
Photos placed in
horizontal position
with even amount

of white space
 between photos

and header

Photos placed in horizontal
position

with even amount of white
space

 between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Enabling Performance Portability
across Manycore Architectures

(Kokkos)

CIS ERB / June 2, 2014

SAND2014-4173P (Unlimited Release)

Increasingly Complex Heterogeneous Future
¿ Performance Portable and Future Proof Codes?

1

PIM DDR

L2*

NVRAM

PIM

L1
*

Te
x

Scr

L1
*

Te
x

Scr

L1
*

Te
x

Scr

NIC L3

Memory Spaces
 - Bulk non-volatile (Flash?)
 - Standard DDR (DDR4)
 - Fast memory (HBM/HMC)
 - (Segmented) scratch-pad on die

Execution Spaces
 - Throughput cores (GPU)
 - Latency optimized cores (CPU)
 - Processing in memory

Special Hardware
 - Non caching loads
 - Read only cache
 - Atomics

Programming
models
 - GPU: CUDA-ish
 - CPU: OpenMP
 - PIM: ??

Vision for Managing Heterogeneous Future
 “MPI + X” Programming Model, separate concerns
 Inter-node: MPI and domain specific libraries layered on MPI
 Intra-node: Kokkos and domain specific libraries layered on Kokkos

 Intra-node parallelism, heterogeneity & diversity concerns
 Execution spaces’ (CPU, GPU, PIM, ...) diverse performance requirements
 Memory spaces’ diverse capabilities and performance characteristics
 Vendors’ diverse programming models for optimal utilization of hardware

 Desire standardized performance portable programming model
 Via vendors’ (slow) negotiations: OpenMP, OpenACC, OpenCL, C++17
 Vendors’ (biased) solutions: C++AMP, Thrust, CilkPlus, TBB, ArrayFire, ...
 Researchers’ solutions: HPX, StarPU, Bolt, Charm++, ...

 Necessary condition: address execution & memory space diversity
 SNL Computing Research Center’s Kokkos (C++ library) solution
 Engagement with ISO C++ Standard committee to influence C++17

2

Programmatics
 ASC/CSSE (FY11 start): Heterogeneous Computing project
 Tight integration with co-design, mini-application, and testbed projects
 Manycore (CPU, GPU, Xeon Phi, ...) performance portable “X” for MPI+X
 Kokkos library is the “X” for fine grain data parallelism

 1.0-1.4 FTE split among ~2 staff + interns (FY14 @ 1.0 FTE)

 LDRD (FY14 start): Unified Task+Data Manycore Parallelism
 For solver-preconditioners, finite elements, informatics, transport sweeps, ...
 0.9 FTE split among ~4 staff

 Internal/external interests, and resource challenge ahead
 Trilinos, LAMMPS, SIERRA, other ASC codes (SNL, LANL, LLNL), AWE, ...
 ISO C++ standards addressing fine grain parallelism (am a voting member)
 Currently under-resourced for expected success

3

Application and Domain Specific Library Layer

4

Kokkos: A Layered Collection of Libraries
 Standard C++, Not a language extension

 In spirit of TBB, Thrust & CUSP, C++AMP, LLNL’s RAJA, ...
 Not a language extension like OpenMP, OpenACC, OpenCL, CUDA, ...

 Uses C++ template meta-programming
 Rely on C++1998 standard (supported everywhere except IBM’s xlC)
 Prefer C++2011 for its concise lambda syntax (LLNL’s RAJA requires this)

 As soon as vendors catch up to C++2011 language compliance

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ...

Kokkos Sparse Linear Algebra
Kokkos Containers
Kokkos Core

5

Performance Portability Challenge:
Device-Specific Memory Access Patterns are Required

 CPUs (and Xeon Phi)
 Core-data affinity: consistent NUMA access (first touch)
 Hyperthreads’ cooperative use of L1 cache
 Array alignment for cache-lines and vector units

 GPUs
 Thread-data affinity: coalesced access with cache-line alignment
 Temporal locality and special hardware (texture cache)

 ¿ “Array of Structures” vs. “Structure of Arrays” ?
This has been the wrong question
Right question: Abstractions for Performance Portability ?

6

Kokkos Performance Portability Answer
 Thread parallel computation

 Dispatched to an execution space
 Operates on data in memory spaces
 Should use device-specific memory access pattern; how to portably?

 Multidimensional Arrays, with a twist
 Layout mapping: multi-index (i,j,k,...) ↔ memory location
Choose layout to satisfy device-specific memory access pattern
 Layout changes are invisible to the user code;
IF the user code uses Kokkos’ simple array API: a(i,j,k,...)

 Manage device specifics under simple portable API
 Dispatch computation to one or more execution spaces
 Polymorphic multidimensional array layout
 Utilization of special hardware; e.g., GPU texture cache

Evaluate Performance Impact of Array Layout

7

 Molecular dynamics computational kernel in miniMD
 Simple Lennard Jones force model:
 Atom neighbor list to avoid N2 computations

 Test Problem
 864k atoms, ~77 neighbors
 2D neighbor array
 Different layouts CPU vs GPU
 Random read ‘pos’ through

GPU texture cache
 Large performance loss

with wrong array layout

Fi= ∑
j , rij< r cut

6 ε[(ςrij)
7

− 2(ςr ij)
13]

pos_i = pos(i);
for(jj = 0; jj < num_neighbors(i); jj++) {
 j = neighbors(i,jj);
 r_ij = pos_i – pos(j); //random read 3 floats
 if (|r_ij| < r_cut) f_i += 6*e*((s/r_ij)^7 – 2*(s/r_ij)^13)
}
f(i) = f_i;

0

50

100

150

200

Xeon Xeon Phi K20x

G
Fl

op
/s

correct layout
(with texture)

correct layout
(without texture)

wrong layout
(with texture)

Evaluate Performance Overhead of Abstraction
Kokkos competitive with native programming models

 MiniFE: finite element linear system iterative solver mini-app

 Compare to versions specialized for programming models

 Running on hardware testbeds

8

0
4
8

12
16
20
24

K20X IvyBridge SandyBridge XeonPhi B0 XeonPhi C0 IBM Power7+

MiniFE CG-Solve time for 200 iterations on 200^3 mesh

NVIDIA ELL NVIDIA CuSparse Kokkos OpenMP
MPI-Only OpenCL TBB Cilk+(1 Socket)

Ti
m

e
(s

ec
on

ds
)

Thread-Scalable Fill of Sparse Linear System

9

 MiniFENL: Newton iteration of FEM: 𝒙𝒏+𝟏 = 𝒙𝒏 − 𝑱−𝟏(𝒙𝒏)𝒓(𝒙𝒏�

 Thread-scalable pattern: Scatter-Atomic-Add or Gather-Sum ?
 Scatter-Atomic-Add

+ Simpler
+ Less memory
– Slower HW atomic

 Gather-Sum
+ Bit-wise reproducibility

 Performance win?
 Scatter-atomic-add
 ~equal Xeon PHI
 40% faster Kepler GPU

 Pattern chosen
 Feedback to HW vendors:

performant atomics

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

1E+03 1E+04 1E+05 1E+06 1E+07M
at

rix
 F

ill
: m

ic
ro

se
c/

no
de

Number of finite element nodes

Phi-60 GatherSum
Phi-60 ScatterAtomic
Phi-240 GatherSum
Phi-240 ScatterAtomic
K40X GatherSum
K40X ScatterAtomic

Thread-Scalable Sparse Matrix Construction
 MiniFENL: Construct sparse matrix graph from FEM connectivity
 Thread scalable algorithm for constructing a data structure

1. Parallel-for : fill Kokkos lock-free unordered map with FEM node-node pairs
2. Parallel-scan : sparse matrix rows’ column counts into row offsets
3. Parallel-for : query unordered map to fill sparse matrix column-index array
4. Parallel-for : sort rows’ column-index subarray

10

0

0.5

1

1.5

2

1E+03 1E+04 1E+05 1E+06 1E+07

M
ic

ro
se

c/
no

de

Number of finite element nodes

Phi-60

Phi-240

K40X

 Pattern and tools generally applicable to construction and
dynamic modification of data structures

Tpetra: Domain Specific Library Layer for
Sparse Linear Algebra Solvers

 Funded by ASC/Algorithms (not funded through Kokkos)
 Tpetra: Sandia’s templated C++ library for sparse linear algebra
 Templated on “scalar” type: float, double, automatic derivatives, UQ, ...
 Incremental refactoring from pure-MPI to MPI+Kokkos

 CUDA UVM (unified virtual memory) codesign success
 Sandia’s early access to CUDA 6.0 via Sandia/NVIDIA collaboration
 Hidden in Kokkos, can neglect memory spaces and maintain correctness
 Enables incremental refactoring and testing

 Early access to UVM a win-win
 Expedited refactoring + early evaluation
 Identified performance issue in driver
 NVIDIA fixed before their release

11

LAMMPS (molecular dynamics application)
Porting to Kokkos has begun

 Funded by LAMMPS’ projects (not funded though Kokkos)
 Enable thread scalability throughout code
 Replace redundant hardware-specialized manycore parallel packages

 Next release with optional use of Kokkos
 Data and device management
 Some simple simulations can

now run entirely on device

 Performs as well or better
than original hardware-
specialized packages

12

13

Takeaways

 Compose data parallel dispatch ○ polymorphic array layout
 Control data access pattern for performance portability
 AoS versus SoA is solved

 Negligible performance overhead versus native implementation

 Lock-free unordered map
 Enable scalable algorithms with dynamic data structures
 First time for sparse matrix graph construction

 Transition of Legacy Codes (funded by those code projects)
 Tpetra expedited with early access to CUDA UVM
 LAMMPS can remove redundant, device-specific code

	Enabling Performance Portability across Manycore Architectures�(Kokkos)
	Increasingly Complex Heterogeneous Future�¿ Performance Portable and Future Proof Codes?
	Vision for Managing Heterogeneous Future
	Programmatics
	Kokkos: A Layered Collection of Libraries
	Performance Portability Challenge:�Device-Specific Memory Access Patterns are Required
	Kokkos Performance Portability Answer
	Evaluate Performance Impact of Array Layout
	Evaluate Performance Overhead of Abstraction�Kokkos competitive with native programming models
	Thread-Scalable Fill of Sparse Linear System
	Thread-Scalable Sparse Matrix Construction
	Tpetra: Domain Specific Library Layer for�Sparse Linear Algebra Solvers
	LAMMPS (molecular dynamics application)�Porting to Kokkos has begun
	Takeaways

