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ABSTRACT
We develop a new set of similarity functions for a formal vec-
tor space model for information retrieval. Our model con-
siders records as multisets of tokens. A token weight maps
records into real vectors. Using this vector representation
we define a p-norm of a record and pairwise conjunction and
disjunction operations on records. With the help of these op-
erations we then develop consistent extensions of set-based
similarity functions and new `p distance-based similarities.
We show that with particular classes of token weights and
p-values, our definitions recover the standard versions of the
similarity functions. The paper concludes with a prelimi-
nary study of the new similarities in the context of a model
entity matching problem.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Vector space model, similarity measure, information retrieval,
set-theoretic operations.

1. INTRODUCTION
Given a generating set of terms, and the associated term
weights, the standard vector space model (VSM) [14, 16] for
information retrieval encodes documents and queries as vec-
tors of term weights. An integral part of VSM is a similarity
function, which measures the closeness between documents.
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The normalized inner product between vectors defines the
cosine similarity, which is a standard choice for a similarity
measure in the VSM. Utilization of the inner product by the
cosine similarity corresponds to viewing document vectors as
elements of a Hilbert space. However, in the broader context
of information analysis other non-Hilbertian structures have
demonstrated significant promise.

In this paper we use set-theoretic and Banach space ideas
to develop a class of new similarity functions for the VSM.
In particular, we obtain extensions of the Jaccard similarity,
the Normalized Weighted Intersection (NWI) similarity, and
the Dice similarities, as well as a class of `p norm-based sim-
ilarity functions. We show that for some values of p and for
specific term weighting choices some of the new similarity
measures coincide with published set-based similarity func-
tions [8, 9] and the standard VSM cosine similarity. As a
result, our approach enables a consistent extension of a wide
range of similarities to the VSM context. In a nutshell, we
develop extensions of similarity functions, which bridge the
standard vector space model with set-based approaches.

We present a preliminary comparative study of the new sim-
ilarity functions in the context of an entity matching prob-
lem. To this end we use the Abt-Buy e-commerce set [1] in
conjunction with two different assignment rules - a simple
maximal similarity rule and a linear sum assignment rule.

We have organized the paper as follows. The rest of this
section introduces some notation. Section 2 reviews the for-
mal variant of the vector space model, which we use in the
paper and Section 3 introduces the new similarity functions.
In Section 4 we describe the model entity matching problem,
the assignment rules and present the results from the study.
We summarize our findings in Section 5.

Throughout the paper lower case bold face symbols denote
vectors in Euclidean space RN , i.e., r = (r1, . . . , rN ). Up-
per case bold symbols are reserved for matrices in RN×M

The point-wise q-th power of a vector is the vector rq =
(rq1, . . . , r

q
N ). The point-wise, or Hadamar [11], product of

r, s ∈ RN is the vector r ◦ s = (r1s1, . . . , rNsN ) ∈ RN .

2. VECTOR SPACE MODEL
In this section we introduce a Vector Space Model (VSM)
for information retrieval, specialized to our needs. Recall
that a multiset is a pair (A,µ), where A is an underlying



set, and µ is a multiplicity function mapping A to the nat-
ural numbers. We will also use the notation [a1, a2, . . . , an]
with the understanding that the sequence may have repeat-
ing elements. The symbol | · | denotes the cardinality of a
multiset.

Given a class of IR problems, let T = {t1, t2, . . . , tN} be a
corresponding set of N distinct index terms or keywords,
which we call “tokens”. The corpus C(T ) of the IR problem
is the set of all token multisets r = [t1, t2, . . . , tn], n > 0, and
C2(T ) denotes the collection of all multisets of elements of
C(T ). The elements of C(T ) model documents and queries,
i.e., a document or a query is a finite multiset of tokens. To
simplify the terminology, we do not explicitly differentiate
between documents and queries and use the term “record” in
reference to both. The elements of C2(T ) model databases
(collection of records), i.e., a database is a finite multiset of
records. To distinguish the multiplicity functions of different
records we write µr(t) for the number of times token t is
encountered in record r. In particular, µr(t) = 0 if t /∈
r. The normalized multiplicity νr(t) = µr(t)/max{1, µr(t)}
defines an indicator function with the property that νr(t) =
1 if t ∈ r and νr(t) = 0 otherwise.

2.1 Token weights and vector representation
A token weight ω(t, r,D) is a map T × C(T ) × C2(T ) →
R+ ∪ {0}, which ranks the importance of token t in record
r = [t1, . . . , tn], relative to a database D = [r1, . . . , rm]. We
require that

ω(t, r,D) =

{
α > 0 if r ∈ D and t ∈ r

0 if r /∈ D or d ∈ D and t /∈ r (1)

We review two examples of token weights. The inverse doc-
ument frequency [14]

idf(t,D) = log

(
|D|

1 + |D(t)|

)
, (2)

where D(t) = {r ∈ D | t ∈ r} is the multiset of all records
in D containing a token t ∈ T , measures whether or not t
is common or rare among the records in D. The following
variant of (2) satisfies condition (1):

ωidf(t, r,D) = idf(t,D)νr(t) . (3)

In (3) νr(t) is the indicator function of r. The normalized
term frequency [14]

ωtf(t, r,D) := tf(t, r) = µr(t)/|r| (4)

is a token weight that depends on t and r but not on D. The
normalization by |r| prevents a bias towards longer records
(which may have a higher term count regardless of the actual
importance of that term in the record). The tf*idf measure
is the product of (2) and (4) [14, §6.2.2]:

ωtf∗idf(t, r,D) = ωtf(t, r,D) · idf(t,D) (5)

The value of the tf*idf weight is high when t has high fre-
quency in record r, but in overall is not common in the
database D [7]. We refer to [14, p.128] for additional vari-
ants of tf-idf measures.

Every token weight induces a mapping w : C(T ) 7→ RN .

C(T ) 3 r 7→ r ∈ RN ; r =
(
ω(t1, r,D), . . . , ω(tN , r,D)

)
.

which maps records into vectors of token weights.

2.2 Pairwise record operations
In this section we introduce and study functions mapping
pairs of records into non-negative real numbers. To this
end we need the `p norm ‖ r ‖p= (

∑N
i=1 r

p
i )1/p of a vector

r ∈ RN . The p-norm of a record r ∈ C(T ), relative to the
token weight ω, is the composition of ‖ · ‖p and the map ω:

‖ r ‖ω,p=‖ w(r) ‖p . (6)

We define the conjunction of two records s, r ∈ C(T ) as

‖ r∧s ‖ω,p:=
( N∑

i=1

w(r)p/2 ◦w(s)p/2
)1/p

(7)

and their disjunction as

‖ s∨r ‖ω,p:=‖ s ‖ω,p + ‖ r ‖ω,p − ‖ r∧s ‖ω,p , (8)

respectively. The conjunction (7) and the disjunction (8)
are mappings C(T ) × C(T ) 7→ R+ ∪ {0}. The following
proposition justifies the choice of names for these operations.

Proposition 1. For every r ∈ C(T ) there holds

‖ r∧r ‖ω,p=‖ r ‖ω,p and ‖ r∨r ‖ω,p=‖ r ‖ω,p . (9)

If r, s ∈ C(T ) have no common tokens, then

‖ r∧s ‖ω,p= 0 and ‖ r∨s ‖ω,p=‖ r ‖ω,p + ‖ s ‖ω,p . (10)

Proof. From (7) it follows that

‖ r∧r ‖ω,p=
( N∑

i=1

w(r)p/2 ◦w(r)p/2
)1/p

=‖ d ‖ω,p .

The rest of (9) follows from this identity and (8). The proof
of (10) is also straightforward.

Our next results establishes connections between the pair-
wise record operations and some notions of set-based similar-
ity. To avoid confusion we use the bar accent to differentiate
between sets and multisets of tokens. Thus, r̄ is a set of to-
kens, i.e., a collection of unique elements of T . Note that r̄
is a subset of T .

The set-based similarity [8, 12] represents records as sets of
tokens and estimates the similarity of records by estimating
the similarity of their token sets. Given two token sets s̄, r̄ ⊂
T we can estimate their similarity by assigning values to s̄,
r̄, s̄∪ r̄ and s̄∩ r̄, and then combining these values into a final
similarity score. The set values themselves can be derived
from token weights assigned to each token in T , i.e., by using
suitable token weights.

However, representation of records as sets of tokens, and the
subsequent set operations, dissociate the tokens from their
parent records. Consequently, the token weights in a set-
based similarity cannot depend on a record argument. For
instance, the tokens in s̄ and s̄ ∩ r̄ are not aware of their
multiplicity in the original record(s), whereas the tokens in
s̄ ∪ r̄ are not aware of who their parent record is. This
rules out application of token weights such as the tf measure
(4) because the values of µs̄, µs̄∪r̄, and etc. do not reflect
the true frequencies of tokens in their parent records. As a
result, the set-based approach typically uses token weights



such as idf. Assuming that ω(t,D) does not depend on r,
we can extend the `1 and `2 set-norms of r̄ ⊂ T , defined in
[8], to a general `p set-norm

‖ r̄ ‖ω,p=
(∑

t∈r̄

ω(t,D)p
)1/p

.

Proposition 2. Given multisets r, s ∈ C(T ), let r̄, s̄ ⊂ T
denote the sets of unique tokens in r and s, respectively.
Assume that ω̄ does not depend on r ∈ C(T ) and define
ω(t, r,D) := ω̄(t,D) · νr(t). Then,

‖ r∧s ‖ω,p=‖ r̄ ∩ s̄ ‖ω̄,p ; ‖ r∨s ‖ω,p=‖ r ∪ s ‖ω̄,p

and ‖ r ‖ω,p=‖ r̄ ‖ω̄,p .
(11)

Proof. The assertion easily follows from definition (6)
and by using the fact that ω(t, r,D) = ω̄(t,D) whenever
t ∈ D.

This proposition shows that the conjunction and disjunction
functions in the vector space model represent consistent ex-
tensions of set-based norms of intersections and unions of
sets, respectively. In other words, definitions (6), (7), and
(8), allow us to bridge key notions in the vector space model
and the set-based approach. This makes it possible to ob-
tain consistent extensions of similarity measures from the
set theory to the vector space model context.

3. SIMILARITY FUNCTIONS
A similarity function is a mapping S : C(T )×C(T ) 7→ [0, 1].
In this paper we restrict attention to similarity functions
that are composition of the mapping w with a vector simi-
larity function s : RN ×RN 7→ [0, 1]. Succinctly, we assume
that

S(r, s) = s(w(r),w(s)) ∀r, s ∈ C(T ) ,

where s : RN ×RN 7→ [0, 1].

In this section we introduce two new classes of similarity
functions for the vector space model. The first class exploits
the connection between set operations and the conjunction
and disjunction functions in Proposition 2 to obtain consis-
tent extensions of set-similarity measures, such as Jaccard or
Dice, to the vector space model. We refer to, e.g., [12] or [8]
for the set-based definitions of these measures.The second
class uses the p-norm of a record to define distance-based
similarity functions.

Extended Jaccard similarity. The Jaccard index, also known
as the Jaccard similarity coefficient, is a statistic used for
comparing the similarity and diversity of sample sets. Using
(7), and (8) we extend the set-based definition to

Jp(r, s) :=
‖ r ∧ s ‖ω,p

||r ∨ s||ω,p
; p ≥ 1 . (12)

Extended Normalized Weighted Intersection similarity. This
similarity function is related to the Jaccard coefficient but
uses different normalization of the set intersection. Using
(7), and (8) we obtain the extension

Np(r, s) =
‖ r ∧ s ‖ω,p

max{‖ r ‖ω,p; ‖ s ‖ω,p}
; p ≥ 1 . (13)

Extended Dice similarity. Dice’s similarity is named after
Lee Raymond Dice, and is also related to the Jaccard coeffi-
cient and the normalized weighted similarity. The difference
is again in the normalization of the intersection term. The
corresponding extension is

Dp(r, s) =
2 ‖ r ∧ s ‖ω,p

‖ r ‖ω,p + ‖ s ‖ω,p
; p ≥ 1 . (14)

Normalized distance similarity. This similarity is defined
using the normalized `p distance between r and s:

∆p(r, s) = 1− ‖ r − s ‖ω,p

2max{‖ r ‖ω,p, ‖ s ‖ω,p}
; p ≥ 1 . (15)

The `p-distances corresponding to p = 1, p = 2 and p = ∞
are often called City Block, Euclidean and Chebyshev dis-
tance, respectively [15]. Thus, we may call ∆1(r, s), ∆2(r, s),
and ∆∞(r, s), City Block, Euclidean and Chebyshev simi-
larity functions, respectively.

Proposition 3. Assume that r, s ∈ C(T ), r̄, s̄ ⊂ T , and
ω̄, are as in Proposition 2 and let ω(t, r,D) := ω̄(t,D)·νr(t).
Then,

Jp(r, s) =
‖ r̄ ∩ s̄ ‖ω̄,p

||r̄ ∪ s̄||ω̄,p
,

Np(r, s) =
‖ r̄ ∩ s̄ ‖ω̄,p

max{‖ r̄ ‖ω̄,p, ‖ s̄ ‖ω̄,p}
,

Dp(r, s) =
2 ‖ r̄ ∩ s̄ ‖ω̄,p

‖ r̄ ‖ω̄,p + ‖ s̄ ‖ω̄,p
.

(16)

Proof. The proof follows directly from Proposition 2.

This proposition confirms that (12)–(14) are consistent ex-
tensions of set-based similarity functions to both a general p
and the vector space model context. In particular, for p = 1
the extended Jaccard, normalized weighted intersection and
Dice similarities recover the functions in [8], while for p = 2
the extended Jaccard similarity (12) recovers the Jaccard
coefficient used in [9].

4. APPLICATION TO AN ENTITY MATCH-
ING PROBLEM

In this section we report results from a preliminary study of
the new similarity functions in the context of a model en-
tity matching (EM) problem. The setting of the model EM
problem assumes that there are two different sets of records,
denoted by A and B, respectively, which represent the same
set of real world entities E using two different relations. The
task is to link the records from A and B corresponding to
the same real world entity. We refer to [3] and [7] for com-
prehensive survey of EM problems.

Our study uses the Abt-Buy e-commerce set [1], which uses
two different relations, “Abt” and “Buy”, to describe the
same set of products (entities). The “Abt” and “Buy” rela-
tions include attributes for a name, description, price, iden-
tification number and a manufacturer; see Table 1. The Abt-
Buy provides the exact matches between the record pairs,
which makes it appropriate for entity matching studies.



Table 1: Two records from the Abt-Buy e-commerce set corresponding to the same real world entity.
Relation name description price ID manuf.

BUY Bose Acoustimass 5 Series III
Speaker System - 21725

2.1-channel - Black 359.00 202812620 BOSE

ABT Bose Acoustimass 5 Series III
Speaker System - AM53BK

Bose Acoustimass 5 Series III Speaker System - AM53BK/
2 Dual Cube Speakers With Two 2-1/2’ Wide-range Drivers
In Each Speaker/ Powerful Bass Module With Two 5-1/2’
Woofers/ 200 Watts Max Power/ Black Finish

399.00 580 —

We base the entity matching on the “name” attribute, which
gives a capsule summary of the product (entity). Our study
uses two subsets of the Abt-Buy database, which we label
as “Set I” and “Set II”, respectively. The sets comprise of
record pairs from relation “Abt” and relation “Buy”, which
correspond to the same entities. Set I has 100 such pairs
and Set II - 122 pairs. The set T is the union of all unique
terms in the “name” field of “Abt” and “Buy”.

We explain the record matching approaches using Set I, the
procedures are identical for Set II. Set I has 100 records from
“Abt”and 100 records from“Buy”. We denote the collections
of these records by A(I) and B(I), respectively. Given a to-
ken weight ω, the corresponding term-to-document matrices
A(I) and B(I) have element

A
(I)
ij = ω(tj , ai, A

(I)) and B
(I)
ij = ω(tj , bi, B

(I)) ,

respectively, where tj ∈ T , ai ∈ A(I), and bi ∈ B(I). The
rows of A(I) and B(I) are the vector space representations of
the records in A(I) and B(I). For a given similarity function
S(·, ·), the similarity matrix S for Set I has elements

Sij = S(ai, bj) .

This 100× 100 matrix gives the pairwise similarity between
the records in A(I) and and B(I). To match the records we
use two different decision rules.

Maximum similarity assignment. This assignment strategy
employes a simple, “greedy-algorithm”-like decision rule. For
every record ai ∈ A(I) we find the greatest element in row
i of the similarity matrix S. The column index of this el-
ement gives the record bj ∈ A(I), which is linked with ai.
Succinctly,

ai 7→ bj where j = arg max
k

Sik.

The mapping defined by the maximum similarity assignment
is not a bijection because more than one record ai can be
assigned to the same record bj . For this reason the mapping
is also not a surjection because some of the records in B(I)

may remain without assignments.

Linear sum assignment. This strategy matches records by
solving the following linear program

max
xij

M∑
i=1

M∑
j=1

Sijxij such that xij ∈ {0, 1},

M∑
j=1

xij =

M∑
i=1

xij = 1 ; i, j = 1, 2, . . . ,M.

(17)

The unit elements of the solution define the decision rule:

∀xij = 1 : ai 7→ bj .

Table 2: Error [%] in the solution of the entity
matching problem for the extended set-based sim-
ilarity functions and the tf*idf token weight.

Assignment → Max. sim. Error [%] LSAP Error [%]

ω S(·, ·) Set I Set II Set I Set II

tf*idf cos 14 13.93 15 8.20

tf*idf J1 15 13.93 15 6.56

tf*idf N1 14 13.93 14 8.20

tf*idf D1 15 13.93 15 6.56

tf*idf J2 14 13.93 14 6.56

tf*idf N2 16 13.93 13 6.56

tf*idf D2 14 13.93 14 6.56

Table 3: Error [%] in the solution of the entity
matching problem for the extended set-based sim-
ilarity functions and the idf token weight.

Assignment → Max. sim. Error [%] LSAP Error [%]

ω S(·, ·) Set I Set II Set I Set II

tf*idf cos 14 13.93 15 8.20

idf J1 15 13.11 13 6.56

idf N1 17 13.11 13 6.56

idf D1 15 13.11 13 6.56

idf J2 15 13.11 14 4.92

idf N2 17 13.11 15 4.92

idf D2 15 13.11 14 6.56

The program (17) is Linear Sum Assignment Problem (LSAP)
[4, p.74]. The solution of (17) maximizes the “total similar-

ity”of the assignments between the records in A(I) and B(I).
The paper [10] is an early example of using (17) for record
linkage. For more recent applications to entity matching we
refer to [5] or [6]. The Hungarian algorithm [13] is a clas-
sical solution method for (17), while the auction algorithm
[2] presents a more efficient alternative.

4.1 Discussion of results
We compare the errors in the model entity matching problem
when the similarity matrices for Sets I and II are defined us-
ing the new similarity functions, and the tf*idf and idf token
weights in (5) and (3), respectively. Specifically, we com-
pute S using the extended Jaccard, Normalized Weighted
Intersection and Dice similarities with p = 1 and p = 2, and
the ∆p similarity with p = 1, 2, 5. The standard cosine sim-
ilarity [14, p.124] with the tf*idf token weight provides the
benchmark.



Table 4: Error [%] in the solution of the entity
matching problem for ∆p similarity functions, p =
1, 2, 5.

Assignment → Max. sim. Error [%] LSAP Error [%]

ω S(·, ·) Set I Set II Set I Set II

tf*idf cos 14 13.93 15 8.20

tf*idf ∆1 17 16.39 14 9.02

tf*idf ∆2 30 20.49 14 10.66

tf*idf ∆5 33 32.79 26 22.13

Table 2 presents the results with the tf*idf token weight. As
expected, the LSAP assignment rule generally performs bet-
ter than the simple maximum similarity rule. The difference
is particularly noticeable for Set II, where the error in the
LSAP assignments is reduced by a half, compared with the
error in the maximum similarity assignments. Furthermore,
with the LSAP assignment the new similarities consistently
outperform the cosine similarity for Set II and are slightly
better for Set I. With the maximum similarity rule all errors
are identical for Set II and the cosine is slightly better for
Set I.

Table 3 presents the results with the idf token weight. With
this weighting J1, N1 and D1 are equivalent to the set-based
similarity functions in [8]. Our first observation is that the
idf weighting further decreases the errors of the LSAP assign-
ments for Set II. In addition, the new similarity functions
with p = 2 perform particularly well in this setting reducing
the error to 4.92% for the J2 and N2 similarities. Interest-
ingly enough, the errors for the maximal similarity rule are
slightly lower for Set II and on the average - slightly higher
for Set I.

Finally, Table 4 summarizes the results when the similarity
matrix is defined by using the distance based similarities ∆p

and the tf*idf token weight. One important observation is
that as p increases, so does the error. One explanation is
that as p grows, ∆p approaches ∆∞. It is well known that
this kind of norm is more sensitive to outliers and so, some
degradation of accuracy can be expected.

5. CONCLUSIONS
In this paper we have developed consistent extensions of set-
based similarity functions, which bridge set-based models
with the Vector Space Model. We also developed a class of `p
distance based similarities. Preliminary studies of the new
similarity functions for a model entity matching problem
reveal that their performance is comparable to and in some
cases exceeds that of the benchmark cosine similarity. These
results confirm the utility of the new similarity functions.
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