithms with dynamic data structures
 First time for sparse matrix graph construction

 Transition of Legacy Codes (funded by those code projects)
 Tpetra expedited with early access to CUDA UVM
 LAMMPS can remove redundant, device-specific code

	Enabling Performance Portability across Manycore Architectures�(Kokkos)
	Increasingly Complex Heterogeneous Future�¿ Performance Portable and Future Proof Codes?
	Vision for Managing Heterogeneous Future
	Programmatics
	Kokkos: A Layered Collection of Libraries
	Performance Portability Challenge:�Device-Specific Memory Access Patterns are Required
	Kokkos Performance Portability Answer
	Evaluate Performance Impact of Array Layout
	Evaluate Performance Overhead of Abstraction�Kokkos competitive with native programming models
	Thread-Scalable Fill of Sparse Linear System
	Thread-Scalable Sparse Matrix Construction
	Tpetra: Domain Specific Library Layer for�Sparse Linear Algebra Solvers
	LAMMPS (molecular dynamics application)�Porting to Kokkos has begun
	Takeaways

