Sandia
National
Laboratories

Exceptional
service

in the

national

interest

Enabling Performance Portability

across Manycore Architectures
(Kokkos)

CIS ERB / June 2, 2014

SAND2014-4173P (Unlimited Release)

§ -ﬁ:k“(,il U.5. DEPARTMENT OF I\ "" “Eg
(0)ENERGY INVSHA

Maticnad Nociser Securty.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Sandia

Increasingly Complex Heterogeneous Future (1.
¢ Performance Portable and Future Proof Codes?

Special Hardware
- Non caching loads
- Read only cache
- Atomics

Programming
models

- GPU: CUDA-ish
- CPU: OpenMP
- PIM: ??

Memory Spaces
- Bulk non-volatile (Flash?)
- Standard DDR (DDR4)
- Fast memory (HBM/HMC)
- (Segmented) scratch-pad on die

Execution Spaces
- Throughput cores (GPU)
- Latency optimized cores (CPU)
- Processing in memory

L3

Vision for Managing Heterogeneous Future (i,

= “MPI + X” Programming Model, separate concerns
= Inter-node: MPI and domain specific libraries layered on MPI
= Intra-node: Kokkos and domain specific libraries layered on Kokkos
" Intra-node parallelism, heterogeneity & diversity concerns
= Execution spaces’ (CPU, GPU, PIM, ...) diverse performance requirements
= Memory spaces’ diverse capabilities and performance characteristics
= Vendors’ diverse programming models for optimal utilization of hardware
= Desire standardized performance portable programming model
= Via vendors’ (slow) negotiations: OpenMP, OpenACC, OpenCL, C++17
= Vendors’ (biased) solutions: C++AMP, Thrust, CilkPlus, TBB, ArrayFire, ...
= Researchers’ solutions: HPX, StarPU, Bolt, Charm++, ...
= Necessary condition: address execution & memory space diversity
= SNL Computing Research Center’s Kokkos (C++ library) solution
= Engagement with ISO C++ Standard committee to influence C++17

Programmatics)

= ASC/CSSE (FY11 start): Heterogeneous Computing project
= Tight integration with co-design, mini-application, and testbed projects
= Manycore (CPU, GPU, Xeon Phi, ...) performance portable “X” for MPI+X
= Kokkos library is the “X” for fine grain data parallelism
= 1.0-1.4 FTE split among ~2 staff + interns (FY14 @ 1.0 FTE)

= LDRD (FY14 start): Unified Task+Data Manycore Parallelism

= For solver-preconditioners, finite elements, informatics, transport sweeps, ...
= 0.9 FTE split among ~4 staff

= Internal/external interests, and resource challenge ahead
= Trilinos, LAMMPS, SIERRA, other ASC codes (SNL, LANL, LLNL), AWE, ...
= |SO C++ standards addressing fine grain parallelism (am a voting member)
» Currently under-resourced for expected success

Kokkos: A Layered Collection of Libraries

= Standard C++, Not a language extension
= In spirit of TBB, Thrust & CUSP, C++AMP, LLNL’s RAJA, ...

= Not a language extension like OpenMP, OpenACC, OpenCL, CUDA, ...

= Uses C++ template meta-programming

()

= Rely on C++1998 standard (supported everywhere except IBM’s xIC)
= Prefer C++2011 for its concise lambda syntax (LLNL’s RAJA requires this)

As soon as vendors catch up to C++2011 language compliance

Sandia
National
Laboratories

Application and Domain Specific Library Layer

Kokkos Sparse Linear Algebra

Kokkos Containers

Kokkos Core

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ...

Sandia

Performance Portability Challenge: rih) et
Device-Specific Memory Access Patterns are Required

= CPUs (and Xeon Phi)
= Core-data affinity: consistent NUMA access (first touch)
= Hyperthreads’ cooperative use of L1 cache
= Array alignment for cache-lines and vector units

= GPUs
= Thread-data affinity: coalesced access with cache-line alignment
= Temporal locality and special hardware (texture cache)

= ¢ “Array of Structures” vs. “Structure of Arrays” ?
» This has been the wrong question

Right question: Abstractions for Performance Portability ?

Kokkos Performance Portability Answer) o,

* Thread parallel computation
= Dispatched to an execution space
= Operates on data in memory spaces
» Should use device-specific memory access pattern; how to portably?

= Multidimensional Arrays, with a twist
= Layout mapping: multi-index (i,j,k,...) <> memory location
» Choose layout to satisfy device-specific memory access pattern
= Layout changes are invisible to the user code;
» IF the user code uses Kokkos’ simple array API: a(i,j,k,...)

= Manage device specifics under simple portable API
= Dispatch computation to one or more execution spaces
= Polymorphic multidimensional array layout
= Utilization of special hardware; e.g., GPU texture cache

Evaluate Performance Impact of Array Layout (i) &
« Molecular dynamics computational kernel in miniMD

Simple Lennard Jones force model: F.= 63[() 2(]
Atom neighbor list to avoid N2 computations "= ! !

pos_ 1 = pos();
for(jjJ = 0; 33 < num_neighbors(i); jj++) {
J = nelghbors(l .J1);
r iJ = pos_1 — pos(j); //random read 3 floats
1T (Jr_ij| < r_cut) .1 += 6*e*((s/r_apH)N7 — 2*(s/r_ij)"13)
+
(i) = f_1i;

Test Problem
o 864k atoms, ~77 neighbors

o 2D neighbor array 150 m correct layout
(with texture)

200

. Different layouts CPU vs GPU |3
« Random read ‘pos’ through 2100 # correct layout
(G] (without texture)
GPU texture cache 50

wrong layout

Large performance loss _— - . (with texture)
with wrong array layout

Xeon Xeon Phi K20x

Evaluate Performance Overhead of Abstraction ()

Laboratories

Kokkos competitive with native programming models

= MiniFE: finite element linear system iterative solver mini-app

= Compare to versions specialized for programming models

= Running on hardware testbeds

Time (seconds)

» MiniFE CG-Solve time for 200 iterations on 200*3 mesh
20
16
12

8

.

0

K20X IvyBridge SandyBridge XeonPhi BO XeonPhi CO IBM Power7+
NVIDIA ELL u NVIDIA CuSparse m Kokkos m OpenMP
m MPI-Only # OpenCL = TBB ¥ Cilk+(1 Socket)

Thread-Scalable Fill of Sparse Linear System

Sandia
National
Laboratories

h

= MiniFENL: Newton iteration of FEM: x,,,; = x,, — J 1(x,)r(x,,)

Scatter-Atomic-Add

+ Simpler

+ Less memory

— Slower HW atomic
Gather-Sum

+ Bit-wise reproducibility
Performance win?

= Scatter-atomic-add

= ~equal Xeon PHI
= 40% faster Kepler GPU
v' Pattern chosen
= Feedback to HW vendors:
performant atomics

Scatter-Atomic-Add

.

" Element \ | f

| Computations |
& Scatter-Add
atomic-add

4 Finite Element Data

Thread-scalable pattern: Scatter-Atomic-Add or Gather-Sum ?

ra

Mapping:

" Mesh -» Sparse Graph)

-~ Element

Na \
Computations

Gather-Sum

Per-Element

\ Sparse Linear System

Coefficients

\Scratch Arrays

0.35

0.25

0.3 ‘W
N

0.2
0.15

R acririeiviried

0.05
0

Matrix Fill: microsec/node

1E+03 1E+04
Number of

1E+05 1E+06 1E+07
finite element nodes

===Phi-60 GatherSum
=#=Phi-60 ScatterAtomic
==Phi-240 GatherSum
=4=Phi-240 ScatterAtomic
==K40X GatherSum
=d=K40X ScatterAtomic

Thread-Scalable Sparse Matrix Construction (i) &

Laboratories

MiniFENL: Construct sparse matrix graph from FEM connectivity
= Thread scalable algorithm for constructing a data structure

1. Parallel-for : fill Kokkos lock-free unordered map with FEM node-node pairs
2. Parallel-scan : sparse matrix rows’ column counts into row offsets
3. Parallel-for : query unordered map to fill sparse matrix column-index array
4. Parallel-for : sort rows’ column-index subarray

0 2

k

9 1.5

b .

o 1 =#-Phi-60

g 0.5 =4=Phi-240

2, | —4-KA0X

1E+03 1E+04 1E+05 1E+06 1E+07
Number of finite element nodes

= Pattern and tools generally applicable to construction and
dynamic modification of data structures

Tpetra: Domain Specific Library Layer for @)
Sparse Linear Algebra Solvers

= Funded by ASC/Algorithms (not funded through Kokkos)

= Tpetra: Sandia’s templated C++ library for sparse linear algebra
= Templated on “scalar” type: float, double, automatic derivatives, UQ, ...

= Incremental refactoring from pure-MPI to MPI+Kokkos

CUDA UVM (unified virtual memory) codesign success
= Sandia’s early access to CUDA 6.0 via Sandia/NVIDIA collaboration
= Hidden in Kokkos, can neglect memory spaces and maintain correctness

= Enables incremental refactoring and testing
10

= Early access to UVM a win-win
= Expedited refactoring + early evaluation

[= o]
T T T

[=a}
) I

= |dentified performance issue in driver
= NVIDIA fixed before their release

Time in s
.
' |

2
T I

=]

P
SO

2

:::
\\@ A \?3
O’\B "‘;3 n;b

>
-— |

LAMMPS (molecular dynamics application) (g
Porting to Kokkos has begun

* Funded by LAMMPS’ projects (not funded though Kokkos)

= Enable thread scalability throughout code
= Replace redundant hardware-specialized manycore parallel packages

= Next release with optional use of Kokkos
= Data and device management LAMMPS Strongscaling

= Some simple simulations can | |
now run entirely on device

IM atoms; Standard Lennard Jones

Xeon - Kokkos
Xeon - OpenMP

Xeon Phi - Kokkos
Xeon Phi - OpenMP

Kepler - Kokkos
Kepler - Cuda

o
o
o
T T
OEEN

= Performs as well or better
than original hardware-
specialized packages

Aggregate Compute Time
S

Sandia
Takeaways)

= Compose data parallel dispatch O polymorphic array layout
» Control data access pattern for performance portability
» AoS versus SoA is solved

= Negligible performance overhead versus native implementation

= Lock-free unordered map
» Enable scalable algorithms with dynamic data structures
> First time for sparse matrix graph construction

= Transition of Legacy Codes (funded by those code projects)
» Tpetra expedited with early access to CUDA UVM
» LAMMPS can remove redundant, device-specific code

	Enabling Performance Portability across Manycore Architectures�(Kokkos)
	Increasingly Complex Heterogeneous Future�¿ Performance Portable and Future Proof Codes?
	Vision for Managing Heterogeneous Future
	Programmatics
	Kokkos: A Layered Collection of Libraries
	Performance Portability Challenge:�Device-Specific Memory Access Patterns are Required
	Kokkos Performance Portability Answer
	Evaluate Performance Impact of Array Layout
	Evaluate Performance Overhead of Abstraction�Kokkos competitive with native programming models
	Thread-Scalable Fill of Sparse Linear System
	Thread-Scalable Sparse Matrix Construction
	Tpetra: Domain Specific Library Layer for�Sparse Linear Algebra Solvers
	LAMMPS (molecular dynamics application)�Porting to Kokkos has begun
	Takeaways

