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Motivation
• Squeezed light can help to increase the secure communication distance

and/or key rate for continuous-variable quantum key distribution
(CV-QKD). High-rate CV-QKD requires high-bandwidth squeezing
spectrum (i.e., strong squeezing at bandwidths of ∼ 100 MHz or even
∼ 1 GHz around the carrier).

• Squeezed light is also a fundamental pre-requisite for generation of
entanglement in CV quantum repeaters and CV cluster-state
(measurement-based) quantum computation.

Scope of the work
•We consider a network of coupled linear and bilinear optical elements

such as mirrors, beam-splitters, phase-shifters, lasers, and optical
parametric oscillators (OPOs).

• The idea is to use such a coherent quantum feedback network (CQFN)
to generate the output light field with a favorable squeezing spectrum.

• The objective is to maximize the degree of squeezing at a chosen
bandwidth frequency (or a range of frequencies) by searching over the
space of model parameters with experimentally motivated bounds.

The (S,L, H) model of an optical CQFN
• Let n be the number of the network’s input/output ports and m be the

number of cavities (assuming one internal field mode per cavity).

• Let a, ain, and aout denote, respectively, vectors of boson annihilation
operators for the cavity modes, input fields, and output fields:
a = [a1, . . . , am]T, ain = [ain,1, . . . , ain,n]T, aout = [aout,1, . . . , aout,n]T.

• The CQFN is fully described by the (S,L, H) model, which includes:
S is an n× n matrix that describes the scattering of external fields;
L is an n× 1 matrix that describes the coupling of cavity modes and
external fields;
H is the Hamiltonian that describes the intracavity dynamics.

• The quantum Langevin equations for the cavity mode operators {a`(t)}
are (~ = 1)

da`
dt

= −i[a`, H ] + LL[a`] + Γl, ` = 1, . . . ,m, (1)

where LL is the Lindblad superoperator and Γl is the noise operator.

• The generalized boundary condition for the network is aout = Sain + L.

• The elements of L are linear in annihilation operators of the cavity
modes: L = Ka, and the Hamiltonian has the bilinear form:

H = a†Ωa + i
2a
†Wa‡ − i

2a
TW†a, (2)

where a† = [a†1, . . . , a
†
m] and a‡ = a†T.

•With such L and H, the quantum Langevin equations (1) take the
matrix form:

da

dt
= Va + Wa‡ + Yain, (3)

where V = −1
2K
†K− iΩ, Y = −K†S.

The model of CQFN in the frequency domain
• Boson operators in the frequency domain:

b(t) =
1√
2π

∫ ∞
−∞

dω b(ω)e−iωt, b†(t) =
1√
2π

∫ ∞
−∞

dω b†(−ω)e−iωt,

where b(t) stands for any element of a(t), ain(t), and aout(t).

• The double-length column vectors notation: b̆(ω) =

[
b(ω)

b‡(−ω)

]
, where

b(ω) stands for either of a(ω), ain(ω), and aout(ω).

• The quantum input-output relations in the matrix form:

ăout(ω) = Z̆(ω)ăin(ω), (4)

where Z̆(ω) is the network’s transfer-matrix function:

Z̆(ω) =

[
Z−(ω) Z+(ω)

Z+(−ω)∗ Z−(−ω)
∗

]
=
[
I2n + K̆(Ă + iωI2m)−1K̆†

]
S̆. (5)

Here, Ă = ∆(V,W), K̆ = ∆(K,0), S̆ = ∆(S,0), and we use the

notation: ∆(A,B) =

[
A B
B∗ A∗

]
.

The squeezing spectrum
• The power spectrum density of the quadrature’s quantum noise

(squeezing spectrum):

Pi(ω, θ) = 1 +

∫ ∞
−∞

dω′〈:Xi(ω, θ), Xi(ω
′, θ) :〉, (6)

where Xi(ω, θ) = aout,i(ω)e−iθ + a†out,i(−ω)eiθ is the quadrature of the
ith output field in the frequency domain, θ is the homodyne phase, : : is
the normal ordering of boson operators, and 〈x, y〉 = 〈xy〉 − 〈x〉〈y〉.
• Using the (S,L, H) model of the CQFN, we obtain:

Pi(ω, θ) = 1 +Ni(ω) +Ni(−ω) +Mi(ω)e−2iθ +Mi(ω)∗e2iθ, (7)

Ni(ω) =

∫ ∞
−∞

dω′〈a†out,i(−ω
′)aout,i(ω)〉 =

n∑
j=1

∣∣Z+
ij (ω)

∣∣2 , (8)

Mi(ω) =

∫ ∞
−∞

dω′〈aout,i(ω)aout,i(ω
′)〉 =

n∑
j=1

Z−ij (ω)Z+
ij (−ω). (9)

•We are only interested in the squeezing spectrum of the field at one of
the output ports (designated as i = 1): P(ω, θ) = P1(ω, θ).

The measure of squeezing
• The squeezing figure of merit measured in decibels is

Q(ω, θ) = 10 log10P(ω, θ). (10)

• The maximum and minimum of P(ω, θ) as a function of θ,

P+(ω) = max
θ
P(ω, θ), P−(ω) = min

θ
P(ω, θ), (11)

are spectra of the quantum noise in anti-squeezed and squeezed
quadrature, respectively. The corresponding logarithmic spectral
measures of anti-squeezing and squeezing:

Q±(ω) = 10 log10P±(ω). (12)

• Using Eq. (7), we find:

P±(ω) = 1 +N (ω) +N (−ω)± 2|M(ω)|. (13)

The model of a network of two coupled OPOs
• A schematic depiction of the CQFN of two coupled OPOs:
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• Parameters of the CQFN of two coupled OPOs:

Parameter Type Description
κp1 Positive Leakage rate for left mirror of plant cavity
κp2 Positive Leakage rate for right mirror of plant cavity
κp3 Positive Leakage rate for losses in plant cavity
ωp Real Frequency detuning of plant cavity
ξp Complex Pump amplitude of plant OPO
κc1 Positive Leakage rate for left mirror of controller cavity
κc2 Positive Leakage rate for right mirror of controller cavity
κc3 Positive Leakage rate for losses in controller cavity
ωc Real Frequency detuning of controller cavity
ξc Complex Pump amplitude of controller OPO
φ1 Real Phase shift of the first phase shifter
φ2 Real Phase shift of the second phase shifter
θ1 Real Rotation angle of the first beamsplitter
θ2 Real Rotation angle of the second beamsplitter
θ3 Real Rotation angle of the third beamsplitter

Physical description of the CQFN of two coupled OPOs
• Pump fields for both OPOs are assumed to be classical and not shown

in the scheme.

• From the control theory perspective, OPO1 is considered to be the plant
and OPO2 the (quantum) controller.

• Each OPO cavity has a fictitious third mirror to model intracavity losses.

• Beamsplitters B1 and B2 represent the light diverted to lock the cavities
as well as losses in optical transmission lines between the OPOs.
Beamsplitter B3 represents losses in the output transmission line and
detection inefficiencies.

• Phase shifters P1 and P2 are inserted into transmission lines between
the OPOs to manipulate the interference underlying the CQF control.

• Taking into account the feedback loop between the plant and controller,
the CQFN has seven input ports, seven output ports, and two cavity
modes (n = 7, m = 2).

•With ξp = |ξp|eiθp and ξc = |ξc|eiθc, the CQFN is described by 17 real
parameters (five of which correspond to losses).

• The relationship between leakage rate and power transmittance of a
mirror:

κi = cTi/(2leff), i = 1, 2, 3, (14)

where Ti is the power transmittance of the ith mirror (Ri = 1− Ti is
the power reflectance), c is the speed of light, and leff is the effective
cavity length.

• The total leakage rate (including losses) from the plant and controller
cavities: γp = κp1 + κp2 + κp2 and γc = κc1 + κc2 + κc2.

• The scaled pump amplitude for the plant and controller OPOs:

xp = 2|ξp|/γp =
√
Pp/Pp,th, xc = 2|ξc|/γc =

√
Pc/Pc,th, (15)

where P is the OPO pump power and Pth is its threshold value.

• The QNET package (developed by Hideo Mabuchi’s group at Stanford
University) is used to derive the (S,L, H) model of the CQFN.

Numerical optimization results for the squeezing spectrum
•We maximize the degree of squeezing (i.e., minimize P−(ω)) at a

chosen bandwidth frequency ωopt/2π = {5, 25, 50, 100} MHz.

•We use a suite of global (stochastic) algorithms (PyGMO,
http://esa.github.io/pygmo). We run in parallel 8 global algorithms to
maximize the chance of finding a globally optimal parameter set.

• Optimizations are performed for various values of intracavity losses
Lin = Tp3 = Tc3, transmission losses Li = sin2(θi) (i = 1, 2, 3), upper
bound Tu on power transmittances of cavity mirrors, and upper bound
xu on scaled pump amplitudes of OPOs.

•Maximized degree of squeezing (in dB) found using various algorithms
(for Lin = 0.01, L1 = L2 = L3 = 0.01, Tu = 0.2, xu = 0.8):

Algorithm
5 25 50 100

Sequential	Least	Squares	Programming	(local	only) -10.9275 -10.7843 -7.5043 -2.6008
Monotonic	Basin	Hopping	with	Sequential	Least	Squares	Programming -12.5509 -10.8660 -9.8984 -3.6246
Monotonic	Basin	Hopping	with	Compass	Search -9.8994 -6.8967 -5.9558 -5.1477
Covariance	Matrix	Adaptation	Evolution	Strategy -11.9805 -10.7991 -9.3718 -3.6028
Particle	Swarm	Optimization -11.8080 -9.3243 -6.2234 -3.6183
Improved	Harmony	Search -11.3148 -9.3594 -8.4055 -3.6047
Differential	Evolution -12.5508 -10.8662 -9.8984 -3.6246
Differential	Evolution	with	p-best	crossover -12.5504 -10.8664 -9.8984 -3.6246
Artificial	Bee	Colony -12.5477 -10.8625 -9.8791 -8.9308
Set	of	8	global	algorithms	run	in	parallel -12.5513 -10.8662 -9.8984 -8.9315

Frequency	[MHz]

• Optimized squeezing spectrum for the CQFN of two coupled OPOs
compared to that for a single OPO (for loss and bound values
Lin = 0.01, L1 = L2 = L3 = {0.01, 0.1}, Tu = 0.9, xu = 0.3):
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•Maximized degree of squeezing at ωopt/2π = 100 MHz as a function of
upper bounds Tu and xu (for Lin = 0.01 and L1 = L2 = L3 = 0.01):

Robustness of optimal CQFN configurations
•We investigate the robustness of optimal CQFN configurations to small

variations in phase parameters {θp, θc, φ1, φ2} by analyzing eigenvalues
of the Hessian matrix. Two of the four eigenvalues are always zero up to
numerical precision. Non-zero Hessian eigenvalues versus xu and
Lout = L1 = L2 = L3 (for ωopt/2π = 100 MHz, Lin = 0.01, Tu = 0.9):

Conclusions
• The (S,L, H) model makes it possible to evaluate the squeezing

spectrum for various values of experimental parameters.

• Use of global search methods is critical for finding the best possible
performance of the CQFN, especially for squeezing at higher bandwidths.

• The CQFN of two coupled OPOs makes it possible to vary the
squeezing spectrum, effectively utilize available pump power, and overall
significantly outperform a single OPO.

• The squeezing generation performance of optimal configurations of the
CQFN is robust to small variations of phase parameters.
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