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Increasingly Complex Heterogeneous Future 
¿ Performance Portable and Future Proof Codes? 
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Memory Spaces 
  - Bulk non-volatile (Flash?) 
  - Standard DDR (DDR4) 
  - Fast memory (HBM/HMC) 
  - (Segmented) scratch-pad on die 
 
Execution Spaces 
  - Throughput cores (GPU) 
  - Latency optimized cores (CPU) 
  - Processing in memory  
 

Special Hardware 
  - Non caching loads 
  - Read only cache 
  - Atomics 

Programming 
models 
  - GPU: CUDA-ish 
  - CPU: OpenMP 
  - PIM: ?? 



Vision for Managing Heterogeneous Future 
 “MPI + X” Programming Model, separate concerns 
 Inter-node: MPI and domain specific libraries layered on MPI 
 Intra-node: Kokkos and domain specific libraries layered on Kokkos 

 Intra-node parallelism, heterogeneity & diversity concerns 
 Execution spaces’ (CPU, GPU, PIM, ...) diverse performance requirements 
 Memory spaces’ diverse capabilities and performance characteristics 
 Vendors’ diverse programming models for optimal utilization of hardware 

 Desire standardized performance portable programming model 
 Via vendors’ (slow) negotiations: OpenMP, OpenACC, OpenCL, C++17 
 Vendors’ (biased) solutions: C++AMP, Thrust, CilkPlus, TBB, ArrayFire, ... 
 Researchers’ solutions: HPX, StarPU, Bolt, Charm++, ... 

 Necessary condition: address execution & memory space diversity 
 SNL Computing Research Center’s Kokkos (C++ library) solution 
 Engagement with ISO C++ Standard committee to influence C++17 
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Programmatics 
 ASC/CSSE (FY11 start): Heterogeneous Computing project 
 Tight integration with co-design, mini-application, and testbed projects 
 Manycore (CPU, GPU, Xeon Phi, ...) performance portable “X” for MPI+X 
 Kokkos library is the “X” for fine grain data parallelism 

 1.0-1.4 FTE split among ~2 staff + interns (FY14 @ 1.0 FTE) 

 LDRD (FY14 start): Unified Task+Data Manycore Parallelism 
 For solver-preconditioners, finite elements, informatics, transport sweeps, ...  
 0.9 FTE split among ~4 staff 

 Internal/external interests, and resource challenge ahead 
 Trilinos, LAMMPS, SIERRA, other ASC codes (SNL, LANL, LLNL), AWE, ... 
 ISO C++ standards addressing fine grain parallelism (am a voting member) 
 Currently under-resourced for expected success 
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Application and Domain Specific Library Layer 
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Kokkos: A Layered Collection of Libraries 
 Standard C++, Not a language extension 

 In spirit of TBB, Thrust & CUSP, C++AMP, LLNL’s RAJA, ... 
 Not a language extension like OpenMP, OpenACC, OpenCL, CUDA, ... 

 Uses C++ template meta-programming 
 Rely on C++1998 standard (supported everywhere except IBM’s xlC) 
 Prefer C++2011 for its concise lambda syntax (LLNL’s RAJA requires this) 

 As soon as vendors catch up to C++2011 language compliance 

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ... 

Kokkos Sparse Linear Algebra 
Kokkos Containers 
Kokkos Core 
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Performance Portability Challenge: 
Device-Specific Memory Access Patterns are Required  

 CPUs (and Xeon Phi) 
 Core-data affinity: consistent NUMA access (first touch) 
 Hyperthreads’ cooperative use of L1 cache 
 Array alignment for cache-lines and vector units 

 GPUs 
 Thread-data affinity: coalesced access with cache-line alignment 
 Temporal locality and special hardware (texture cache) 

  ¿ “Array of Structures” vs. “Structure of Arrays” ? 
This has been the wrong question 
Right question: Abstractions for Performance Portability ? 

 



6 

Kokkos Performance Portability Answer 
 Thread parallel computation 

 Dispatched to an execution space 
 Operates on data in memory spaces 
 Should use device-specific memory access pattern; how to portably? 

 Multidimensional Arrays, with a twist 
 Layout mapping: multi-index (i,j,k,...) ↔ memory location 
Choose layout to satisfy device-specific memory access pattern 
 Layout changes are invisible to the user code; 
IF the user code uses Kokkos’ simple array API: a(i,j,k,...) 

 Manage device specifics under simple portable API 
 Dispatch computation to one or more execution spaces 
 Polymorphic multidimensional array layout 
 Utilization of special hardware; e.g., GPU texture cache 

 
 
 



Evaluate Performance Impact of Array Layout 
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 Molecular dynamics computational kernel in miniMD 
 Simple Lennard Jones force model: 
 Atom neighbor list to avoid N2 computations 
 

 

 

 Test Problem 
 864k atoms, ~77 neighbors 
 2D neighbor array 
 Different layouts CPU vs GPU 
 Random read ‘pos’ through 

GPU texture cache  
 Large performance loss 

with wrong array layout 

Fi= ∑
j , rij< r cut

6 ε[(ςrij)
7

− 2(ςr ij)
13]

pos_i = pos(i);  
for( jj = 0; jj < num_neighbors(i); jj++) { 
  j = neighbors(i,jj);  
  r_ij = pos_i – pos(j); //random read 3 floats 
  if (|r_ij| < r_cut) f_i += 6*e*((s/r_ij)^7 – 2*(s/r_ij)^13) 
} 
f(i) = f_i; 
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Evaluate Performance Overhead of Abstraction 
Kokkos competitive with native programming models 

 MiniFE: finite element linear system iterative solver mini-app 

 Compare to versions specialized for programming models 

 Running on hardware testbeds 
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Thread-Scalable Fill of Sparse Linear System 

9 

 MiniFENL: Newton iteration of FEM: 𝒙𝒏+𝟏 = 𝒙𝒏 − 𝑱−𝟏(𝒙𝒏)𝒓(𝒙𝒏� 

 Thread-scalable pattern: Scatter-Atomic-Add or Gather-Sum ? 
 Scatter-Atomic-Add 

+ Simpler 
+ Less memory 
– Slower HW atomic 

 Gather-Sum 
+ Bit-wise reproducibility 

 Performance win? 
 Scatter-atomic-add 
 ~equal Xeon PHI 
 40% faster Kepler GPU 

 Pattern chosen 
 Feedback to HW vendors: 

performant atomics 
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Thread-Scalable Sparse Matrix Construction 
 MiniFENL: Construct sparse matrix graph from FEM connectivity 
 Thread scalable algorithm for constructing a data structure 

1. Parallel-for : fill Kokkos lock-free unordered map with FEM node-node pairs 
2. Parallel-scan : sparse matrix rows’ column counts into row offsets 
3. Parallel-for : query unordered map to fill sparse matrix column-index array 
4. Parallel-for : sort rows’ column-index subarray 
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 Pattern and tools generally applicable to construction and 
dynamic modification of data structures  

 



Tpetra: Domain Specific Library Layer for 
Sparse Linear Algebra Solvers 

 Funded by ASC/Algorithms (not funded through Kokkos)  
 Tpetra: Sandia’s templated C++ library for sparse linear algebra 
 Templated on “scalar” type: float, double, automatic derivatives, UQ, ... 
 Incremental refactoring from pure-MPI to MPI+Kokkos 

 CUDA UVM (unified virtual memory) codesign success 
 Sandia’s early access to CUDA 6.0 via Sandia/NVIDIA collaboration 
 Hidden in Kokkos, can neglect memory spaces and maintain correctness 
 Enables incremental refactoring and testing 

 Early access to UVM a win-win 
 Expedited refactoring + early evaluation 
 Identified performance issue in driver 
 NVIDIA fixed before their release 
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LAMMPS (molecular dynamics application) 
Porting to Kokkos has begun 

 Funded by LAMMPS’ projects (not funded though Kokkos)  
 Enable thread scalability throughout code 
 Replace redundant hardware-specialized manycore parallel packages 

 Next release with optional use of Kokkos 
 Data and device management 
 Some simple simulations can  

now run entirely on device 

 Performs as well or better 
than original hardware- 
specialized packages 
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Takeaways 

 Compose data parallel dispatch ○ polymorphic array layout  
 Control data access pattern for performance portability 
 AoS versus SoA is solved 

 Negligible performance overhead versus native implementation 

 Lock-free unordered map 
 Enable scalable algorithms with dynamic data structures  
 First time for sparse matrix graph construction 

 Transition of Legacy Codes (funded by those code projects) 
 Tpetra expedited with early access to CUDA UVM 
 LAMMPS can remove redundant, device-specific code 
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