
SANDIA REPORT
SAND2016-6049
Unlimited Release
Printed June, 2016

Abstract Machine Models and Proxy
Architectures for Exascale Computing
Version 2.0

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from

U.S. Department of Commerce
National Technical Information Service

5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2016-6049
Unlimited Release
Printed June, 2016

Abstract Machine Models and Proxy Architectures for
Exascale Computing

Version 2.0

J.A. Ang1, R.F. Barrett1, R.E. Benner1, D. Burke2, C. Chan2, J. Cook1, C.S.
Daley2, D. Donofrio2, S.D. Hammond1, K.S. Hemmert1, R.J. Hoekstra1, K.

Ibrahim2, S.M. Kelly1, H. Le, V.J. Leung1, G. Michelogiannakis2, D.R. Resnick1,
A.F. Rodrigues1, J. Shalf2, D. Stark, D. Unat, N.J. Wright2, G.R. Voskuilen1 1

1Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico
87185-MS 1319

2Lawrence Berkeley National Laboratory, Berkeley, California

Abstract

To achieve exascale computing, fundamental hardware architectures must change. The most sig-
nificant consequence of this assertion is the impact on the scientific and engineering applications
that run on current high performance computing (HPC) systems, many of which codify years of
scientific domain knowledge and refinements for contemporary computer systems. In order to
adapt to exascale architectures, developers must be able to reason about new hardware and deter-
mine what programming models and algorithms will provide the best blend of performance and
energy efficiency into the future. While many details of the exascale architectures are undefined,
an abstract machine model is designed to allow application developers to focus on the aspects of
the machine that are important or relevant to performance and code structure. These models are
intended as communication aids between application developers and hardware architects during
the co-design process. We use the term proxy architecture to describe a parameterized version of
an abstract machine model, with the parameters added to elucidate potential speeds and capacities
of key hardware components. These more detailed architectural models are formulated to enable

3

discussion between the developers of analytic models and simulators and computer hardware archi-
tects. They allow for application performance analysis and hardware optimization opportunities.
In this report our goal is to provide the application development community with a set of mod-
els that can help software developers prepare for exascale. In addition, through the use of proxy
architectures, we can enable a more concrete exploration of how well new and evolving applica-
tion codes map onto future architectures. This second version of the document addresses system
scale considerations and provides a system-level abstract machine model with proxy architecture
information.

4

Acknowledgment
Support for this work was provided by the Advanced Scientific Computing Research (ASCR)

program and funded by the Director, Office of Science, of the U.S. Department of Energy. Lawrence
Berkeley National Laboratory operates under Contract No. DE-AC02-05CH11231. Sandia Na-
tional Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Thanks to Prof. Bruce Jacob of the University of Maryland for input on NVRAM trends and
to Mike Levenhagen for his participation in some of our discussions.

5

6

Contents

1 Introduction 13

2 Programming Considerations 17

Data Movement/Coherence Model . 17

Hardware Performance Heterogeneity . 17

Increased Parallelism . 18

Distributed Memory Programming Models . 19

Point-to-point Transfer Mechanisms . 20

Active Messaging Mechanisms . 21

Collective Transfer Mechanisms . 21

Hardware Support for Transfer Mechanisms . 21

Communication Efficiency . 22

3 Abstract Machine Models 24

Overarching Abstract Machine Model . 24

Processor . 24

On-Chip/Package Memory . 25

Cache Locality/Topology . 26

Integrated Components . 26

Hardware Performance Heterogeneity . 27

Abstract Model Instantiations . 27

Homogeneous Many-core Processor Model . 28

Multicore CPU with Discrete Accelerators Model . 29

Integrated CPU and Accelerators Model . 29

7

Heterogeneous Multicore Model . 30

Abstract Models for Concept Exascale Architectures . 31

Performance-Flexible Multicore-Accelerator-Memory Model 31

4 Memory System 34

Memory Drivers . 34

Future Memory Abstractions . 36

Physical Address Partitioned Memory System . 37

Scratchpad Memory . 37

Multi-Level Cached Memory System . 38

3-D Stacked Memory Systems, Processing in Memory (PIM), and Processing Near
Memory (PNM) . 39

5 Proxy Architectures 40

Abstract Model of Future Computing Nodes . 40

Detailed Processing Node models . 41

Lightweight Cores and Processing Communication Runtime 42

Reference Proxy Architecture Instantiations . 43

Homogeneous Manycore Model: Intel Sandy Bridge . 43

Multicore CPU + Discrete Accelerators Model: Sandy Bridge with Discrete NVIDIA
GPU Accelerators . 44

Integrated CPU + Accelerators Model: AMD Fusion APU Llano 45

Proxy Parameters . 45

Processor . 46

6 System Scale Considerations 47

System Analysis of Advanced Workflows . 47

Interconnect Model . 47

8

Communication Model . 48

Communication Cost Model . 49

Interconnect Physical Characterization . 50

Routing Transfer in Direct Interconnect . 55

Endpoint Communication Resources . 55

Interconnect Technologies and Impact on Application Development 55

7 System Abstract Machine Model and Proxy Architectures 57

Partition Model . 58

System AMM Components . 58

The Processor and Memory AMM System Components . 58

The Interconnect Component . 59

Nodes, Sub-Cabinets, and Cabinets . 59

System Proxy Architectures . 60

Processor . 60

Memory . 61

Node Architecture . 61

System Network . 62

System Organization . 62

8 Conclusion 64

References 65

9

List of Figures
2.1 Distributed Memory Programming Models . 19

2.2 Typical Transfer Efficiency Curve . 22

3.1 Abstract Machine Model of an Exascale Node Architecture 25

3.2 Homogeneous Manycore Model . 28

3.3 Multicore CPU + Discrete Accelerators Model (Acc: Accelerator) 29

3.4 Integrated CPU + Accelerators Model (Acc: Accelerator) . 30

3.5 Heterogeneous Multicore Model . 30

3.6 Homogeneous Multicore-Accelerator-Memory Model (Mem: Memory, Acc: Ac-
celerator, Mov: Data Movement Engine) . 31

4.1 Per-Node Bandwidth and Capacity of Various Memory Technologies 35

4.2 Memory Subsystem Layouts . 37

5.1 Example Node Architecture using Processor AMM . 41

5.2 Reference proxy architecture instantiation: Intel Sandy Bridge 43

5.3 Reference proxy architecture instantiation: Multicore CPU with Discrete GPU Ac-
celerators . 44

5.4 Reference proxy architecture instantiation: AMD APU Llano 45

6.1 Estimated Data Transfer Time, LogGP model . 49

6.2 Direct interconnection Networks (Tree and 4D Hypercube . 51

6.3 Indirect Interconnect (butterfly) using Multiple Stage Switches 51

6.4 Dragonfly Interconnect . 54

7.1 System AMM . 63

10

List of Tables
4.1 Approximate Bandwidths and Capacities of Memory Subsystem 39

6.1 Current and Projected Communication Model Parameters . 50

6.2 Link Technologies and Performance Characteristics . 53

6.3 Switch Characteristics . 54

6.4 Direct Network Characterization . 54

11

12

1. Introduction
In this report we present an alternative view of industry’s exascale system hardware archi-

tectures. Instead of providing highly detailed models of each potential architecture, as may be
presented by any individual vendor, we propose initially to utilize simplified or high-level, abstract
models of machine components that allow an application developer to first reason about data struc-
ture placement in the memory system and the location where computational kernels run. Then
using a system-scale abstract model that combines the machine component models into one that
represents a system-level machine, programmers can reason about placement of the application
across the entire system. These component abstract machine models (AMMs) in conjunction with
the system abstract machine model (sAMM) will provide software developers with sufficient de-
tail of architectural and system features so they may begin tailoring their codes for these new high
performance machines and avoid pitfalls when creating new codes or porting existing codes to
exascale machines. While more accurate models will permit greater optimization to the specific
hardware, it is our view that a more general approach will address the more pressing issue of initial
application porting and algorithm re-development that will be required for future computing sys-
tems. Once initial ports and algorithms have been formulated, further refinements on the models
in this document can be used as a vehicle to optimize the application. These models offer the
following benefits to the research community:

Simplified model Abstract models focus on the important high-level hardware components, which
in turn affect code structure and algorithm performance – implementation specific details are
omitted.

Enable community engagement Abstract machines are an important means of communicating
to application developers about the nature of future computing systems so they can reason
about how to restructure their codes and algorithms for those machines.

Enable design space exploration The AMM is the formalization of a particular parametric model
for a class of machines that expresses the design space and what we believe is important in
that space. Additionally, the purpose of each of the presented models is to abstractly repre-
sent many vendor specific hardware solutions, allowing the application developer to target
multiple instantiations of the architecture with a single, high-level logical view of the ma-
chine.

Enable programming systems development A high-level representation of the machine also
enables design of automated methods (runtime or compile time) to efficiently map an al-
gorithm onto the underlying machine architecture.

In order to sufficiently reason about application and algorithm development on future exascale-
class compute nodes, a suitable AMM [18] is required so that algorithms can be developed inde-
pendent of specific hardware parameters. It is useful to think of the AMM as a way to simplify
the myriad complex choices required to target a real machine and as a model in which application
developers can frame their algorithms [19]. The AMM represents the subset of machine attributes

13

that will be important for code performance, enabling one to reason about power/performance
trade-offs for different algorithm and execution model choices. We want an abstract model of the
underlying hardware to be as simple as possible to focus on the durable cross-cutting abstractions
that are apparent across machines of the same generation, and to represent long-term trends for
future generations of computing systems. While there exist many potential machine attributes that
could be included in our models, we instead take one of three actions to concentrate our models
into more concise units:

• Ignore it. If ignoring the design choice has no significant consequences for the consumption
of power or the provision of computational performance we choose to eliminate the feature
from the model. We include architecture-specific instantiations of hardware features, such
as specific single-instruction, multiple-data (SIMD)-vector widths, in this category since it
is the presence of the functional unit that is important for reasoning with the model – not
the specific capabilities of the functional unit itself. Such details are provided in the proxy
architecture annotation of the model.

• Abstract it. If the specific details of the hardware design choice are well enough under-
stood to provide an automated mechanism to optimize a layout or schedule, an abstracted
form of the choice is made available (for example, register allocation has been successfully
virtualized by modern compilers).

• Expose it. If there is no clear mechanism to automate decisions but there is a compelling
need to include a hardware choice, we explicitly expose it in our abstract machine model
deferring the decision of how best to utilize the hardware to the application programmer.
For instance, the inclusion of multiple types of memory will require specific data structure
placement by the programmer, which in turn implies a need for the programming model to
also support data placement.

To obtain a more concrete instantiation of an AMM, we add detail to the abstraction by giv-
ing parameters to model components and assigning values to these parameters. For example, an
abstract memory model simply defines the organization of the various components in a hierarchy
(e.g., three levels with the first backed by the second, the second backed by the third). Each of
these components (i.e., each level of the hierarchy) is characterized by parameters such as capac-
ity and bandwidth that given a concrete value (e.g., capacity = 2GB, BW = 50GB/sec) defines
the technology (e.g., HBM, DRAM, NVRAM) and becomes what we define as a proxy architec-
ture. A fully parameterized abstract machine model with associated parameter values is a proxy
architecture that defines a specific component implementation that can be subsequently simulated.
Further analysis and optimization of the initial port of algorithms and applications to an AMM can
be accomplished through the simulated proxy architecture.

In Chapter 2 we discuss issues to be considered from a programming perspective when studying
the viability of abstract machine models. We provide some basic background information on how
various hardware features will impact programming and ultimately application performance. As
the HPC community drives toward achieving exascale, new metrics of energy efficiency, increased

14

concurrency, programmability, resilience, and data locality will play an increasing role in deter-
mining which hardware solutions are feasible and practical to utilize for production-class in-silico
scientific research. From the application programmers’ perspective, programming to each potential
exascale hardware solution presents an unwelcome situation in which multiple rewrites of the ap-
plication source may be required - in some cases demanding radical shifts in data structure layout
or the re-design of key computational kernels. Put simply, many application development teams
and supercomputing centers will be unable to afford the luxury of frequent application rewrites
either due to the sheer cost of such an endeavor or the number and availability of programmers
needed to undertake the activity.

In the face of a large number of hardware design constraints, industry has proposed solutions
that cover a variety of possibilities. These solutions range from systems optimized for nodes com-
prising many ultra-low power processor cores executing at vast scale to achieve high aggregate
performance throughput to large, powerful processor sockets that demand smaller scales but pro-
vide performance at much higher per-node power consumption. Each of these designs blends a set
of novel technologies to address the challenges laid out. To assist developers in reasoning about
these disparate ideas and solutions, we will present an overarching processor abstract model de-
signed to capture many of the proposed ideas into a single, unified view in Chapter 3. Then we
present a family of abstracted models that reflect the range of more specific architectural directions
being pursued by contemporary CPU designers. Each of these processor models are presented in
sufficient detail to support many uses, from application developers becoming familiar with the ini-
tial porting of their applications to hardware designers exploring the potential capabilities of future
computing devices.

In Chapter 4, we discuss memory architectures. An example of how an abstract model may be
applied to assist users in their transition from current machines can be seen in the memory systems
of future machines. It is likely that due to a rising number of cores per socket the memory hier-
archy will become further subdivided to maintain a reasonable amount of memory available per
core. This subdivision will make trade-offs of capacity versus bandwidth at different levels, forc-
ing programmers to manage vertical locality more explicitly than currently required. In addition,
maintaining cache coherence constitutes a large percentage of on-chip data traffic. Future designs
are leaning toward maintaining cache coherence, however the cost will be distance (or level in
hierarchy) dependent.

Chapter 5 presents node-level abstract machine models and parameterized instantiations, or
proxy architectures, of some abstract machine models that combine the CPU and memory models
outlined in this report to represent simple compute nodes. Proxy architectures, both node-level and
system-level, are an especially useful communication vehicle between hardware architects and per-
formance analysts. Models can be developed based on the AMM descriptions and the parameter
space identified in the associated proxy architecture. When a sufficient range of parameters is ap-
plied, we foresee that the models may be shared openly among users, academics, and researchers.
A specific parameter set that closely relates to a point design will likely be proprietary and, there-
fore, only shared within the appropriate disclosure constraints. Simulations using these models will
explore the ever-expanding definition of performance. In addition to the Holy Grail of minimizing
application run times, power usage, and data movement, maximizing resiliency and programmer

15

productivity are also parts of the equation that must be considered in identifying usable exascale
systems.

In Chapter 6 we discuss characteristics of application communication that must be considered
in developing a system model. We first discuss the impacts of the choice of the node model
on system characteristics such as the runtime and communication processing. The development
of an interconnect model requires not only the physical definition of the interconnect itself, but
other characteristics such as communication cost, routing, endpoint resources, and data transfer
mechanisms. These are presented and discussed in the context of a system-scale interconnect
model. We conclude this chapter by presenting an I/O and storage model that can be used in
defining a system abstract machine model.

Chapter 7 presents a generalized system abstract machine model and system-level parameter-
ized instantiations of some combinations of the node, interconnect, and I/O and storage models to
form system proxy architectures. Point designs of existing and future Exascale systems comprise
the proxy architecture space. The parameters for each of the respective component models provide
enough detail to inform accurate simulations of these systems that can be used for more targeted
application optimization.

Finally, we conclude our report in Chapter 8 and add a discussion of future work and important
codesign and programmatic interfaces for other research and development areas in the overarching
Department of Energy (DOE) exascale program.

16

2. Programming Considerations
Emerging architectures are bringing with them a shift in constraints that will require careful

consideration for development of future exascale-class applications, particularly for those demand-
ing an evolutionary approach to porting [4]. In the future we expect that new optimization goals
will become commonplace, specifically that application developers will target the minimizing of
data movement and the maximization of computational intensity for each piece of data loaded
from memory, rather than a focusing on increasing the raw compute performance (FLOP/s) used
by each processor. The optimization of data movement is becoming more complex as future archi-
tectures may have greater levels of Non-Uniform Memory Access (NUMA) and we anticipate an
explosion of on-chip parallelism. These architectural shifts must be accompanied by changes in
programming models that are more adept at preserving data locality, minimizing data movement,
and expressing massive parallelism.

Data Movement/Coherence Model

Programmers have relied on a large shared cache to virtualize data movement. As the number
of cores per socket increase programmers will be faced with the need to explicitly manage data
movement. In the best case, regional coherence domains will automatically manage memory be-
tween a subset of cores. Between these domains there may be a relaxed consistency model, but the
burden will still fall on developers to efficiently and manually share data on-chip between these
domains.

Non-uniform memory access issues are already prevalent in today’s machines. With the high
core counts (in the 100s or 1000s for GPUs), the issue will be more detrimental to performance
because programmers can no longer assume execution units or the various memory components are
equidistant. The importance of locality in these new architectures that utilize explicitly managed
memory systems will drive the development of a more data-centric programming model and tools
to allow programmers to more naturally express the data layout of their programs in memory.

Moreover, configuring local memory as cache and scratchpad memory will become an impor-
tant tuning parameter. Recent CPU and GPU architectures allow a split of the on-chip storage
between hardware-managed and software-managed memory. We expect that future systems will
allow for even more flexible configuration in the split between scratchpad and cache.

Hardware Performance Heterogeneity

Current parallel programming paradigms such as the bulk-synchronous parallel (BSP) [28]
model implicitly assume that the hardware is homogeneous in performance. During each phase

17

of computation, each worker thread is assigned an equal amount of work, after which they wait
in a barrier for all other worker threads to complete. If all threads complete their work at the
same time, this computational paradigm is extremely efficient. On the other hand, if some threads
fail to complete their portion of the work, then large amounts of time could be wasted by many
threads waiting at the barrier. As on-chip parallelism increases, the achieved performance of the
cores on a chip will become less and less homogeneous, which will require adaptation by the
programmer, programming model, domain decomposition and partitioning tools, and/or system
runtime to maintain a high level of performance.

One source of increasing heterogeneity is the use of multiple types of cores on a chip such
as thin and fat cores. As described in the section titled Hardware Performance Heterogeneity,
largely parallel tasks will run more efficiently on throughput-optimized thin cores, while mostly
serial tasks will run more efficiently on latency-optimized fat cores. The programming model and
runtime must be aware of this distinction and help the programmer utilize the right set of resources
for the particular set of tasks at hand so the hardware may be utilized in an efficient manner. The
compiler may utilize the frequency scaling information to make static scheduling decisions, or the
runtime may adapt based on how quickly it observes task imbalances run on the different cores.

Another source of performance heterogeneity is due to imbalanced workloads, which may cre-
ate thermal hotspots on the chip that result in frequency throttling. Such throttling will temporarily
impact the execution rate of subsets of cores on a chip. Furthermore, if exascale machines are sub-
ject to increased rates of hardware faults, then the associated mitigation techniques such as error
correction or recovery could cause large delays to subsets of the threads or processes in an appli-
cation. Network-on-chip (NoC) congestion resulting in starvation to some cores is also a source of
performance heterogeneity.

In each of these cases, a strict BSP program formulation will result in all of the worker threads
waiting for the affected threads to complete before moving on to the next phase of computation
or communication. Future machines with higher degrees of performance heterogeneity are there-
fore likely to rely on runtime systems to dynamically adapt to changes in hardware performance
or reliability. Current research strategies for programming to accommodate these performance
variations include extending existing languages and parallel APIs, such as C++14, future C++
standards-based language level parallelism, and traditional runtimes including OpenMP, and devel-
oping alternative languages and task-parallel runtimes, such as Chapel [8], Legion [5], HPX [15],
UPC++ [32], and the Open Community Runtime (OCR) [23]. For each approach, the solution will
need to provide an efficient mapping with a low burden to the application programmer.

Increased Parallelism

With increasing core counts, more parallelism will need to be exposed by the applications to
keep all of the cores on the chip busy. This could prove challenging if application developers
have structured their algorithms in a way that limits the level of concurrency expressed to the
programming model.

18

C
o

m
p

u
te

Msg.

P
a

c
k

Send

U
n

p
a

c
k

C
o

n
s

u
m

e

Msg.

Receive

C
o

m
p

u
te

C
o

n
s

u
m

e

A
c

k

B
a

rr
ie

r

Two-sided Communication One-sided Communication

Ps

Pr

Ps

Collective Communication

(reduction)

C
o

m
p

u
te

C
o

m
p

u
te

C
o

m
p

u
te

C
o

m
p

u
te

P0 P1 P2 P3

P0

P0

P2

Figure 2.1. Distributed Memory Programming Models

There are four broad sources of parallelism: (1) Instruction-level parallelism between indepen-
dent instructions, (2) Vectorization of an instruction over multiple data elements, (3) Thread-level
parallelism between independent execution contexts/threads, and finally (4) Domain decomposition-
level parallelism, which is typical of scientific applications designed to run over massively parallel
nodes.

Increased concurrency will need to be exposed in the software stack to utilize large numbers of
functional units and to hide higher latencies through hyper-threading. There is potential for future
programming languages, compilers, and runtimes to help developers expose greater parallelism
through data-centric programming models that allow automatic task decomposition and pipelin-
ing. These same systems that help reason about task and data dependencies for scheduling could
also be used to manage data movement across the chip to increase access locality for energy and
performance benefits described earlier.

Distributed Memory Programming Models

Distributed memory programming models provide mechanisms for data transfers and primi-
tives for synchronization (satisfying dependencies). Two-sided models (send/receive) bundle the
transfer mechanism with synchronizations, while one-sided models use global view of the memory
to decouple transfers from synchronization. Collective communication involves multiple processes
exchanging data and possibly processing data while being in transit.

Programming models in distributed environments provide mechanisms for satisfying data de-
pendencies between producers and consumers of data. Data transfers are the first of a two-step
process to create such a dependency relation. The transfer mechanism can be characterized by
the type of the destination and the number of participants in the communication transaction. The

19

type of the target could be a peer rank (as in two-sided paradigms), or a memory location in the
local or a remote node (as in global address space (GAS) models). The initiator could be a single
rank, typically in one-sided or two-sided mechanisms, or multiple ranks in collective communi-
cation. The second step in establishing a dependency relation involves a synchronization that the
data is ready for consumption. Programming models provide different mechanisms to guarantee
such ready notification. In two-sided mechanisms (based on send/receive) the synchronization is
implicit in the matching of the receive. In one-sided transfers, the notification is decoupled from
the transfer and can be done either using point-to-point signaling or collectively using a barrier.

Point-to-point Transfer Mechanisms

Point-to-point transfers are either one-sided or two-sided as discussed earlier. The distinction
between the two transfer mechanisms includes the type of synchronization and efficiency of han-
dling different message patterns. A two-sided model based on matching send and receive bundle
transfer with synchronization is shown in Figure 2.1. One good fit for this model is when we
have predictable communication with a small number of peers. A one-sided model is clearly a
better option for random accesses. One-sided mechanisms typically decouple the transfer from the
synchronization. A separate call for synchronization (flag or barrier) is needed for establishing a
consistent state. Many patterns can be implemented using either mechanism. One-sided transfers
are the core primitives to support partitioned global address space (PGAS) programming models,
such as SHMEM [20] and UPC [7].

The two-sided model could be easier for memory consistency because the local memory within
a node cannot be modified until being exposed for communication by a receive call. The one-
sided mechanism offers more flexibility in programming, but requires special care in applying
synchronization. Programming models such as MPI offers both flavors of programming.

In terms of performance, most optimized runtimes converge at a certain message size to the
peak performance delivered by the hardware. The convergence point differs depending on the
overhead of the software stack and the transfer mechanisms.

While ultimately, the source and destination of a transfer is user-level data, the runtime may
require internal buffering to meet semantic guarantees, or optimize for performance. For instance,
to provide non-blocking semantic or to reduce perceived application latency of a blocking transfer,
the runtime may need to copy user data into runtime buffers. Additionally, the interconnect hard-
ware may have faster protocols for certain segments of the memory (memory registered with the
interconnect). The runtime may copy data from memory segments not registered with the Network
Interface Chip (NIC) to registered memory for faster transfers. The use of internal memory for
faster transfers is more common in two-sided transfers than one-sided.

Scalability in future systems may put constraints on the runtime buffers that can be used to
accelerate transfers. Runtimes may use different buffer allocation strategies depending on the
scale. As such, the application should expect the tuning strategy at extreme scale to differ from
that at small scale. Applications may need to experiment with different transfer mechanisms for

20

the best performance.

Active Messaging Mechanisms

Active messages involve a remote procedure invocation at the remote node in addition to trans-
ferring data. They can provide a very flexible mechanism for implementing atomic operations, es-
pecially when hardware support is not provided. They can also be used in asynchronous program-
ming models, where data arrival can trigger signaling a task to start. Hardware support for active
messages in future systems could reduce the overhead of executing tasking models, thus opening
new opportunities for low-overhead load-balancing execution. Programming models which use the
directed acyclic task-graph abstraction to represent a program may benefit from hardware support
for active messages.

Collective Transfer Mechanisms

Collective transfer involves multiple peer ranks in a single communication event. The group
of ranks may involve all ranks within a job or a small subset. Collectives have an implicit syn-
chronization, possible computation, in addition to the data transfer part. All ranks involved in the
collective need to arrive at the collective for it to complete. While doing a collective reduction
on data, an operator (mathematical or logical) is applied. Most runtimes try to optimize the data
movement by applying the reduction operator in a staged fashion.

Hardware Support for Transfer Mechanisms

The efficiency of implementing a programming model typically relies on hardware support for
implementing basic functionality. For instance, tracking the completion of a one-sided operation
is typically needed to establish a consistent state. The interconnect can either provide a hardware
mechanism for completion tracking or leave it up to the runtime to use a software protocol to
ensure completion. Local completion from the initiator perspective allows reuse of the buffer used
to initiate the communication. Another important class of primitives is the support of collectives by
the interconnect in a totally offloaded fashion. This capability is currently provided by many high
performance interconnects. Hardware acceleration of communication primitives can significantly
reduce the overhead of establishing a consistent state. For example, hardware may support tag
matching in two-sided communication.

Collectives and remote atomic operations are additional classes of communication primitives
that benefit greatly from hardware support. For instance, remote atomics allow direct modifica-
tion of a remote memory region and support efficient, irregular memory accesses in distributed
machines.

21

0.20%

0.39%

0.78%

1.56%

3.12%

6.25%

12.50%

25.00%

50.00%

100.00%

T
ra

n
s

fe
r

E
ff

ic
ie

n
c

y

Transfer size

 Hardware limits

 Software Stack
Parallel

Injection

Transfer aggregation

Minimum transfer

for peak efficiency

Figure 2.2. Typical Transfer Efficiency Curve

Communication Efficiency

In a distributed environment, a data transfer involves multiple overheads due to transfer packet
format and because of latency introduced by executing the complex communication software stack.
At the hardware level, additional header information is added to the packet payload for routing, er-
ror checking, etc. The header could exceed the payload size for word level transfers. The software
stack needs to execute many steps to initiate, track progress and complete a transfer.

Figure 2.2 shows a typical transfer efficiency curve. Transfer efficiency is dependent on trans-
fer size, the level of transfer parallelism, and software overheads. Achieving efficiency typically
requires transfer aggregation, increasing transfer parallelism, and reducing software overheads.
Hardware-level efficiency is typically observed at much smaller transfer size than transfer effi-
ciency realized by the application. Depending on the software overhead, the minimum transfer
size to observe near ideal transfer efficiency differs with the programming model and interface,
and the interconnect support for small transfers.

The software overhead is a function of the complexity of the software stack and the capability
of the processing cores. The use of lightweight cores is expected to result in reduced observed
efficiency by the application. The application needs to either increase the transfer size or have
concurrent injection of transfers to amortize such overheads.

From the application developer perspective, the application tuning efforts should follow the
cost model for transfers provided by the system. For instance, the application developer should
know the minimum transfer size that allows approaching the peak performance. However, for
portability, this should be abstracted in some way. Applications should be designed to allow con-
current initiation of transfers. The application can be tuned to overlap initiation of transfers while
data are being produced as long as a reasonable transfer granularity is used. Even if current run-
times do not always provide fully non-blocking APIs, future systems are likely to provide this
capability out of necessity.

22

Hardware support for aggregation at source and scatter at the destination could serve the pur-
pose of replacing the software mechanism (by the application or the runtime). The caveat is that if
supported it will be limited to the strided access cases.

23

3. Processor Abstract Machine Models for
Algorithm Design

An AMM by definition and name is abstract in the sense that implementation details such as
speeds and feeds are not represented in the model. Further, AMMs can represent system com-
ponents such as processors, memories, and interconnects and can be subsequently combined to
represent architectures at system scale. In this chapter, we present processor abstract machine
models to be used in future node architectures. Note that the level of abstraction in these proces-
sors define models that comprise core, NOC, NIC, and accelerator components. The organization
of these components defines the various processor AMMs.

For the models that follow in this chapter, we describe the basic node compute infrastructure
with a view that the memory and interconnect associated with the node are orthogonal capabilities.
To be clear, each of these design dimensions – memory and network interface – are orthogonal in
the design of an exascale machine and will be addressed separately in subsequent chapters. We
expect network interfaces to be integrated into the processor, but we define the specifics of the
network topology in a distinct abstract model since very few algorithms are designed or optimized
to a specific network topology. The network topology description could be important for the design
of future applications and associated workflows.

Overarching Abstract Machine Model

We begin with a single model that highlights the anticipated key hardware architectural features
that may support exascale computing. Figure 3.1 pictorially presents this as a single model, while
the next subsections describe several emerging technology themes that characterize more specific
hardware design choices by commercial vendors. In the Abstract Model Instantiations section, we
describe the most plausible set of realizations of the single model that are viable candidates for
future supercomputing architectures.

Processor

It is likely that future exascale machines will feature heterogeneous nodes composed of a col-
lection of more than a single type of processing element. The so-called fat cores that are found in
many contemporary desktop and server processors are characterized by deep pipelines, multiple
levels of the memory hierarchy, instruction-level parallelism and other architectural features that
prioritize serial performance and tolerate expensive memory accesses. This class of core is often
optimized to run a small number of hardware threads with an emphasis on efficient execution of
system services, system runtime, or an operating system. The alternative type of core that we
expect to see in conjunction with fat cores in future processors is a thin core that features a less

24

3D Stacked
Memory

(Low Capacity, High Bandwidth)

Fat
Core

Fat
Core

Thin Cores / Accelerators

DRAM
NVRAM

(High Capacity,
Low Bandwidth)

Coherence DomainCoreIntegrated NIC
for Off-Chip

Communication

Figure 3.1. Abstract Machine Model of an Exascale Node Ar-
chitecture

complex design in order to use less power and physical die space. By utilizing a much higher count
of the thinner cores a processor will be able to provide high performance and energy efficiency if
a greater degree of parallelism is available in the algorithm being executed.

Application programmers will therefore need to consider the uses of each class of core. A fat
core will provide the highest performance and energy efficiency for algorithms where little paral-
lelism is available or the code features complex branching schemes leading to thread divergence,
while a thin core will provide the highest aggregate processor performance and energy efficiency
where parallelism can be exploited, branching is minimized and memory access patterns are coa-
lesced.

On-Chip/Package Memory

The need for more memory capacity and bandwidth is pushing node architectures to provide
larger memories on or integrated into CPU packages. This memory can be formulated as a cache
if it is fast enough or, alternatively, can be a new level of the memory system architecture. Ad-
ditionally, scratchpad memories (SPMs) are an alternate way to ensure a low latency access to
data. SPMs have been shown to be more energy-efficient, have faster access time, and take up
less area than traditional hardware cache [24]. Going forward, on-chip/package SPMs will be
more prevalent and programmers will be able to configure the on-chip/package memory as cache
and/or scratchpad memory, allowing initial legacy runs of an application to utilize a cache-only
configuration while application variants using scratchpad-memory are developed.

25

Cache Locality/Topology

A fundamental difference from today’s processor/node architecture will be the loss of conven-
tional approaches to provide processor-wide hardware cache coherence. This will be driven heav-
ily by the higher power consumption required with increased parallelism and the greater expense
in time required to check the various respective resources for cached copies of data. A number
of existing studies provide a description of the challenges and costs associated with maintaining
cache coherence: Schuchhardt et al. [24] and Kaxiras and Keramidas [17] provide quantitative
evidence that cache coherency creates substantial additional on-chip traffic and suggest forms of
hierarchical or dynamic directories to reduce traffic, but these approaches have limited scalability.
Furthermore, Xu et al. [31] finds that hierarchical caching doesn’t improve the probability of find-
ing a cache line locally as much as one would hope – a conclusion also supported by a completely
independent study by Ros et al. [22] that found conventional hardware coherence created too much
long-distance communication (easily a problem for the scalability of future chips). We find that
considerable recent work has followed along the lines of Choi et al.’s 2011 DeNovo approach [9],
which argues that hybrid protocols, including self-invalidation of cache and flexible cache parti-
tions, are better ideas and show some large improvements compared to hardware cache coherency
with 64 cores and above.

Fast Forward is DOE’s node-level hardware technology development program
(http://www.exascaleinitiative.org). Due to the strong evidence in the literature and numerous in-
dependent architectural studies, we and a number of the Fast Forward vendors believe there is
ample evidence that continuing to scale current hardware coherence protocols to manycore chips
will come at a severe cost of power, performance and complexity. In a potential hybrid architec-
ture, it is likely that the fat cores will retain the automatically managed memories now familiar to
developers. However, scaling up coherence across hundreds or thousands of thin cores in a sin-
gle node may be provided but will come at a high performance cost. As with other shifts in the
node architecture this change in coherence scaling will require application developers to pay close
attention to data locality.

Current multicore processors are connected in a relatively simple all-to-all or ring network.
As core counts surpass the dozen or so cores we see on current processors these networks cease
to scale and give rise to more sophisticated network topologies (e.g., mesh topologies). Unlike
the current on-chip networks, these networks will stress the importance of locality and force the
programmer to be aware of where data is located on-chip to achieve optimal performance.

Integrated Components

We have seen a continued trend towards greater integration. In general, integration of compo-
nents on die or in package results in increased performance and decreased power. A recent example
of physical integration can be seen in the integration of the network interface controller. The NIC
is the gateway from the node to the system level network, and the NIC architecture can have a large
impact on the efficient implementation of communication models. For large parallel systems, the

26

inter-node network is the dominant factor in determining how well an application will scale. Even
at small scale, applications can spend a large portion of their time waiting for messages to arrive
and reductions in bandwidth or failure to substantially improve latency over conventional methods
can greatly exacerbate this problem. A custom NIC that integrates the network controller, and in
some cases the messaging protocol, onto the chip to reduce power, is expected to also increase
messaging throughput and communication performance [6, 27]. Although there is a risk of choos-
ing a network interface that is not compatible with all the underlying data communication layers,
applications that send small and frequent messages are likely to benefit from such integration.

Hardware Performance Heterogeneity

One important aspect of the AMM that is not directly reflected in the schematic of the AMM in
Figure 3.1 is the potential for non-uniform execution rates across the many billions of computing
elements in an exascale system. This performance heterogeneity will be manifested from chip-level
all the way up to system-level. This aspect of the AMM is important because the HPC commu-
nity has evolved a parallel computing infrastructure that is largely optimized for bulk-synchronous
execution models. It implicitly assumes that every processing element is identical and operates at
the same performance. However, a number of sources of performance heterogeneity may break
the assumptions of uniformity that underpin our current bulk-synchronous models. Since the most
energy-efficient floating point operations (FLOPs) are the ones you do not perform, there is in-
creased interest in using adaptive and irregular algorithms to apply computation only where it is
required, and also to reduce memory requirements. Even for systems with homogeneous com-
putation on homogeneous cores, new fine-grained power management makes homogeneous cores
look heterogeneous [25]. For example thermal throttling on Intel Sandy Bridge enables the core
to opportunistically sprint to a higher clock frequency until it gets too hot, but the implementa-
tion cannot guarantee deterministic clock rates because chips heat up at different rates. Options
for active (software mediated) power management might also create sources of performance non-
uniformity [11]. In the future, non-uniformities in process technology will create non-uniform
operating characteristics for cores on a chip multiprocessor [16]. Fault resilience will also intro-
duce inhomogeneity in execution rates as even hardware error correction is not instantaneous, and
software-based resilience will introduce even larger performance heterogeneity [29].

Therefore, even homogeneous hardware will look increasingly heterogeneous in future tech-
nology generations. Consequently, we can no longer depend on homogeneity, which may present
challenges to bulk-synchronous execution models.

Abstract Model Instantiations

Given the overarching model, we now highlight and expand upon key elements that will make
a difference in application performance. Note that in all of the models, a NIC is shown on the
processor package with a dashed outline around it. This signifies that the NIC could potentially

27

be integrated on the processor package or may not be. Currently, not all processors have in-
package NICs, but we expect in the future that many will, which is why it is shown this way
in the models. In many of the models presented, an accelerator is shown either integrated into
the processor package or in a separate device connected to the processor package. We define an
accelerator as a specialized computational unit that is designed to speed computation and is used as
an offload engine rather than a primary computational device. Devices such as GPUs and FPGAs
are considered accelerators by this definition.

Homogeneous Many-core Processor Model

Core Core

Core Core

Network-on-Chip

...

...
M
em

or
y

NIC

Figure 3.2. Homogeneous Manycore Model

In a homogeneous manycore node (Figure 3.2) a series of processor cores are connected via
an on-chip network. Each core is symmetric in its performance capabilities and has an identical
instruction set (ISA). The cores share a single address memory space and may have small, fast,
local caches that operate with full coherency. We expect that the trend of creating individual clock
and voltage domains on a per-core basis will continue allowing an application developer or system
runtime to individually set performance or energy consumption limits on a per-core basis meaning
that variability in runtime will be present on a per-core basis, not because of differences in the ca-
pabilities of each core but because of dynamic configuration. Optionally, the cores may implement
several additional features depending on the performance targets including simultaneous multi-
threading (SMT), instruction level parallelism (ILP), out-of-order instruction execution or SIMD
(single instruction, multiple data) short-vector units.

Like a system-area interconnect, the on-chip network may “taper” and vary depending on the
core pair and network topology. Similarly, the programmer and compiler will have to contend with
network congestion and latency. Depending on the programming model, communication may be
explicit or largely implicit (e.g. coherency traffic).

28

Multicore CPU with Discrete Accelerators Model

Core Core

Core Core

Network-on-Chip

...

...

...

M
em

or
y

...

Acc.

...

M
em

or
y

M
em

or
y

Acc.

NIC

Figure 3.3. Multicore CPU + Discrete Accelerators Model (Acc:
Accelerator)

In this model a homogeneous multi-core processor (Figure 3.3) is coupled with a series of dis-
crete accelerators. The processor contains a set of homogeneous cores with symmetric processor
capabilities that are connected with an on-chip network. Each core may optionally utilize multi-
threading capabilities, on-core caches and per-core based power/frequency scaling. Each discrete
accelerator is located in a separate device and features an accelerator processor that may be thought
of as a throughput oriented core with vector processing capabilities. The accelerator has a local,
high performance memory, which is physically separate from the main processor memory subsys-
tem. To take advantage of the entire compute capability of the processor, the programmer has to
utilize the accelerator cores, and the programming model may have to be accelerator-aware. Fu-
ture implementations of this AMM will increase bus-connection bandwidth and decrease latency
between processor and accelerator reflecting a trend towards increased logical integration.

Integrated CPU and Accelerators Model

An integrated processor and accelerator model (Figure 3.4) combines potentially many latency-
optimized processor CPU cores with many accelerators in a single physical die, allowing for poten-
tial optimization to be added to the architecture for accelerator offloading. The important differen-
tiating aspect of this model is a shared, single coherent memory address space is accessed through
shared on-chip memory controllers. While this integration will greatly simplify the programming,
latency optimized processors and accelerators will compete for memory bandwidth.

29

Core Core

Network-on-Chip

...

...

...

M
em

or
y

...

Acc. Acc.

NIC

Figure 3.4. Integrated CPU + Accelerators Model (Acc: Accel-
erator)

Core Core

Network-on-Chip

...

...

...

M
em

or
y

...

Core

Core

Core

Core

NIC

Figure 3.5. Heterogeneous Multicore Model

Heterogeneous Multicore Model

A heterogeneous multi-core architecture features potentially many different classes of proces-
sor cores integrated into a single die. All processor cores are connected via an on-chip network
and share a single, coherent address space operated by a set of shared memory controllers. We
envision that the cores may differ in ISA, performance capabilities, and design, with the core
designers selecting a blend of multi-threading, on-chip cache structures, short SIMD vector oper-
ations, instruction-level parallelism and out-of-order/in-order execution. Thus, application perfor-
mance on this architecture model will require exploiting different types and levels of parallelism.
Figure 3.5 provides an overview image of this design for two classes of processor cores.

The main difference between the heterogeneous multi-core model and the previously discussed
integrated multi-core CPU and accelerator model (Integrated CPU and Accelerators Model section)
is one of programming concerns: in the heterogeneous multi-core model each processing element

30

is an independent processor core that can support complex branching and independent threaded,
process or task-based execution. In the integrated multi-core with accelerator model, the accelera-
tors will pay a higher performance cost for heavily divergent branching conditions and will require
algorithms to be written for them using data-parallel techniques. While the distinction may appear
subtle, these differences in basic hardware design will lead to significant variation in application
performance and energy consumption profiles depending on the types of algorithm being executed,
motivating the construction of two separate AMMs.

Abstract Models for Concept Exascale Architectures

The machine models presented in the Abstract Model Instantiations section represent relatively
conservative predictions based on known vendor roadmaps and industry trends. However, with the
advent of system on chip (SoC) design, future machines can be optimized to support our specific
requirements and offer new methods of implementing on-chip memories, change how coherency
and data sharing are done and implement new ways to support system latencies. This creates a
much wider design space. In this section we present one possible concept for a customized system
node.

Performance-Flexible Multicore-Accelerator-Memory Model

Chip Boundary

Network

Core Acc.

MemMov MemMov

Network
Network-
on-Chip M

em
or

y

System
InterconnectNIC

Figure 3.6. Homogeneous Multicore-Accelerator-Memory
Model (Mem: Memory, Acc: Accelerator, Mov: Data Movement
Engine)

The homogeneous multicore-accelerator-memory (MAM) model in Figure 3.6 is an aggressive
design for a future processor based around new approaches to make general computation more

31

efficient. The focus in this design is on achieving higher percentages of peak performance by
supporting execution through a greater variety of specialized function units and multi-threaded
parallel execution within each core. The processor features many heterogeneous cores, a hierar-
chical internal network and an internal NIC with multiple network connections, allowing multiple
memory channels and extremely high internal and external access to local and remote processor
memories throughout the system. There are multiple components in the memory system: many
internal memory blocks that are integrated into the CPU cores as well as main memory that is
directly connected to nodes and is available to other nodes through a system’s network.

Each core implements a high order number of threads to hide latency and the capability to
tradeoff the number of threads for greater performance per thread. Multiple threads in a core run
at the same time and the implementation is such that the core is kept busy; for example if a thread
is held waiting for a main-memory item, another thread is put into execution.

As stated above, each thread in a core is given a portion of local on-chip memory. That memory
is originally private to each thread, though each core can choose to share portions of its space with
other threads. Each portion has multiple pieces such that some pieces can be for caching and others
for ”scratch space” at the same time. Scratch space is memory that is used to store intermediate
results and data placed there is not stored in main memory. This saves energy and reduces memory
traffic. (Scratch data is saved if a job is rolled out.)

When a portion of its local, cached memory is shared with other threads, the sharing entities see
only a single cache for that specific portion of the address space. This greatly reduces coherency
issues. If the shared portion of local memory is scratch space, there is only a single copy of the
data. In this latter case, coherency must be managed by software, or it can be done with atomic
operations if appropriate.

There are also two different kinds of high-performance accelerators: vector units and move
units (data movement engines) that are integral parts of each core. The vector acceleration units
can execute arbitrary length vector instructions, unlike conventional cores which execute short
SIMD instructions. The vector units are done such that multiple vector instructions can be running
at the same time and execution performance is largely independent of the length of the vectors.

Multiple data movement engines are also added to the processor and vector units to provide
general data movement, such as transposing multidimensional matrices. Both the vector and move
accelerators can perform their functions largely independent of the thread processes or can be di-
rectly controlled by and interact directly with executing threads. Local scratch pads are included
in the core and accelerators (shown in the block diagram as Mem-blocks) where applications can
store data items at very low access latency. These local memories also provide a direct core-to-
remote-core messaging capability where messages can be placed ready for processing. By provid-
ing separate memory blocks, vector units and processor cores can run independently.

Thread execution in each core is organized into blocks of time. An executing thread can have
a single clock in an execution block or it can have multiple clocks. This enables the number of
threads in execution and the execution power of threads to vary depending on application require-
ment. There can also be execution threads that are inactive but ready to execute when an executing

32

thread would be idle (waiting on some action to complete), or can be loaded or unloaded. Any
thread seeing more than a one clock-block wait time is replaced with an inactive thread that is
ready but is waiting for active execution time.

33

4. Memory System
In this chapter, we describe current and future memory technologies followed by our abstract

models of future memory subsystems. For these models, it is important to note that we do not fully
describe the coherency aspects of the various memory subsystems. These memory systems will
likely differ from current coherency schemes and may be non-coherent software-based coherent,
or hardware-supported coherent.

Memory Drivers

The current generation of main memory, DDR-4 is expected to be the basis of main memory
for at least the next three to four years. But that memory cannot be used – at least not by itself – as
the basis for the high-end and exascale systems envisioned here. As the DDR-4 standard pushes
engineering to the limit, it is unclear if JEDEC (the standards body that supported the development
and implementation of the DDR memory standards) will provide a DDR-5 standard. This may
force system vendors to explore alternative technologies.

A promising alternative to DDR-5 is to provide a hybrid memory system that will integrate
multiple types of different memory components with different sizes, bandwidths, and access meth-
ods. There are also efforts underway to use some very different DRAM parts to build an integrated
memory subsystem; this memory has characteristics that are very different than DDR-4 technology
such that power and energy would be reduced with respect to current memory. In addition, because
the power is reduced, the capacity of memory can be greatly increased.

Consider a system that has two types of components in its memory system. This system will
contain a fairly small number of parts that are mounted on top of or are in the same carrier as the
CPU chip (e.g. one to eight memory parts with each part being a 3D stack of redesigned memory
die). An example of a system with this memory system is Intel’s Knight’s Landing.

The bandwidth of these integrated memory parts will likely be in the low 100’s of gigabytes-
per-second each – much higher than any current memory parts or memory modules. But this
increased bandwidth comes at a cost of lower capacity; therefore, this high-bandwidth memory
alone will be unable to support any realistic applications and must be paired with a higher capacity,
lower bandwidth memory. This higher capacity, lower bandwidth memory will likely be something
like DDR-4, and will provide the majority of the system’s memory capacity. Known memory
technologies enable us to get memory capacity or memory bandwidth, but not both in the same
device technology. This motivates the move towards a new organization for external memories.
These trade-offs are diagrammed in Figure 4.1. Of course such a two-level structure raises co-
design needs with respect to system software: compilers, libraries, and OS support, and other
elements of the system software stack.

There are two new DRAM technologies that are coming to market that are aimed at getting

34

around some of the limitations of DDR DRAMs, though, as mentioned above, at higher per-bit
costs.

High Bandwidth Memory (HBM) is a new JEDEC standard that has seen initial shipments. The
parts are 3D stacks of DRAMs that are aimed at significantly higher bandwidths, but have limited
size scalability. Hybrid Memory Cube (HMC) memory is a new internal memory organization and
interface for 3D parts that offers somewhat higher bandwidths than HBM and has other features
that will very likely be beneficial for large systems. Initial shipments have also been made.

There is also a new non-volatile (NV) technology that has been announced, but with little
firm description and data at this point. 3D XPoint (from Cross-Point), is a non-volatile memory
technology that is targeted to have a similar performance profile to present day DDR.

Bandwidth\Capacity. 16.GB. 32.GB. 64.GB. 128.GB. 256.GB. 512.GB. 1.TB.
4.TB/s.
2.TB/s. Stack/PIM.
1.TB/s.

512.GB/s. Interposer.. HMC/FR4.
256.GB/s. DIMM.. ..
128.GB/s.
64.GB/s. NVRAM ..

Cost (increases for higher capacity and cost/bit increases with bandwidth)

P
o
w
e
r

Figure 4.1. Per-Node Bandwidth and Capacity of Various Mem-
ory Technologies

New high-bandwidth components will come at significantly higher procurement cost. We en-
vision analysis being performed to not only justify the increased cost of these components with
respect to application performance, but also to determine the optimum ratio of high-bandwidth,
low-capacity memory to low-bandwidth, high-capacity memory. Current market data shows the
high-speed low-capacity stacked memory is consistently more expensive per bit of capacity than
the higher-capacity lower-bandwidth DDR memories. This ratio is governed by both the cost of
3D technology and market dynamics.

This performance vs. cost analysis will also need to include relative energy consumption for
each memory type. As an example, if DDR-4 is used as the basis for the majority of a system’s
memory capacity, then the total capacity in such a system will be significantly reduced when
compared to a system utilizing DDR-4 in combination with technologies which are more energy
efficient, such as NVRAM, and/or higher performance, such as HMC. This performance vs. cost
vs. energy trade-off analysis does not have an immediate impact on the study here, but will affect
choices that must be made at a system level such as: how much is additional memory worth with
respect to system performance, total size on the computer room floor, and other facility considera-
tions.

35

Finally, a system need not be restricted to two levels of memory and may have three or more
levels with each level composed of a different memory technology, such as NVRAM, standard
DRAM, 3D Stacked DRAM, or other memory technologies. As a result, future application anal-
ysis must account for complexities created by these multi-level memory systems. Despite the
increased complexity, however, the performance benefits of such a system should greatly outweigh
the additional burden in programming brought by multi-level memory; for instance, the amount
of data movement will be reduced both for cache memory and scratch space resulting in reduced
energy consumption and greater performance.

Further advantages can be demonstrated if, for example, NVRAM – of which most variants
boast a lower energy cost per bit accessed compared to DRAM – is used as part of main memory,
allowing for an increase in total memory capacity while decreasing total energy consumption. Ad-
ditional research is needed to find the best ways for application programmers to use these changed
and expanded capabilities.

Future Memory Abstractions

For each of the node architectures presented in Abstract Model Instantiations, the layout of
memory within the node can usually be regarded as an orthogonal choice – that, it is possible for
architectures to mix and match arrangements for compute and selection of memory components.
Due to the explosive growth in thread count expected to be present in exascale machines, the total
amount of memory per socket must increase accordingly, potentially in the range of two terabytes
or more per node. As explained in the Memory Drivers section above, it is expected that the mem-
ory system will be made up of multiple types of memory that will trade capacity for bandwidth. In
many ways this concept is not so unfamiliar to developers who currently optimize problem sizes
to fit in local caches, etc. These new memory choices will present additional challenges to devel-
opers as they select correct working set sizes for their applications. As an initial first attempt to
characterize likely memory sub-systems, we propose three categories/types of memory:

1. High-bandwidth-memory (HBM or HMC): A fast, but relatively small-capacity, high band-
width memory technology based on new memory standards such as JEDEC’s high bandwidth
memory (HBM) [14] or WideIO [13] standard, or Micron’s hybrid memory cube (HMC)
technology [26].

2. Standard DRAM: A larger capacity category of slower DDR DRAM memory.

3. Non-volatile-memory: A very large but slower category of non-volatile based memory.
However, 3D XPoint NV memory may have much higher bandwidth and ease of use.

As shown in Figure 4.2(a), there will be two principle approaches to architect these memory
categories/types: (a) a physical address partitioning scheme in which the entire physical space is
split into blocks allowing each memory category to be individually addressed, and (b) a system in

36

which faster memory categories are used to cache slower levels in the memory system. A third
possible approach to constructing a memory system is to provide a blending of these two models
with either user-defined or boot-time defined partitioning of the memory systems into partial cache
and partial address space partitioned modes.

H
ig

h
Ba

nd
w

id
th

 M
em

or
y

St
an

da
rd

 D
R

AM

N
on

-V
ol

at
ile

 M
em

or
y

(a) Physical Address Partitioned
Memory Subsystem

H
ig

h
Ba

nd
w

id
th

 M
em

or
y

St
an

da
rd

 D
R

AM

N
on

-V
ol

at
ile

 M
em

or
y

(b) Multi-Level Cached Memory System

Figure 4.2. Memory Subsystem Layouts

Physical Address Partitioned Memory System

In a physical address partitioned memory system, the entire physical memory address space is
split into discrete ranges of addresses for each category of memory (Figure 4.2(a)). This allows
an operating system or runtime to decide on the location of a memory allocation by mapping the
request to a specific physical address, either through a virtual memory map or through the gener-
ation of a pointer to a physical location. This system therefore allows for a series of specialized
memory allocation routines to be provided to applications. An application developer can specif-
ically request the class of memory at allocation time. We envision that an application developer
will be able to request a specific policy should an allocation fail due to memory category exhaus-
tion. Possible policies include allocation failure, resulting in an exception, or a dynamic shift in
allocation target to the next slowest memory category. While the processor cores in this system
may possess inclusive caches, it is not likely there will be hardware support for utilizing the faster
memory categories for caching slower categories. This lack of hardware support may be overcome
if an application developer or system runtime explicitly implements this caching behavior.

Scratchpad Memory

Historically, DDR-DRAM has dominated main memory. However, emerging memory tech-
nologies (NVRAM, 3D Stacked DRAM) may provide superior cost/performance/capacity trade-
offs. Future main memory systems are likely to be comprised of multiple level memories (MLMs)

37

made up of different memory technologies. Emerging memory technologies such as High Band-
width Memory (HBM) or Hybrid Memory Cubes (HMC) may provide an order of magnitude
more bandwidth than conventional DRAM. However, the cost per bit of these new stacked DRAM
technologies will probably be much higher than conventional DDR, so building an entire memory
system from them may be prohibitively expensive. Certain types of NVRAM, such as NAND
Flash is roughly 4-7 times less expensive than conventional DDR, but has much less bandwidth
and much higher latency. If applications can be adapted to place seldom-used data in NVRAM,
they may see minimal performance impact and achieve a major cost reduction. At the time of this
report, the authors are awaiting public information about the Intel/Micron 3D XPoint NVRAM
technology.

New programming and runtime techniques will have to be developed to take full advantage
of MLM. This may include application driven hints about which portions of application data will
be used the most or may require fundamental restructuring of the algorithm to take advantage
of multiple levels of memory. Runtimes or operating systems may be able to provide automatic
management of data, or they may require guidance from the application.

Preliminary analysis of miniapps indicates that a small percentage of an application’s mem-
ory (5-20%) accounts for a disproportionate number of post-cache memory accesses (25-50%).
Placing this frequently used data in a faster memory level may improve performance by 30-50%.
However, due to the higher cost/bit of fast memory the growth in aggregate memory capacity of
future machines may be limited if only a single level of fast memory is used.

Multi-Level Cached Memory System

An alternative memory model is that multiple categories are present in the node, but they are
arranged to behave as large caches for slower levels of the memory hierarchy (Figure 4.2(b)). For
instance, a high-bandwidth memory category is used as a caching mechanism for slower DDR or
slower non-volatile memory. This would require hardware caching mechanisms to be added to
the memory system and, in some cases, may permit an application developer or system runtime to
select the cache replacement policy employed in the system. It is expected that this system will
possess hardware support for the caching behavior between memory levels; however, a system
lacking this hardware support could implement a system runtime that monitors memory accesses
to implement an equivalent behavior in software.

Performance cost of using memory as multi-level cache is significant causing vendors to offer
using certain levels in the memory hierarchy as a software managed cache.

38

Configuration Bandwidth Capacity
Single-Level HMC

HMC (4 HMC “cubes”) v640 GB/s v16GB
Multi-Level DRAM

HBM (4 stacks @ 128GB/s) v512 GB/s v16 GB
DDR (4 channels (8 DIMMs)
@ 20GB/s)

v80 GB/s v512 GB

NAND Flash
NVRAM 10–20 GB/s 4 – 8× DRAM

† See notes in 3-D Stacked Memory Systems, Processing in Memory (PIM), and Processing Near
Memory (PNM) section

Table 4.1: Approximate Bandwidths and Capacities of Memory Subsystem

3-D Stacked Memory Systems, Processing in Memory (PIM), and Processing
Near Memory (PNM)

As mentioned above, a new technology that will emerge in the memory hierarchy is 3D-stacked
memory. Table 4.1 shows bandwidth and capacity estimates of some of these future technologies.
Note that the numbers in Table 4.1 are based on current state-of-the-art and may change based
on future technology shifts and breakthrough developments. These 3D stacks of memory will
have a logic layer at the base to handle read and write requests to the stack. Not only will there
be multiple memory dies in a single memory component, but in some versions these memory
dies will be mounted directly on CPU chips resulting in greater density with a reduced energy
footprint. Additionally, processor-in-memory (PIM) functionality may emerge in conjunction with
the stacked memory architectures that include logic layers at the base of the memory stacks. These
PIM capabilities offer acceleration to many memory operations, such as atomics, gather-scatter,
pointer chasing, search, and other memory bandwidth intensive operations. These accelerators can
execute faster and more efficiently than general-purpose hardware. An SoC design flow creates an
opportunity for many types of acceleration functions to improve application performance. These
accelerators can make data movement more efficient by avoiding unnecessary copies, or by hiding
or eliminating overhead in the memory system or a system’s interconnect network. However, how
best to expose these operations to the programmer is still an active area of research.

Some 3D memory technologies, such as the HMC, allow memory parts or modules to be
“chained” in different topologies. In contrast, DDR connects a small number of memory parts
to a processor. Similarly, there are other standards for high-performance memory on the horizon,
such as HBM that also only connect a single memory part to a single processor. “Chained” mem-
ory systems differ from DDR and HBM in their ability to support a very high memory capacity
per-node. The limitations of per-node memory capacity when using chained systems will be dom-
inated by dollar cost. While the relative dollar cost of stacked memory is expected to approach
DDR it is expected to be more ($ per bit) than DDR. In contrast, the power cost – Joules per ac-
cessed memory bit – is expected to be significantly less for 3D stacked memory when compared
to DDR.

39

5. Node-Level Abstract Machine Models and
Proxy Architectures for Exascale Comput-
ing

Proxy architecture models (PAMs) were introduced as a codesign counterpart to proxy ap-
plications in the DOE ASCAC report on the Top Ten Exascale Research Challenges [21]. This
Computer Architecture Laboratory (CAL) AMM document separates the PAM concept into AMM
and proxy architectures, but the intent is still to facilitate codesign and communication.

In this chapter we initially discuss node architectures and their possible configurations given
the recent and potential future changes particularly in the way that memory and compute might be
used in a node. For example, nodes may contain memory to be used for burst buffer or may be
configured specifically for visualization. We continue by identifying approximate estimates for key
parameters of interest to application developers at the node level. Many of these parameters can be
used in conjunction with the AMM models described previously to obtain rough estimates of full
node performance. These parameters are intended to support design-space exploration and should
not be used for parameter- or hardware- specific optimization as, at this point in the development of
Exascale architectures, the estimates may have considerable error. In particular, hardware vendors
might not implement every entry in the tables provided in future systems; for example, some future
processors may not include a Level-3 cache.

Abstract Model of Future Computing Nodes

Over the past several years, the complexity of a compute node has drastically increased as
technology size decreases and power management improves. A compute node many years ago
commonly comprised a single CPU, off-chip memory, and a NIC. With technology advances,
nodes can now comprise multiple, multi-core and potentially heterogeneous CPUs with an on-
package NIC, an on-chip network for CPU communication, and potentially both on-chip and off-
chip memory. A typical node today comprises two CPU sockets, where a single CPU can be
heterogeneous in that it may have traditional CPUs integrated with accelerators in a single die.

In Chapter 3, we presented several abstract machine models that can essentially be defined as
the CPU of a node. If the node has multiple CPUs, then it simply implements two of the CPUs
described by the abstract machine models presented in Chapter 3. Specifically, Figures 3.1, 3.2,
3.4, 3.5, and 3.6 can potentially be implemented as node CPUs. All of these models implement
off-chip memory in the node.

40

Detailed Processing Node models

Processing nodes of the future could potentially have several different configurations combin-
ing compute, memory, and storage. Nodes may comprise:

1. homogeneous compute

2. heterogeneous compute (meaning a node could contain scientific/traditional compute in one
socket and visualization or some specialized compute accelerator on another socket in the
same node)

3. compute and high-capacity, low-bandwidth memory

4. compute and storage-class memory

Memory

Core Core

Network-on-
Chip

...

...

...
...

Core
Core

Core
Core

NIC

Core Core

Network-on-
Chip

...

...

...
...

Core
Core

Core
Core

NoC

Memory Controller

Memory Memory Memory

System Interconnect

Figure 5.1. Example Node Architecture using Processor AMM

Figure 5.1 shows an example node architecture using the processor AMM from Figure 3.5.
This is a dual-socket node with the heterogeneous multicore processor AMM as the CPU. Note
that the memory component could potentially be any of the technologies listed in Table 4.1. Also

41

note that we define a node as a network endpoint, meaning everything on the other side of the
network.

In addition to the node shown in Figure 5.1, the processor AMMs from Chapter 3 and the
abstracted memory components outlined in Chapter 4 can be combined to implement various types
of nodes such as visualization, fat and lightweight compute, or potentially storage nodes. The
specific type of node used is specifically described in a proxy node architecture (Proxy Parameters)
and can be subsequently used in a larger system proxy model (Chapter 7).

Lightweight Cores and Processing Communication Runtime

Lightweight cores are increasingly popular in modern system designs due to their power effi-
ciency. Such efficiency is achieved by reducing the cache sizes, limiting out-of-order processing,
increased use of vector processing, etc. While these architectural changes could be leveraged
in optimized scientific codes, they pose a challenge to communication runtime implementations.
Runtime software is typically control-flow intensive and has complex dependency between instruc-
tions, thus could benefit greatly from out-of-order and speculative execution. Using lightweight
cores to execute runtimes (initiate, progress, and complete transfers) is likely to incur more cycles
(processing overhead). This issue requires careful attention from runtime and application develop-
ers alike. To efficiently use systems with lightweight cores the communication runtime may have
one of the following strategies:

• Use a specialized heavyweight core to manage the interconnect activity. In this case, few
injection points are anticipated per node. This eases the resource problem at the runtime
level because injection resources do not need to scale with the number of cores.

• Use lightweight cores, especially if they are the only compute resources available, to process
the communication traffic to the interconnect. In this case, parallel transfer processing could
amortize the software overhead. Scalability of runtime resources with core count is likely to
be a challenge. Sharing runtime resources between cores could have a negative impact on
performance because sharing could cause serialization in accessing the interconnect.

• Adopt a hybrid runtime with restricted functionalities (and low overhead) for the lightweight
cores and a full-functionality runtime for the complex cores. This model is a possible re-
search direction, but is not adopted by current programming models.

• Part of the runtime functionalities are offloaded to specialized hardware. As such, lightweight
cores could efficiently execute complex programming model APIs.

A challenge that runtime developers face is the need to ensure that the memory requirements
do not excessively impact the memory available to the application program. Concurrent initiation
using lightweight cores could increase the memory requirement for interconnect injection points
(endpoints). Runtime designs should avoid linearly scaling memory requirements with the end-
point count.

42

Homogeneous Many-Core Model

Core Core

Core Core

Network-on-Chip

...

...

...

M
em

or
y

Intel Sandy Bridge

Computing Unit

I$ D$

L2

NoC

Memory Controller

DRAM DRAMDRAM DRAM

Computing Unit

I$ D$

L2

L3
NIC

Figure 5.2. Reference proxy architecture instantiation: Intel
Sandy Bridge

Some of the discussed strategies could be abstracted away by the runtime; others will require
the application to restructure its communication pattern. Runtimes could, through communica-
tion assist, parallelize the transfers, aggregate small transfers, control the level of parallel injec-
tion, or manage asynchronous transfers. The application may need to control parallel injection of
transfers or hint which transfers could be progressed independently, for instance through issuing
non-blocking transfers.

Reference Proxy Architecture Instantiations

Some expanded AMMs in the Abstract Model Instantiations section have their roots in existing
advanced technology processors. One of these could be a harbinger of what an exascale processor
may look like. We provide their proxy architecture information here for reference.

Homogeneous Manycore Model: Intel Sandy Bridge

An example of the homogeneous manycore processor model (in the Homogeneous Many-core
Processor Model section) is the Intel Sandy Bridge (shown in Figure 5.2), a 64-bit, multi-core,
dual-threaded, four issue, out-of-order microprocessor. Each core has 32KB of L1 data cache,
32KB of instruction cache and 256KB of L2 cache. The processor comprises up to eight cores, a
large shared L3 cache, four DDR3 memory controllers, and 32 lanes of PCI-Express (PCIe); there
is a 32-Byte ring-based on-chip interconnect between cores.

43

Multicore CPU + Dedicated Accelerators Model

NVidia K20X

GPU
Cores G

D
D

R

M
em

NVidia K20X

GPU
Cores G

D
D

R

M
em

Intel Sandy Bridge

Computing Unit

I$ D$

L2

NoC

Memory Controller

DRAM DRAMDRAM DRAM

Computing Unit

I$ D$

L2

L3

Core Core

Core Core

Network-on-Chip

...

...

...

M
em

or
y

...

Acc.

...

M
em

or
y

M
em

or
y

Acc.

NIC

Figure 5.3. Reference proxy architecture instantiation: Multicore
CPU with Discrete GPU Accelerators

Multicore CPU + Discrete Accelerators Model: Sandy Bridge with Discrete
NVIDIA GPU Accelerators

An example of the multicore CPU + discrete accelerators model (Multicore CPU with Discrete
Accelerators Model) is a system utilizing Intel’s Sandy Bridge multi-core processor with NVIDIA
GPU-based accelerators (shown in Figure 5.3). Each node comprises a dual-socket Xeon host-
processor (Sandy Bridge E5-2660 2.66GHz) for primary compute with two NVIDIA K20X Kepler
GPU cards. These GPU cards connect to the primary compute package via a PCIe Gen2x16
interface. Each GPU card implements 2, 688 processor cores and 6GB of 384-bit GDDR-5 memory
with a peak bandwidth of 250 GB/s.

44

Integrated CPU + Accelerators Model

Core Core

Network-on-Chip

...

...

...

M
em

or
y

...

Acc. Acc.

AMD APU Llano

Computing Unit

I$ D$

L2

Coherent Request Queue (IFQ)

Memory Controller

DRAM DRAM

Fusion GPU

NIC

Figure 5.4. Reference proxy architecture instantiation: AMD
APU Llano

Integrated CPU + Accelerators Model: AMD Fusion APU Llano

An example of an integrated CPU and accelerators AMM (Integrated CPU and Accelerators
Model) is the AMD Fusion APU Llano shown in Figure 5.4. The Llano architecture implements
four x86 CPU cores for general-purpose processing, an integrated GPU, I/O, memory controller,
and memory. Each CPU core has its own L1 and L2 caches. The unified memory architecture
(UMA) implemented in Llano allows CPU processors and GPU accelerators to share a common
memory space. The GPUs also have a dedicated non-coherent interface to the memory controller
(shown with a dotted line) for commands and data. Therefore, the memory controller has to arbi-
trate between coherent (ordered) and non-coherent accesses to memory. Note that the CPU is not
intended to read from GPU memory.

Proxy Parameters

The following is a condensed list of parameters that focuses on the key metrics concerning
application developers. This list allows developers and hardware architects to tune any AMMs to
define common baselines. A more complete list of proxy architecture design parameters, although
still not exhaustive, can be found in the System Proxy Architectures section and will continue to
grow as needed. Since this list is for all AMMs presented in this document, not all parameters are
expected to be applicable to every AMM. In fact, we expect that for each AMM only a subset of
this list of parameters will be used for architecture tuning. Likewise, not all parameters are useful
for application developers, such as bandwidth of each level of the cache structure.

45

Processor

Parameter Expected Range Notes
Bandwidths (GB/s)

Chip ↔ Mem-
ory

60–100 To off-chip DDR DRAM

Chip ↔ Mem-
ory

600–1200 To on-chip DRAM

Chip ↔ Mem-
ory

600–1200 To off-chip HMC-like

Capacities
L1 Cache 8KB–128KB Per Core
L2 Cache 256KB–2MB Per Core
L3 Cache 64MB–128MB Likely to be shared amongst groups of

cores/accelerators
L4 Cache 2GB–4GB Not on all systems, likely to be off-package

embedded-DRAM
Memory System Parameters

Cache block
size

64-128B

Number of
cache levels

2–4

Coherency do-
mains

1–8 per chip

Network-On-Chip
Bandwidth 8-64 GB/s per core
Latency 1–10 ns neighbor cores
Latency 10–50 ns cross chip

Core Parameters
SIMD/vector
width

4–8 DP FP

Dispatch, is-
sue, execution
widths

2–8 Simple processors may have limited dual dispatch
(i.e. 1 general purpose instruction and 1 memory)

Atomic opera-
tions

Possible implementations include: Simple or trans-
actional

46

6. System Scale Considerations
Along with the changes exascale brings to the node architectures, come system level changes

that will be driven by the increasing scale of production supercomputers. As node counts poten-
tially push into the greater than 100,000 regime, system level factors will have greater impact on
application workflows. Application developers will need to understand the performance impli-
cations on their workflows of new system-level architectures, such as communication costs and
integration of storage on-platform. While the unprecedented scale of many exascale systems will
be a challenge, new innovations will provide new opportunities for optimizing mission workflows.
This chapter briefly discusses workflow analysis in and follows with a discussion of the intercon-
nect and communication model considerations.

System Analysis of Advanced Workflows

One of the major changes that all current and planned DOE HPC systems are addressing are
new workflows that remove the file system as the data buffer or intermediary between the HPC
system as the source of modeling and simulation data, and the data analysis and visualization
resources that historically sat next to the HPC system but were distinct, separate computing re-
sources. This change is driven by the cost of data movement in terms of both energy and time,
and the need to leverage the processing capability of future supercomputers to also perform post-
processing on the data in either in-situ or in-transit strategies. This same infrastructure may be
useful for problem set-up functions, e.g. mesh generation; or application development, e.g. in-situ
analysis with performance monitoring tools or advanced debuggers.

We envision that a system abstract machine model (sAMM) and our associated system proxy
architectures will help application developers, system software developers and system architects
analyze and reason about how new workflows will create requirements for runtime connectivity
between HPC applications running in the compute partition and data analysis or visualization jobs
running in a concurrent NVRAM data analytic partition. Another scenario could be the need for
a runtime network connection between the HPC application running in a compute partition and a
concurrent job running application performance analysis tools.

Interconnect Model

In the exascale era, application performance can easily be limited by network bandwidth be-
cause of the cost and power consumption of high-radix routers as well as the optical and electrical
channels. In addition to performance, procurement cost will be a large barrier as the cost of not
only high-radix routers but also the cables (both optical and electrical) that increase in cost sig-
nificantly with cable length. For instance, copper cables cost approximately 50% more for just 3

47

meters compared to 1 meter, and optical cables cost almost twice as much for 30 meters compared
to 5 meters. In addition, high-radix routers impose a cost per port that is comparable to the cable
connecting to that port. These costs have remained relatively constant over the last four years and
are not projected to decrease significantly in the short term.

An important constraint on bandwidth growth in large-scale machines is the limitation in the
total number of pins available on a board or connector. We are approaching the point where the
physical size of the edge of a switch circuit board (constrained by the dimensions of a standard-
sized rack as well as card manufacturing viability) starts to pose a bandwidth-limiting factor, be-
cause only so many (e.g.) QSFP cages or board pins can fit on the card edge. In addition, the power
cost of moving data from or to remote caches, memories, and disks can far exceed the available
power budget, thus limiting available bandwidth. DesignForward collaborators estimate that fit-
ting an exascale system network into a 5MW budget in order to meet DOE’s 20MWs for the entire
system is a significant challenge and will require cross-layer innovations, even after using smart
algorithms and state of the art hardware technology. This is partly due to the large amount of data
movement expected, but also due to the energy consumption of off-chip communication hardware
such as channels, circuit boards, and connectors. To exemplify the point, high performance com-
puting (intra-machine) networks can consume over 20% of total system power even under simple
low-communication benchmarks.

Communication Model

The performance of an application developed for a distributed memory environment is influ-
enced by the efficiency of moving data. Orchestration of data transfers for optimal performance
may even influence how computations are structured. The interconnect model could be viewed as
a simple cost model for the communication. Another view of the interconnect could be based on
the physical characterization of hardware components. We will discuss both views, how they relate
to each other, and how they interact with programming model primitives.

Communication could be decomposed into a data transfer mechanism and a synchronization
mechanism to establish a transfer completion or the consistency of data. Parallel programming
models provide multiple mechanisms to achieve data transfer and synchronization. The architec-
tural support for transfers and synchronization typically plays a major role in the efficiency of the
programming model in implementing a computational pattern. Some of the programming model
primitives are supported at the endpoint of the interconnect through special architectural features
in the network interface.

This section presents a simple way of thinking about the interconnect model, followed by a
physical characterization. We then discuss the distributed programming model’s interaction with
the interconnect.

48

os

or
 L

os

 g

Ps

Pr

 Bytes x G

Figure 6.1. Estimated Data Transfer Time, LogGP model

Communication Cost Model

The communication cost model for a transfer is instrumental in structuring a communication
and computational pattern. One of the widely accepted models is the LogGP model [3]. This
model uses latency L, overhead o, and gap g parameters to estimate the cost of a transfer. The
overhead is typically incurred by the runtime software to prepare the transfer, or process it upon
arrival. The g gap is the minimum inter arrival time between transfer requests that the hardware
can sustain. The latency L is the minimum (uncontended) transfer time between the nodes. The
reciprocal of G, time per byte for large transfers, is the bandwidth available between the compute
nodes. Figure 6.1 summarizes the model parameters and their influence on the data transfer time.
The total transfer time is estimated as the sum of software overheads at the sender (os) and the
receiver (or), the latency L, and transfer size scaled by the inverse of the bandwidth G. In general,
the communication could be estimated as os + L+B ×G+ or, where B is the transfer size, and
the overhead o is being split into two components os at the sender and or at the receiver.

The parameters in this model are influenced by the interconnect architecture and software im-
plementing the distributed programming model. The interconnect model is described in Inter-
connect Physical Characterization, while the discussion of the distributed programming model is
provided in the Distributed Memory Programming Models section.

The transfer efficiency starts with being limited by the overhead (i.e., message rate) for small
transfers. As the transfer size increases, the efficiency increases, but the observed efficiency by
the application depends on the software overhead of the programming model runtime. With large
transfer granularity the full hardware capabilities can be observed by the application. At the ap-
plication layer, improving the efficiency of transfers typically involves either aggregation of data
or parallel injection. The aggregation could also be provided by the runtime software through, for
instance, MPI sparse data types or scatter/gather operations.

Table 6.1 summarizes some of the observed performance values on current systems and pro-
jected values in future systems. These measurements are either based on micro benchmarks such as
OSU [2], or logGP performance model parameter estimator [1]. While the latency for processing a

49

Currenta Projected
Latency 1-8usb 0.3-2us

Bandwidth at the endpoint 8-25GB/s 25-100GB/sc

Software Overhead 1-2us < 1usd

aThe cost of processing a communication request is influenced by the complexity associated with the
input parameters.

bLarge transfer latency is typically observed with compute accelerator technologies attached through
PCIe links.

cThe bandwidth observed by a node could be impacted by the level of contention in the interconnect.
dThis value might increase if today’s software stacks are processed by lightweight cores.

Table 6.1: Current and Projected Communication Model Parameters

simple request is currently around 1us for many MPI APIs, this value could increase significantly
depending on architectural setting. For instance, transfers targeting accelerator memory such as
GPUs that are traversing a PCIe link, could add 6-7 us to the latency. The software stack process-
ing of the software stack could be influenced by the complexity to process a request. For instance,
MPI request involving user supplied sparse data types could increase the software latency. Inter-
nal memory registration with interconnect hardware could also add multiple microseconds to the
processing latency given that it typically involves an expensive operating system call.

The industry keeps introducing techniques to reduce such latency barriers, including tighter
integration of accelerator memory, leveraging special direct access support in the PCIe technology,
etc.

Overhead reduction trends are typically associated with improvements in CPU performance
and offload of communication to the NIC processing engine. Software stacks are growing in com-
plexity due to new features in addition to portability and productivity constraints. Recently, im-
provement of processor speed has stalled. Instead, many power-efficient architectures use simpler
processors that may potentially increase the overhead of processing transfers. A complex API pro-
vided by the programming model that can not be assisted by a hardware acceleration mechanism is
very likely to run slower in future systems. For more on the impact of the core design in processing
transfers, refer to the discussion in Lightweight Cores and Processing Communication Runtime.

Interconnect Physical Characterization

The interconnection network types can be categorized into shared medium, indirect intercon-
nect and direct interconnect. Shared medium connections (bus, rings, etc) are suitable for small
scale systems. Most of the scalable interconnects used in supercomputers today are either direct,
indirect, or some hierarchical hybrid or combination of these (discussed subsequently). Direct in-
terconnect refers to networks connecting compute nodes directly, meaning every switch has a direct
connection to a compute node. Examples of directly connected networks are k-ary n-cube [10],
meshes, trees, etc. For instance, Cray XE6 uses a 3D torus interconnect, and IBM BlueGene/Q
uses a 5D Torus interconnect. One could think of these direct interconnects as graphs where ver-
tices are the compute nodes and links are the connection between vertices. Figure 6.2 shows two

50

Figure 6.2. Direct interconnection Networks (Tree and 4D Hy-
percube

Figure 6.3. Indirect Interconnect (butterfly) using Multiple Stage
Switches

51

examples (tree and 4D hypercube) of directly connected interconnects. Indirect interconnection
networks typically use multistage interconnection switches. Examples of indirect interconnects
include cross bars, Clos networks, and butterfly (shown in Figure 6.3). Typically compute nodes
are connected to a subset of the switches at the edge of the interconnect.

Note that some levels of the interconnect may be within the compute chip. For instance, we
may have a shared bus (a ring, or even a 2D torus) on-chip, and have another type of interconnect
between nodes. A node may also have multiple chips connected with a special transport. We could
also have an indirect network at one level of the hierarchy, shared medium on another level, and
direct connection on a third level. The same topology, for instance a tree, could be used in both
direct and indirect interconnects.

At the application level, we typically care about the diameter of the network (which affects
the latency L parameter in LogGP model), the topology of the interconnect (which impacts the
number of neighbors directly reachable from a node), and the bisection bandwidth (which dictates
our share of the interconnect bandwidth under highly contended communication). Effectively, the
topology of the interconnect makes the parameters in the LogGP model variables depending on the
pair of nodes communicating together. Specifically, the latency L between nodes is not constant
for all pairs of nodes. For instance, a pair of neighboring nodes will have lower latency than nodes
with many hops in-between. The G parameter is influenced by the communication pattern and the
run scale. For instance, the observed bandwidth could become a small fraction of the bandwidth
available at the endpoint under high contention, for instance when all nodes need to communicate
with each others simultaneously. A typical metric to characterize network bandwidth under high
contention is the bisection bandwidth (the bandwidth between equal partitions of the system nodes
with the narrowest cross section).

Latency typically impacts small transfers. Directly reachable neighbors define how to structure
communication to do operations such as multicast in a minimal number of steps. The bisection
bandwidth typically limits the performance in all-to-all communication. Obviously, the manner in
which the interconnect is used results in varying latency (parameter L in LogGP) and bandwidth.
In communication intensive applications, some developers put special care into rank placement
in the interconnect to maximize the performance. This can be done manually or through special
placement tools [12].

Comprehensive coverage of this topic is beyond the scope of this report. For sake of concise-
ness, we will focus on a high level description of the components influencing the interconnect
performance. We typically focus on three attributes of the interconnect architecture:

• Link technology: Multiple technologies could be used to provide connection between nodes
(or switches). Table 6.2 summarizes some of these technologies. Generally speaking
copper-based links provide a cost effective solution for small to medium range connections,
while fiber optic-based links are preferred for their near constant latency attributes at rela-
tively longer distance.

• Switch capabilities: Interconnect switches manage how connections are established between
nodes or other switches. Circuit switching techniques establish a dedicated connection

52

Type Distance Range Bandwidth a Latency
Copper few meters 100s Gb/s tens to hundreds of nano seconds

Fiber optics tens of meters 100s Gb/s tens of nano seconds b

aThe actual bandwidth depends on the packet overhead and the supported error checking mechanisms.
bThe overall latency could be higher for fiber-optics compared with copper for short distance due to the conversion

latency between electrical and optical signals.

Table 6.2: Link Technologies and Performance Characteristics

across all hops in the path between two nodes prior to starting the communication and the
connection persists as long as it is needed. A more commonly used technique in direct net-
works is packet switching, which does not entail persistent dedication of resources, thus im-
proves the total system throughput. Another alternative is to use cut-through packet switch-
ing, which continually forwards partial transfers as they arrive. In HPC systems, switches
typically use packet switching to maximize the throughput of the system (see Table 6.3 for
some examples). Multiple switching techniques may be used by the same switch depending
on the transfer size.

The radix of the switch (port count) controls the diameter of the interconnects. A high radix
router can be used to reduce the number of hops between nodes. There are tradeoffs between
increasing the switch radix and the latency of processing requests. The total latency between
nodes is the sum of switching and link latencies multiplied by the number of hops.

• Connection pattern (topology): The topology influences most of the transfer cost model
parameters. In Table 6.4, we summarize the characteristics of different interconnection net-
works (assuming link bandwidth is constant for all links b; the system has P processors and
routers has port count of r).

• Network interfaces: Many of the programming model functionalities are provided by the
NIC interface, including the support of atomic, direct memory access (DMA), etc.

Interconnect architectural trends show direct interconnects are likely to continue dominating
the future of supercomputing. The diameter of interconnects is decreasing in recent systems as
we move from 3D to 5D torus or dragonfly interconnects. High-radix low-diameter interconnects,
such as the dragonfly shown in Figure 6.4, are likely to dominate future HPC systems. Nodes
are split into groups, with full connectivity within a group. Groups are then fully connected. The
number of routers between two nodes is at most three, assuming minimal routing. The bisection
bandwidth is typically higher in a dragonfly and a high dimension torus interconnect. The latency
per hop is also small (and almost constant across a range of distances). All these positive trends
in current interconnect designs could still be outpaced by the rate of producing data, especially as
accelerator technologies are used within compute nodes.

53

Switching technique Port count (Radix) Unidirectional bandwidth per port
Cray Gemini packet 48 4.68 GB/s

Cray Aries packet 48 5.25 GB/s
IBM BGQ packet 10 1.8 GB/s

Mellanox Infiniband packet 8-648 5-12 GB/s

Table 6.3: Switch Characteristics

Class Diameter Link Count Hop Range Bisection Bandwidth Example System
Bus Shared 1 P 1 b

Ring Shared P/2 P 1→ P/2 2× b

mesh (2D) Direct 2× (
√
P − 1) O(

√
P) 1→ 2×

√
P

√
P Intel Pragon

Torus (3D) Direct O(3
√
P) O(P × 3

√
P) 1→ 3× 3

√
P/2 2× 2/3

√
P Cray XE, Bluegene/P

Torus (5D) Direct O(5
√
P) O(P × 5

√
P) 1→ 5× 5

√
P/2 O(4/5

√
P) Bluegene/Qa

Torus (6D) Direct O(6
√
P) O(P × 6

√
P) 1→ 6× 6

√
P/2 O(5/6

√
P) K-Computerb

Hybercube Direct O(log2(P)) O(P × log2(P)) 1→ log2(P) P/2 nCube/2
Tree Indirect O(logr(P)) O(logr(P)) 1→ 2× logr(P) O(1)

Fat tree Indirect O(logr(P)) O(logr(P)) 1→ 2× logr(P) O(P/2) Stampede
DragonFly Hybrid O(1) O(P 2) 1→ 3 O(P) Cray XC

Fully connect direct 1 P 2 1 b× P 2

aThe size of the the fifth dimension in BGQ is fixed to two.
bK computer has 3D torus impeded within another 3D torus.

Table 6.4: Direct Network Characterization

Group Local Connections

R

P P

R

P P

R

P P

...

G
ro

u
p

 L
o

c
a

l
C

o
n

n
e

c
ti

o
n

s

R

P
P

R

P
P

R

P
P

..
.

G
ro

u
p

 L
o

c
a

l C
o

n
n

e
c

tio
n

s

R

P
P

R

P
P

R

P
P

...

R

PP

R

PP

R

PP

...

Global Links

between

Groups

.....
.

... ..
.

Figure 6.4. Dragonfly Interconnect

54

Routing Transfer in Direct Interconnect

Commonly, an application rank needs to communicate with multiple peers, or have multiple
transfers between peers. Because not all nodes are directly connected, a transfer needs to travel
multiple hops before reaching the destination. Additionally, a pair of nodes may have multiple
routes for data transfers. Ideally, all possible routes are leveraged to relieve congestion or to bypass
faulty links. This requires a class of routing protocols to allow un-ordered delivery between a pair
of nodes, called adaptive routing protocols.

A critical question to performance is whether the application is requiring any ordering between
these transfers. A common scenario for the need for ordering is when these transfers are used to
express synchronization or there is a dependency relation. Programming models typically try to
choose a balance between the programming simplicity of ordering guarantees and the performance
advantage of unordered delivery. Applications, which are conscious of these tradeoffs, are likely
to achieve the best performance on modern systems.

Endpoint Communication Resources

An HPC compute node used to have a single or few processors. Currently, the level of concur-
rency in core count has increased significantly. The injection of traffic to the network typically re-
quires memory resources for the network interface and the runtime system. These resources, called
a communication context or injection endpoint, could be a bottleneck in the process of injecting
traffic. Having multiple dedicated resources (contexts) allows parallel initiation of transfers. At
the software layer, this implies less frequent synchronization and coordination in communication.
On the other hand if part of these resources scale linearly with the number of job endpoints, the
memory requirements become a major concern. As such, an application may choose to have few
communication endpoints, shared by the compute cores. Some runtime could successfully reduce
the requirement of creating these endpoints, thus yielding a scalable solution.

For transfer sizes that are not dominated by overhead, splitting a large transfer between a pair
of ranks into multiple transfers allows the interconnect logic to route these transfers across dif-
ferent network routes. Consequently, the interconnect could improve throughput and have more
flexibility in congestion management.

Interconnect Technologies and Impact on Application Development

The performance of an application developed for a distributed environment relies heavily on
the performance of transferring data between compute nodes. As such, observing the trends in
interconnect performance could influence the application development strategy. The potential for
improvement of bandwidth is likely to be through a higher degree of parallelism in the topology
(higher radix), rather than by increasing the single link bandwidth. This means that application
developers may need to consider having concurrent transfers to improve the utilization of the in-

55

terconnect. Having a low-diameter network means that the latency of the hardware is significantly
reduced between the furthest nodes in the interconnect. The implication of this reduction is that
an application could observe the full interconnect capabilities at small transfer size. Moreover,
the software overhead of communication runtimes needs to be reduced for the application to fully
leverage this improvement. The improvement in bandwidth is also likely to scale at a lower rate
compared with the computational power of the nodes and their ability to produce data. This im-
plies that applications may need to consider algorithms and computational patterns that reduce the
amount of data transfer between nodes. Some performance optimization, such as task placement,
could become trickier to leverage though beneficial to performance. The use of high-radix low-
diameter interconnects routing will make the latency difference between compute nodes small.
Additionally some of the routing protocols that aim to reduce congestion, for instance through
adaptive or valiant routing, could use non-minimal routing between compute nodes. This means
that node proximity may not necessarily translate to few traversed hops per transfer.

56

7. System Abstract Machine Model and Proxy
Architectures

A system-level abstract machine model (sAMM) comprises components (nodes) and their rel-
ative physical layout at a level of abstraction that is appropriate to enable programmers to reason
about application implementation on future conceptual Exascale systems. System AMMs also
provide OS and runtime developers a framework in which to reason about system software imple-
mentation issues before the actual system is built and transitioned to production. In prior chapters,
we presented processor and memory AMMs. Our system AMMs will utilize these node-level mod-
els in nodes or as collection of nodes with similar functions and capabilities, then organize these
nodes into sub-cabinets and cabinets to define a system.

An sAMM should encapsulate available system components (e.g., processor, memory, storage,
interconnect, I/O) and their organization (nodes, sub-cabinets, cabinets and their interconnection
network fabric) in a way that fundamentally enables understanding of latency domains within
and across the system. For example, for application and OS/runtime development, one needs to
know which resources are available in a node, which resources are available “close by“ or within
some local domain associated with some latency and which components are outside a locality and,
therefore, have a higher latency. Additionally, a system AMM should be robust enough to represent
a variety of contemporary and future systems.

The node-level components (e.g., processor component, memory component, etc.) that com-
prise an AMM are defined by the various component AMMs (e.g., processor AMMs, memory
AMMs, interconnect AMMs) presented in previous chapters. Proxy architectures for these com-
ponent AMMs are defined as in Chapter 5. The sAMM specifies the number and organization of
these component AMMs for nodes, sub-cabinets, and cabinets and how the cabinets are connected
to form a system. The resulting latency domains are associated with the structure of the system
organization. Therefore, proxy architectures for our sAMMs will simply specify the number and
organization of nodes that populate sub-cabinets and cabinets, the total number of cabinets, then
the organization of these cabinets across latency domains (i.e. how cabinets are organized and con-
nected across the system). The description of how latency domains are organized and connected
can also be provided by specifying the topology of the interconnect fabric as a part of the sAMM
proxy architecture.

Given system components, systems may be organized in numerous ways. Therefore, we
present a robust system AMM that can represent (through sAMM proxy architectures) past, cur-
rent, emerging and future HPC systems. Note that what we are presenting here is a model, not a
proxy system architecture. In the System Proxy Architectures section, we add specificity to nodes
and their organization, we specify the number of nodes per sub-cabinet and cabinet, total num-
ber of cabinets and the interconnection network fabric topology of these cabinets to the system
AMM to realize system proxy architectures. Our goal is to describe system proxy architectures
in conjunction with the corresponding component proxy architectures with enough detail to allow
application developers to reason about how their application will map to a system architecture, and

57

potentially for system architecture designers to simulate/analyze the system.

Partition Model

The partitioned system design as presented in [30] describes an organization in which system
services are partitioned separately from compute resources. This not only refers to hardware re-
sources, but to software components as well (e.g., OS facilities). We adopt this partition model
in our system AMM and picture a system as an integrated set of nodes that are organized into
partitions that are defined by their capabilities. Within a service partition, these resources may be
described as Login nodes, I/O nodes, compilation nodes, system management nodes, etc. In con-
trast, a compute partition may make up the majority of the system and there may be new classes of
nodes such as burst buffer or non-volatile memory nodes. The partition model will also provide a
structure for analyzing the implications of advanced workflows in which analysis and visualization
partitions may require new integration (via the interconnection network fabric) to all or part of the
compute partition while a job is still running.

System AMM Components

Our system abstract machine model (sAMM) comprises all of the AMMs that were previously
presented (processor, memory, I/O and Storage, and interconnect). The sAMM hierarchically
organizes (in nodes, sub-cabinets, cabinets) these component AMMs into a system model as shown
in Figure 7.1. Note again that this is an abstracted model and, therefore, the particular components
that comprise a node, the particular node configurations that comprise a sub-cabinet and cabinet
will specify a particular system. We will present some specific sAMM proxy architectures for
existing and future systems in the following sections. Several proxy architectures can be defined
for a single sAMM and are presented in System Proxy Architectures. In the following sections,
we first define the hierarchical building blocks of the system AMM, namely the node, sub-cabinet,
and cabinet. We then describe each of the component AMMs that are used to build the sAMM and
any caveats associated with these components. Finally, we discuss how component AMMs can be
organized at the node, sub-cabinet and cabinet levels to model various systems.

The Processor and Memory AMM System Components

The processor AMM component shown in Figure 7.1 can be any of the processor AMMs shown
in Figures 3.1 - 3.5. Specifying compute nodes that comprise different types of processor cores
is done at the Processor AMM level in that this is characterized in the actual processor model.
The Processor AMM in Figure 3.1 is a model that has fat and thin processor cores; Figures 3.4
and 3.5 are multicore models that have cores of varying compute capability. It is imaginable that
one could combine two distinct Processor AMMs with different compute capabilities into a single

58

node, particularly if standard compute and compute for visualization are combined in the same
node. It is conceivable that this might utilize two different processor configurations.

The memory component in a system AMM can be any of the memory technologies presented
in the Memory System section. If a processor component has on-package memory, it is specified
in the processor AMM (e.g., Figure 3.1). Notice that the low capacity, high bandwidth memory
shown in Figure 3.1 is on-package, but there is also off-package DRAM and NVRAM. In this
document, we picture all memory in the same way whether it sits on package or off. The type of
memory technology (e.g., DRAM, NVRAM, PCM, etc.) is reflected in the latency and bandwidth
specifications that are defined for a particular proxy architecture. Our only distinction is if they are
directly accessible or indirectly through a hierarchy.

The Interconnect Component

The interconnect component is essentially as outlined in Tables 6.2–6.4. We have abstracted
the parameters shown in these tables to those that are of primary importance to an application
program when reasoning about porting an application to future hardware and understanding its
performance. This table of abstracted interconnect characteristics is presented in System Proxy
Architectures below.

Nodes, Sub-Cabinets, and Cabinets

In the system AMM of Figure 7.1, Locality 0 contains an unspecified number of cabinets, which
are shown as layered boxes, in which some number of nodes are contained. A compute node, as
shown in the figure, contains a processor (Processor AMM, that may or may not contain in-package
memory), off-package memory (memory AMM), and X, which could be more off-package memory
potentially used as burst buffer, storage memory, viz/specialized compute, or potentially another
Processor AMM that implements a different type of core/compute architecture. Because nodes
are essentially comprised of various component AMMs, many possible node architectures can be
represented. This sAMM is representative of many contemporary and future systems of interest.
These systems will be defined by proxy system architectures in the System Proxy Architectures
section.

A sub-cabinet is simply a portion of a cabinet, as one would expect. It might be the case that
part of the cabinet is populated with certain types of nodes (e.g., compute) , another portion with
another type of node (e.g., I/O). Although we do not picture this in Figure 7.1, some systems could
potentially be implemented this way. The number and type of nodes per sub-cabinet and/or cabinet
and the total number of cabinets is a parameter to be specified in the proxy system architectures.

59

System Proxy Architectures

The following is a more complete list of parameters to allow application developers and hard-
ware architects to tune any AMMs to their desire. The list is not exhaustive and will continue to
grow as needed. Since this list is for all AMMs presented in this document, not all parameters are
expected to be applicable to every AMM. In fact, we expect that for each AMM only a subset of
this list of parameters will be used for architecture tuning. Likewise, not all parameters are useful
for application developers, such as bandwidth of each level of the cache structure.

Processor

Parameter Expected Range Notes
Bandwidths (GB/s)

Chip↔Memory 60–100 To off-chip DDR DRAM
Chip↔Memory 600–1200 To on-chip DRAM
Chip↔Memory 600–1200 To off-chip HMC-like
Core↔ L1 Cache O(100) – O(1000)
Core↔ L2 Cache O(100)
Core↔ L3 Cache Varies by NoC Bandwidth

Capacities
L1 Cache 8KB–128KB Per Core
L2 Cache 256KB–2MB Per Core
L3 Cache 64MB–128MB Likely to be shared amongst groups of cores/accelerators
L4 Cache 2GB–4GB Not on all systems, likely to be off-package embedded-DRAM

Memory System Parameters
Cache block size 64-128B
Number of cache
levels

2–4

Coherency do-
mains

1–8 per chip

Network-On-Chip
Topology Options include: Mesh, fat-tree, hierarchical ring, cross-bar, etc. Still active research area.
Bandwidth 8-64 GB/s per core
Latency 1–10 ns neighbor cores
Latency 10–50 ns cross chip

Core Parameters
Number of cores 64-256 per chip
Threads per core 2–64
Thread Switching Possible policies include: Each cycle, on long-latency event, time quanta
SIMD/vector
width

4–8 DP FP

Dispatch, issue,
execution widths

2–8 Simple processors may have limited dual dispatch (i.e. 1 gen-
eral purpose instruction and 1 memory)

Max references
outstanding

8–128 per core

Atomic opera-
tions

Possible implementations include: Simple or transactional

60

Memory

Parameter Range Notes
Capacities

In-package
DRAM
Memory

32–64 GB

Off-Chip
DRAM
Memory

v512GB–
2TB

Memory capacity may be much larger, at the cost of fewer
nodes. See notes in Section 4

Off-Chip
NVRAM
Memory

v2TB–
16TB

Capabilities
Extended
Memory
Semantics

None, Full/Empty Bits, Transactional, data movement, specialized com-
pute, general compute.

In-Package Memory Technologies/Levels
HBM/Wide-
IO

v16GB per stack, v 200GB/s per stack. Can be stacked directly on
processor. Cannot be “chained.”

Off-Package Memory Technologies/Levels
HMC v16GB per stack, v240GB/sec per stack. Can be “chained” to increase

capacity. Multiple access sizes.
DDR-4 v64GB per DIMM, 20GB/s per channel, up to 2 DIMMs per channel.

Optimized for cacheline sized access.
NVRAM v4-8× capacity of DRAM, 10–20GB/s. Requires KB sized access.

Highly assymetric access latency.

Node Architecture

Processor Cores/NUMA Gflop/s per # Threads per Processor Accelerator Acc Memory Acc Count
Cores Region Proc Core Core SIMD Vectors Cores BW (GB/s) per Node

(Units x Width)
Homogeneous M.C. Opt1 256 64 64 2 8x16 None None None
Homogeneous M.C. Opt2 64 64 250 4 2x16 None None None
Discrete Acc. Opt1 32 32 250 8 2x16 O(1000) O(1000) 4
Discrete Acc. Opt2 128 64 64 4 8x16 O(1000) O(1000) 16
Integrated Acc. Opt1 32 32 64 8 2x16 O(1000) O(1000) Integrated
Integrated Acc. Opt2 128 64 16 4 8x16 O(1000) O(1000) Integrated
Heterogeneous M.C. Opt1 16 / 192 16 250 8 / 1 8x16 / 2x8 None None None
Heterogeneous M.C. Opt2 32 / 128 32 64 4 / 1 8x16 / 2x8 None None None
Concept Opt1 128 50 12x1 128 O(1000) Integrated
Concept Opt2 128 64 12x1 128 O(1000) Integrated

Note that Opt1 and Opt2 represent possible proxy options for the abstract machine model.
M.C: multi-core, Acc: Accelerator, BW : bandwidth, Proc: processor, For models with ac-

61

celerators and cores, C denotes to FLOP/s from the CPU cores and A denotes to FLOP/s from
Accelerators.

System Network

Parameter Range Notes
Topology Possible implementations include: Torus, fat-tree, hierarchical ring, or Dragonfly
Bisection
Bandwidth

1/8 to 1/2 of injection bandwidth

Injection
BW

100GB/s -
400GB/s

per node

Messaging
Rate

250MMsg/s Two-sided communications

Message
Processing
Rate

1BMsg/s One-side communications

Latency 500-1500ns Two-side communications nearest neighbor
Latency 400-600ns One-sided communications nearest neighbor
Latency 3-5µs Cross-machine

System Organization

Parameter Range Notes
Total Node
Count

33K - 125K

Nodes per
Rack
Viz nodes Must define locality in which nodes reside
Compute
nodes

Must define locality in which nodes reside

Login
nodes

62

Storage

...

Storage

Viz/
Specialized

...

Viz/
Specialized

...
Memory

AMM

Memory
AMM

Processor
AMM

Memory
AMM X

...

Processor
AMM

Memory
AMM X

Locality 0

Processor
AMM

Memory
AMM X

...

Processor
AMM

Memory
AMM X

Locality 0

...

Locality 1

Locality N

Storage

...

Storage

Viz/
Specialized

...

Viz/
Specialized

Login

Figure 7.1. System AMM

63

8. Conclusion
Advanced memory systems, complex on-chip networks, heterogeneous systems and new pro-

gramming models are just some of the challenges facing users of an exascale machine [21]. The
AMMs presented in this document are meant to capture the design trends in exascale systems
and provide application software developers with a simplified yet sufficiently detailed view of the
computer architecture. This document also introduces and describes proxy architectures, a param-
eterized instantiation of a machine model. Proxy architectures are meant to be a communication
vehicle between hardware architects and system software developers or application performance
analysts.

Communication and coordination: The Computer Architecture Laboratory (CAL) has an
important role in facilitating communication between laboratory open research projects and hard-
ware architecture research and development by DOE’s Fast Forward and Design Forward com-
panies that is usually proprietary. CAL supports this communication by developing AMMs and
non-proprietary, open proxy architectures. These proxy architectures and AMMs can be used to
provide applications, algorithms and co-design projects with a target model of the hardware, node,
and system architecture to guide their software development efforts. An important characteristic of
these proxy architecture models is their ability to also capture lower level architectural parameters
to provide a non-proprietary description of advanced architecture concepts for quantitative analysis
and design space exploration with our architectural simulation tools. The development of proxy
architectures and AMMs is intended to allow open exchange of advanced hardware architecture
concepts without disclosing intellectual property.

Metrics for success: The key metric for success will be the use of AMMs at the abstract
high level for guiding application development, and proxy architectures at the more detailed lower
level for guiding system software and architectural simulation efforts. The successful outcome is
co-designed hardware architectures and associated software.

AMM and proxy architecture evolution: Co-design is a multi-disciplinary endeavor. It is an
activity that bridges many different technical communities, and as we have seen with proxy ap-
plications, having common terminology and touch points is extremely valuable in fostering multi-
disciplinary collaborations. In this spirit, the CAL project is contributing this initial set of common
definitions for AMMs and their associated proxy architectures to the DOE exascale program. As
with proxy applications, our AMMs and Proxy Architectures are expected to evolve through the
co-design process.

64

References
[1] Netgauge loggps (logp, loggp) measurement. Web. http://htor.inf.ethz.ch/

research/netgauge/loggp/.

[2] Ohio state (osu) micro-benchmarks. Web. http://mvapich.cse.ohio-state.
edu/performance/.

[3] Albert Alexandrov, Mihai F. Ionescu, Klaus E. Schauser, and Chris Scheiman. Loggp: Incor-
porating long messages into the logp model—one step closer towards a realistic model
for parallel computation. In Proceedings of the Seventh Annual ACM Symposium on Parallel
Algorithms and Architectures, SPAA ’95, pages 95–105, New York, NY, USA, 1995. ACM.

[4] R.F. Barrett, S.D. Hammond, C.T. Vaughan, D.W. Doerfler, M.A. Heroux, J.P. Luitjens, and
D. Roweth. Navigating an Evolutionary Fast Path to Exascale. In High Performance Com-
puting, Networking, Storage and Analysis (SC12), pages 355–365. IEEE, 2012.

[5] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. Legion: Expressing Locality and Inde-
pendence with Logical Regions. In High Performance Computing, Networking, Storage and
Analysis (SCC), 2012 SC Companion:. IEEE, 2012.

[6] R. Brightwell and K.D. Underwood. An Analysis of NIC Resource Usage for Offloading
MPI. In Parallel and Distributed Processing Symposium, 2004. Proceedings. 18th Interna-
tional, pages 183–, April 2004.

[7] William W Carlson, Jesse M Draper, David E Culler, Kathy Yelick, Eugene Brooks, and
Karen Warren. Introduction to UPC and language specification. Center for Computing
Sciences, Institute for Defense Analyses, 1999.

[8] Bradford L Chamberlain, David Callahan, and Hans P Zima. Parallel programmability and
the chapel language. International Journal of High Performance Computing Applications,
21(3):291–312, 2007.

[9] Byn Choi et al. Denovo: Rethinking the memory hierarchy for disciplined parallelism. In
Proceedings of the 2011 International Conference on Parallel Architectures and Compila-
tion Techniques, PACT ’11, pages 155–166, Washington, DC, USA, 2011. IEEE Computer
Society.

[10] W.J. Dally. Performance analysis of k-ary n-cube interconnection networks. Computers,
IEEE Transactions on, 39(6):775–785, Jun 1990.

[11] Jack Dongarra et al. The International Exascale Software Project Roadmap. IJHPCA,
25(1):3–60, 2011.

[12] Todd Gamblin. Rubik Task Mapping Generation Tool, 2015.

[13] JEDEC. Wide I/O Single Data Rate. JESC 229, JEDEC, December 2011. http://www.
jedec.org/standards-documents/docs/jesd229.

65

[14] JEDEC. High Bandwidth Memory (HBM) DRAM. JESC 235, JEDEC, October 2013.
http://www.jedec.org/standards-documents/docs/jesd235.

[15] H. Kaiser, M. Brodowicz, and T. Sterling. ParalleX: An Advanced Parallel Execution Model
for Scaling Impaired Applications. In International Conference on Parallel Processing Work-
shops, pages 394–401. IACC, 2009.

[16] Himanshu Kaul, Mark Anders, Steven Hsu, Amit Agarwal, Ram Krishnamurthy, and Shekhar
Borkar. Near-threshold voltage (ntv) design: opportunities and challenges. In DAC, pages
1153–1158, 2012.

[17] S. Kaxiras and G. Keramidas. Sarc coherence: Scaling directory cache coherence in perfor-
mance and power. Micro, IEEE, 30(5):54–65, Sept 2010.

[18] Martha Kim. Scaling Theory and Machine Abstractions. http://www.cs.columbia.
edu/˜martha/courses/4130/au13/pdfs/scaling-theory.pdf, Sept 2013.

[19] Peter M. Kogge and John Shalf. Exascale computing trends: Adjusting to the ”new normal”
for computer architecture. Computing in Science and Engineering, 15(6):16–26, 2013.

[20] Stephen W. Poole, Oscar Hernandez, Jeffery A. Kuehn, Galen M. Shipman, Anthony Cur-
tis, and Karl Feind. Openshmem - toward a unified rma model. Encyclopedia of Parallel
Computing, pages 1379–1391, 2011.

[21] Robert Lucas et. al. Top Ten Exascale Research Challenges, DOE ASCAC Subcommittee
Report, February 2014.

[22] A. Ros, B. Cuesta, M.E. Gomez, A. Robles, and J. Duato. Cache miss characterization
in hierarchical large-scale cache-coherent systems. In Parallel and Distributed Processing
with Applications (ISPA), 2012 IEEE 10th International Symposium on, pages 691–696, July
2012.

[23] V. Sarkar, B. Chapman, W. Gropp, and R. Knauserhase. Building an Open Community
Runtime (OCR) framework for Exascale Systems, 2012.

[24] M. Schuchhardt, A. Das, N. Hardavellas, G. Memik, and A. Choudhary. The impact of
dynamic directories on multicore interconnects. Computer, 46(10):32–39, October 2013.

[25] John Shalf, Sudip S. Dosanjh, and John Morrison. Exascale computing technology chal-
lenges. In VECPAR, pages 1–25, 2010.

[26] Micron Technology. Hybrid Memory Cube Specification, 2014.

[27] K.D. Underwood, K.S. Hemmert, A. Rodrigues, R. Murphy, and R. Brightwell. A Hard-
ware Acceleration Unit for MPI Queue Processing. In Parallel and Distributed Processing
Symposium, 2005. Proceedings. 19th IEEE International, pages 96b–96b, April 2005.

[28] Leslie G. Valiant. A bridging model for parallel computation. Commun. ACM, 33(8):103–
111, August 1990.

66

[29] Brian van Straalen, John Shalf, Terry J. Ligocki, Noel Keen, and Woo-Sun Yang. Scalability
challenges for massively parallel amr applications. In IPDPS, pages 1–12, 2009.

[30] D.E. Womble, S.S. Dosanjh, B. Hendrickson, M.A. Heroux, S.J. Plimpton, and J.L. Tomkins.
Massively parallel computing: A sandia perspective. Parallel Computing, 25(13-14):1853–
1876, 1999.

[31] Yi Xu, Yu Du, Youtao Zhang, and Jun Yang. A composite and scalable cache coherence
protocol for large scale cmps. In Proceedings of the International Conference on Supercom-
puting, ICS ’11, pages 285–294, New York, NY, USA, 2011. ACM.

[32] Yili Zheng, Amir Kamil, Michael B Driscoll, Hongzhang Shan, and Katherine Yelick.
Upc++: a pgas extension for c++. In Parallel and Distributed Processing Symposium, 2014
IEEE 28th International, pages 1105–1114. IEEE, 2014.

67

DISTRIBUTION:

1 MS 0899 Technical Library, 9536 (electronic copy)

68

v1.40

69

70

