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Abstract. We present a stabilized finite element method for the scalar advection-diffusion equation, which does
not require tunable mesh-dependent parameters. Stabilization is achieved by using diffusive fluxes extracted from an
edge element lifting of Scharfetter-Gummel edge fluxes into the elements. Although the method is formally first-order
accurate, qualitative numerical studies suggest that it occupies a middle ground between an artificial diffusion and a
streamline-upwind Petrov-Galerkin formulations. The method is substantially less dissipative than the former, while
having much smaller overshoots and undershoots than the latter.
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1. Introduction. We consider the scalar advection-diffusion equation

(1.1)

{
−∇ · F (φ) = f in Ω

F (φ) = (ε∇φ− uφ) in Ω
and φ = g on Γ

where ε is a diffusion coefficient, u is the advective velocity, and f and g are given functions. When
ε is small relative to u, solutions of (1.1) can develop internal and/or boundary layers. If the grid
is not fine enough to resolve these layers, Galerkin solutions of (1.1) exhibit spurious oscillations.

To stabilize the solution one can use a variety of tools ranging from artificial diffusion [14]
to consistently stabilized methods such as SUPG [12, 13], and multiscale and enriched methods
[11, 18]. However, most if not all of the existing stabilized methods for (1.1) require a mesh-
dependent stabilization parameter. The choice of this parameter is critical for the accuracy and
stability of the corresponding finite element solution. Yet, finding the best possible stabilization
parameter for a given problem is difficult and remains an open question [15, 7]. The principal reasons
for this are (i) the dependence of the stabilization parameter on constants that are known exactly
only in special cases [10], and (ii) the fact that different solution features, such as internal and
boundary layers may require different stabilization techniques; see [15]. As a result, stabilization
parameters may have to be individually tailored to different applications using heuristic arguments
[5], numerical calibration or a combination thereof.

This paper presents and studies a new stabilized finite element method for (1.1), which does not
require tunable mesh-dependent stabilization parameters. Stabilization is achieved by augmenting
the standard Galerkin formulation of (1.1) with an artificial diffusion tensor defined by a product
of two diffusive fluxes. We extract these fluxes from an approximation FE ∈ H(curl,Ω) of the total
flux F , defined by an edge element lifting of Scharfetter-Gummel edge fluxes into the elements [3, 4].
Previously, we used FE(φh) to replace the standard nodal flux F (φh) in a Galerkin [3] and a control
volume finite element (CVFEM) [4] formulations of the governing equations (1.1). These methods
provide multidimensional extensions of the Scharfetter-Gummel scheme [17] to unstructured grids
and have been implemented in Sandia’s device modeling code Charon with encouraging results.
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In this paper the edge element flux FE is a starting point for the development of a new stabilized
Galerkin formulation that improves upon the robustness and accuracy of the method in [3]. A careful
analysis reveals that FE comprises a projection of the nodal flux F (φh) onto an edge element space,
and a stabilizing diffusive flux. The pairing of the latter with the gradient of a nodal finite element
function φh produces a non-symmetric diffusion tensor whose stabilizing effect may deteriorate on
unstructured grids. To correct this drawback we (i) discard the part of the FE that corresponds
to the projection of F (φh) onto the edge element space, and (ii) use the remaining diffusive flux
to define a symmetric diffusion tensor. In a nutshell, the new method comprises a standard nodal
Galerkin formulation of (1.1), augmented by this symmetric artificial diffusion tensor. Because edge
elements are used only locally, assembly of the diffusion tensor does not require global edge data
structured and can be easily incorporated into an existing Galerkin code for (1.1).

The rest of this section introduces the notation. Sections 2–3 present the formulation and
the analysis of the method, respectively. Section 4 illustrates the method numerically, including a
demonstration of its improved stability on unstructured grids.

1.1. Notation. In this paper Ω ⊂ <n, n = 2, 3 is a bounded domain with Lipschitz-continuous
boundary Γ = ∂Ω, W k,p(Ω) is a Sobolev space of order k, W k,p

0 (Ω) is the subspace of its functions
with vanishing trace, Lp(Ω) = W 0,p(Ω), and Hk(Ω) = W k,2(Ω). The space H(curl,Ω) contains
vector fields in L2(Ω)n whose curl belongs in L2(Ω)2n−3. The meaning of the symbol | · | depends
on the context and can be Euclidean length, semi-norm, domain measure, or cardinality of a finite
set. We use lower case bold face for vectors, upper case Roman for matrices, λ(A) and λ(A) are
the smallest and largest eigenvalues of A, respectively, and κ(A) is the condition number of A. The
versors of a Cartesian coordinate system are i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1) in <3.

We use shape-regular finite element partitions K(Ω) of Ω into elements k with size hk The
average element size is denoted by h. For brevity we restrict attention to triangles and quadrilaterals
in 2D and tetrahedrons and hexahedrons in 3D. We assume that the simplicial elements are affine,
the quadrilaterals are bilinear images of the unit square, and the hexahedrals are trilinear images
of the unit cube. The symbols V (?) and E(?) stand for the sets of all vertices and edges in K(Ω)
belonging to an entity ?. For instance, V (Ω) is the set of all vertices, E(Ω) is the set of all edges,
V (k) are the vertices of element k, E(vi) are all edges having vi as a vertex, and so on. We label
edges by a multi-index α = (α1, α2) comprising the indices of their endpoints, i.e., eα is an edge
with endpoints vα1 and vα2 . We also need the node-to-edge incidence matrix G with element gα,j
and dimension |E(Ω)| × |V (Ω)|. Assuming that every edge eα in the mesh is oriented by choosing
the order of its vertices, gα,j = 0 if vj is not a vertex of eα and

(1.2) gα,j =

{
−1 if vj is the first vertex of eα

1 if vj is the second vertex of eα

For most “reasonable” finite element partitions, e.g., meshes satisfying the assumptions of [6, p.51]
the matrix G has a one dimensional kernel comprising the constant vector. Thus, G can be inter-
preted as a “topological” gradient operator that depends only on the mesh connectivity.

The midpoint, the length, and the unit tangent of an oriented edge eα are

mα =
vα1

+ vα2

2
, hα = |vα1

− vα2
| , and tα = gα,α1

vα1
− vα2

|vα1
− vα2

|
,

respectively. Definition of tα implies that it always points towards the second vertex of eα.
In what follows, Nh(Ω) is the isoparametric C0 piecewise linear, bilinear or trilinear nodal

finite element space and Eh(Ω) is the lowest-order Nedelec edge element space [16]. Nh
0 (Ω) is the
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subspace of all functions in Nh(Ω) that vanish on Γ. The standard nodal basis {Ni}, vi ∈ V (Ω) of
Nh(Ω) has the property Ni(vj) = δji . The coefficient vector of φh ∈ Nh(Ω) is φ = (φi, . . . ,φm),

m = |V (Ω)|. The standard basis of Eh(Ω) is { ~Wξ}, eξ ∈ E(Ω) such that

(1.3)

∫
eη

~Wξ · tηd` = δηξ and ~Wξ · tη
∣∣∣
eη

= const =
δηξ
hη

.

Since ~Wξ · tξ > 0 the orientation of ~Wξ matches the orientation of its associated edge eξ. N
h(Ω)

and Eh(Ω) belong to an exact sequence [1] and ∇Nh(Ω) ⊂ Eh(Ω). In particular, there holds

(1.4) ∇Ni =
∑

eξ∈E(vi)

gξ,i ~Wξ and ∇φh =
∑

eξ∈E(Ω)

(gξ,ξ1φξ1 + gξ,ξ2φξ2) ~Wξ =
∑

eξ∈E(Ω)

(gξφ) ~Wξ ,

where gξ is the row of G corresponding to edge eξ. The last identity implies the following factor-
ization of the weak Laplace operator; see e.g. [2, p.108]:

(1.5)

∫
Ω

∇φh · ∇ϕh dx = φT (GTMG)ϕ ,

where M is the Gramm matrix of the edge element basis { ~Wξ}. Since G has one-dimensional
nullspace spanned by the constant vector, it follows that for φh ∈ Nh

0 (Ω) with coefficient vector φ,

(1.6) Gφ = 0 if and only if φh = 0 .

We recall the nodal interpolation operator IN : H1(Ω) ∩ C0(Ω) 7→ Nh(Ω),

(1.7) IN (φ) =
∑

vi∈V (Ω)

φ(vi)Ni(x) ,

and, for p > 2, the edge interpolation operator IE : H(curl,Ω) ∩ (W 1,p(Ω))n 7→ Eh(Ω),

(1.8) IE(u) =
∑

eξ∈E(Ω)

~Wξ

∫
eξ

u · tξd` .

We will also need the local interpolation result [9, Theorem 1.103]

(1.9) |IN (φ)− φ|m,p,k ≤ Chl+1−m
k |φ|l+1,p,k ,

which holds for all φ ∈W l+1,p(k) with k ∈ K(Ω) and 1 ≤ p ≤ ∞, 0 ≤ l ≤ 1, and the fact that

(1.10) ‖IN (φ)‖1 ≤ C‖φ‖2 ∀φ ∈ H2(Ω) .

2. Formulation. Consider the Galerkin method for (1.1): find φh ∈ Nh(Ω) such that

(2.1) a(φh, ϕh) = b(ϕh) ∀ϕh ∈ Nh
0 (Ω) ,

where the bilinear form a(·, ·) and the linear functional b(·) are given by

(2.2) a(φh, ϕh) =

∫
Ω

F (φh) · ∇ϕh dV and b(ϕh) =

∫
Ω

fϕhdV ,

respectively. We will stabilize (2.1) using a diffusive flux Θ̃(φh) extracted from an edge element
approximation FE(φh) of the total flux F (φh). We define the former by an edge element lifting of
one-dimensional, Scharfetter-Gummel edge fluxes Fα into the elements.
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2.1. The H(curl,Ω) edge element flux. To define the edge fluxes Fα and their H(curl ,Ω)
lifting FE , we temporarily adopt the convention that the first vertex of eα is always vα1 and so,
gα,α1

= −1 and gα,α2
= 1. Then, along eα we consider the following problem:

(2.3)

 −
d

ds

(
ε̄α
dφ(s)

ds
− ūαφ(s)

)
= 0 for 0 < s < hα

φ(0) = φα1 and φ(hα) = φα2

where the unknown nodal coefficients φα1 and φα2 of φh specify the boundary data in (2.3), and

ūα =
1

hα

∫
eα

u · tαd` and ε̄α =
1

hα

∫
eα

εd`

are the mean edge velocity and diffusion, respectively. The exact solution of (2.3) is

(2.4) φ(s) =
exp(2pα)φα1

− φα2

exp(2pα)− 1
+

φα2
− φα1

exp(2pα)− 1
exp(sūα/ε̄α) ; pα =

ūαhα
2ε̄α

.

The value of pα relates the rates of advection and diffusion along eα and so we call it the edge
Péclet number. The edge flux corresponding to the exact solution (2.4) is given by

(2.5) Fα = hα

(
ε̄α
dφ(s)

ds
− ūαφ(s)

)
= hαūα

φα2
− exp(2pα)φα1

exp(2pα)− 1
.

After discarding the temporary orientation convention, multiplying and dividing (2.5) by exp(−pα),
and performing some simple algebraic manipulations, the edge fluxes assume the form:

(2.6) Fα = σαgαφ−
hαūα

2
(φα1

+ φα2
); σα =

hαūα
2

coth(pα) = ε̄αpα coth(pα) .

The lifting of the edge fluxes (2.6) into the edge element space Eh(Ω) defines the H(curl,Ω) flux

(2.7) FE(φh) =
∑

eξ∈E(Ω)

Fξ ~Wξ =
∑

eξ∈E(Ω)

[
σξgξφ−

hξūξ
2

(φξ1 + φξ2)
]
~Wξ .

2.2. The stabilizing diffusive flux. We start by examining the structure of FE .
Lemma 2.1. Let φh ∈ Nh(Ω). Then,

(2.8) FE(φh) = IE(ε∇φh − uEφh) + Θ(φh) ,

where uE = IEu and

(2.9) Θ(φh) =
∑

eξ∈E(Ω)

θξ(gξφ) ~Wξ with θξ = σξ − ε̄ξ = ε̄ξ(pξ coth(pξ)− 1)

is a stabilizing diffusive flux.
Proof. Adding and subtracting ε̄ξgξφ to (2.6) allows us to write the H(curl ,Ω) flux as

FE =
∑

eξ∈E(Ω)

[
ε̄ξgξφ−

hξūξ
2

(φξ1 + φξ2)
]
~Wξ +

∑
eξ∈E(Ω)

(σξ − ε̄ξ)(gξφ) ~Wξ .
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The second term is the stabilizing diffusive flux Θ. To complete the proof it remains to show that
the first term equals IE(ε∇φh − uEφh). Using (1.8) and the exactness (1.4) yields

IE(ε∇φh) =
∑

eξ∈E(Ω)

[ ∫
eξ

ε∇φh · tξd`
]
~Wξ =

∑
eξ∈E(Ω)

[ ∫
eξ

ε
( ∑

eη∈E(Ω)

(gηφ) ~Wη

)
· tξd`

]
~Wξ

=
∑

eξ∈E(Ω)

[ ∫
eξ

ε

hξ
(gξφ)d`

]
~Wξ =

∑
eξ∈E(Ω)

ε̄ξ(gξφ) ~Wξ .

From the definition of ūα and the linearity of φh along any edge, it follows that

uE =
∑

eη∈E(Ω)

[ ∫
eη

u · tηd`
]
~Wη =

∑
eη∈E(Ω)

hηūη ~Wη and

∫
eξ

φhd` =
hξ
2

(φξ1 + φξ2) ,

respectively. As a result, using (1.3)

IE(uEφh) =
∑

eξ∈E(Ω)

[ ∫
eξ

(uEφh) · tξd`
]
~Wξ =

∑
eξ∈E(Ω)

∫
eξ

[ ∑
eη∈E(Ω)

hηūη ~Wη

]
· tξφh d`

 ~Wξ

=
∑

eξ∈E(Ω)

[
ūξ

∫
eξ

φh d`
]
~Wξ =

∑
eξ∈E(Ω)

hξūξ
2

(φξ1 + φξ2) ~Wξ ,

which completes the proof.

The following result confirms that Θ is responsible for the stabilizing effect of FE .
Lemma 2.2. For ε > 0 and any u there holds

(2.10) max
{
ε̄α,

hα|uα|
2

}
≤ σα ≤ ε̄α +

hα|uα|
2

and max
{

0,
hα|uα|

2
− ε̄α

}
≤ θα ≤

hα|uα|
2

.

In particular, θα ≥ 0, θα → 0 in the diffusive limit, and θα → hαūα/2 in the advective limit.
Proof. The lemma follows from the inequality

max {1, |x|} ≤ x coth(x) ≤ 1 + |x| ∀x ∈ < .

2.3. The stabilized Galerkin formulation. In [3] we considered the formulation

(2.11)

∫
Ω

FE(φh) · ∇ϕh dV = b(ϕh) ∀ϕh ∈ Nh
0 (Ω) ,

which stabilizes (2.1) by replacing the nodal flux F (φh) with the edge element flux FE(φh). The
decomposition of FE in Lemma 2.1 prompts a better stabilization strategy. Specifically, Lemma
2.2 asserts that in the advective limit the stabilizing effect of FE is solely due to the diffusive flux
Θ, whereas the first part of FE is just an approximation of the (unstable) nodal flux F (φh).

Since this part is not important for the stabilization we may as well switch back to F (φh), i.e.,
the standard Galerkin formulation (2.1), and use Θ to stabilize the latter. This would result in the
following modification of (2.11): seek φh ∈ Nh(Ω) such that

(2.12) a(φh, ϕh) +

∫
Ω

Θ(φh) · ∇ϕh dV = b(ϕh) ∀ϕh ∈ Nh
0 (Ω) .



6 P. BOCHEV, M. PEREGO AND K.PETERSON

However, the pairing of Θ and ∇ϕh produces a non-symmetric artificial diffusion. Numerical
examples in Section 4 show that on unstructured grids this may reduce the stability of (2.12) and
(2.11). Thus, we consider instead the following symmetric diffusion form:

(2.13) Q(φh, ϕh) =

∫
Ω

Θ̃h(φh) · Θ̃h(ϕh) dV ,

where

Θ̃h(φh) =
∑

eξ∈E(Ω)

θ̃ξ (gξφ) ~Wξ and θ̃ξ =
√
θξ .

Using (2.13) to stabilize (2.1) yields the new method, which is a “symmetrized” version of (2.12)
and reads: seek φh ∈ Nh(Ω) such that

(2.14) a(φh, ϕh) +Q(φh, ϕh) = b(ϕh) ∀ϕh ∈ Nh
0 (Ω) .

3. Analysis. Let ah(·, ·) := a(·, ·) + Q(·, ·) denote the bilinear form of the stabilized method
(2.14). The analysis in this section utilizes a non-standard approach based on the algebraic repre-
sentation of this form. In order to avoid non-essential technical details and focus instead on the key
junctures of the proofs we assume that (i) g = 0, i.e., the solution of (2.14) φh ∈ Nh

0 (Ω), and (ii) ε
and u are constant on Ω. Appendix A extends the analysis to non-constant diffusion and velocity.
We first establish some useful matrix representations of the forms involved in (2.14).

Lemma 3.1. Let φ and ϕ denote the coefficient vectors of φh, ϕh ∈ Nh
0 (Ω). There holds

(3.1) Q(φh, ϕh) = ϕT
(
GTDMDG

)
φ

where M is the Gramm matrix of { ~Wξ} and D is diagonal matrix with element dξ,ξ = θ̃ξ.
Proof. The formula follows by factoring out the finite element coefficient vectors in (2.13)

Q(φh, ϕh) = ϕT

∑
eξ,eη

gTξ θ̃ξ

(∫
Ω

~Wξ · ~WηdV
)
θ̃η gη

φ
and noting that the integral above is element Mξ,η of the Gramm matrix and GTDMDG =∑
ξ,η g

T
ξ θ̃ξMξ,η θ̃ηgη, where gξ and gη are the rows of G corresponding to edges eξ and eη.

3.1. Stability. We establish a baseline property of the stabilized formulation.
Lemma 3.2. For ε > 0 the form ah(·, ·) defines an inner product on Nh

0 (Ω)×Nh
0 (Ω).

Proof. Obviously, ah(·, ·) is a symmetric bilinear form. Therefore, we only need to show that
this form is positive definite. Since φh ∈ Nh

0 (Ω) and ∇ · u = 0,

ah(φh, φh) = ‖
√
ε∇φh‖20 +Q(φh, φh).

The lemma follows from the fact that ∇φh = 0 for φh ∈ Nh
0 (Ω) iff φh = 0, and

Q(φh, φh) = (M1/2DGφ)T (M1/2DGφ) = |M1/2DGφ|2 ≥ 0 ,

i.e., the stabilizing term is non-negative.
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Lemma 3.2 implies that

(3.2) 9φh9 :=
√
ah(φh, φh)

is a mesh-dependent “energy” norm on Nh
0 (Ω). We examine its properties in the following theorem.

Theorem 3.3. Assume that K(Ω) is shape-regular finite element partition of Ω, and that ε
and u are constant in Ω. There exists a positive constant, ρ, independent of ε, u, and h, such that

(i) for linear finite elements (on triangular or tetrahedral meshes)

(3.3) ah(φh φh) ≥ ρ h
∑

k∈K(Ω)

|u| ‖∇φh‖20,k ,

(ii) for bilinear and trilinear elements (on quadrilaterals and hexahedrals)

(3.4) ah(φh, φh) ≥ ρ h
∑

k∈K(Ω)

‖uk · ∇φh‖20,k ,

where uk is the effective advective velocity field on element k, defined in (B.4).

Proof. The stabilized bilinear form can be written as a sum of element forms

ah(φh, ϕh) =
∑

k∈K(Ω)

ahk(φh, ϕh) where ahk(φh, ϕh) := ah(φh, ϕh)|k .

We will prove that for every element k there is ρk > 0 such that

(3.5) ahk(φh, φh) ≥ ρk hk

 |u| ‖∇φh‖20,k on simplices

‖uk · ∇φh‖20,k on quads and hexes

Then, the theorem will follow with ρ = mink∈K(Ω) ρk and h = mink∈K(Ω) hk.
Using the same arguments as in Lemmae 3.1 and 3.2 one can show that

(3.6) ahk(φh, φh) = φTk
(
εGTkMkGk +GTk DkMkDkGk

)
φk ,

where φk is the restriction of φ to the nodes of k, Mk is the Gramm matrix of the edge element basis
on k, and Gk and Dk are matrices containing the rows of G and D, respectively, corresponding to
the edges of k. Similar to G, the “topological” element gradient matrix Gk has a one-dimensional
nullspace spanned by the constant vector. As a result, if φh

∣∣
k

= const, then ahk(φh, φh) = 0,

∇φh
∣∣
k

= 0, and (3.5) is trivially satisfied on k. Thus, without a loss of generality we may assume

that φh
∣∣
k
6= const, or what is the same – Gkφk 6= 0.

Algebraic bounds for element forms. Let zk = Gkφk and yk = DkGkφk. Using (3.6)

ahk(φh, φh) = εzTk Mk zk + yTk Mkyk ≥ λ(Mk)
(
εzTk zk + yTk yk

)
= λ(Mk)

(
εzTk zk + zTk D

2
kzk

)
= λ(Mk)

∑
eξ∈E(k)

(
εξ + θξ

)
z2
ξ = λ(Mk)

∑
eξ∈E(k)

σξz
2
ξ ,
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where σξ is the number defined in (2.6). From the lower bound (2.10) in Lemma 2.2

ahk(φh, φh) ≥ λ(Mk)
∑

eξ∈E(k)

hξ|ūξ|
2

z2
ξ .

Because u is constant ūξ = |u|vξ, where vξ = (u/|u|) · tξ. Furthermore, there exists a constant Ck

such that 0 < Ckhk ≤ hξ for every edge eξ ∈ E(k). It follows that

(3.7) ahk(φh φh) ≥ λ(Mk)Ck
hk|u|

2

∑
eξ∈E(k)

z2
ξ |vξ| .

We estimate the sum on the right hand side of (3.7) separately for simplices (triangles and tets)
and tensor product elements (quads and hexes).

Simplicial elements. On triangles u · tξ = 0 for at most one edge eα ∈ E(k), in which case
vα = 0. On tetrahedrons u can be orthogonal to either 3 planar edges eα, eβ and eγ , or at
most two non-coplanar edges eα and eβ . In the first case vα = vβ = vγ = 0 and in the second
case vα = vβ = 0. In general, let eα, eβ ∈ E(k) be the edges corresponding to the smallest
two values 0 ≤ |vα| ≤ |vβ | on element k. If k is a triangle, define the set E(k/u) to be the set
containing the edge eα. On tetrahedrons, define this set as follows. If eα and eβ are coplanar, set
E(k/u) = {eα, eβ , eγ}, where eγ is the edge coplanar to eα and eβ . If eα and eβ are not coplanar,
then define E(k/u) = {eα, eβ}. Finally, let vk = mineξ /∈E(k/u) |vξ|. Then1,

∑
eξ∈E(k)

z2
ξ |vξ| ≥ vk

∑
eξ /∈E(k/u)

z2
ξ = vk φ

T
k

 ∑
eξ /∈E(k/u)

gTξ gξ

φk.

It is easy to check that for all possible configurations of E(k/u) the matrix
∑

eξ /∈E(k/u) g
T
ξ gξ is

positive semidefinite with a single zero eigenvalue corresponding to the constant eigenvector, a case
that is ruled out by the assumption φk 6= const. Its smallest eigenvalue is either 2, when k is a
tetrahedron and E(k/u) contains two non coplanar edges, or 1 in all other cases. As a result,

(3.8)
∑

eξ∈E(k)

z2
ξ |vξ| ≥ vk|φk|2 and ahk(φh φh) ≥ λ(Mk)Ck

hk|u|
2

vk|φk|2.

The next step is to use (1.5) to bound the norm of ∇φh by |φk|2:

(3.9) ‖∇φh‖20,k = zTkMk zk ≤ λ̄(Mk)|zk|2 = λ̄(Mk)φTk (GTkGk)φk ≤ λ̄(Mk)λ̄(GTkGk)|φk|2.

Taking into account that λ̄(GTkGk) equals 3 for triangles and 4 for tets, (3.9) yields

|φk|2 ≥
1

4λ̄(Mk)
‖∇φh‖20,k.

Combining this estimate with (3.8) shows that on simplicial elements

ahk(φh φh) ≥ ρk hk |u| ‖∇φh‖20,k , with ρk =
1

8
κ−1(Mk)Ckvk .

Remark 1. The value of vk depends on the direction of u with respect to the element edges.

For example, on a triangular grid vk ≥ sin
(
ζk
2

)
, where ζk is the smallest angle in K(Ω).

1We remind that gξ is the row of Gk corresponding to edge eξ ∈ E(k).
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Quadrilateral elements. We refer to Appendix B for the relevant notations. According to (B.3)
|vi| ≤ |vαi | and |vj| ≤ |vβi |. It follows that

(3.10)
∑

eξ∈E(k)

z2
ξ |vξ| ≥ |vi|

(
z2
α1 + z2

α2

)
+ |vj|

(
z2
β1 + z2

β2

)
= |vi|φTkGαφk + |vj|φTkGβφk

where Gα = gTα1gα1 + gTα2gα2 and Gβ = gTβ1gβ1 + gTβ2gβ2 . We bound (3.10) from below by the
norm of the streamline derivative uk · ∇φh along the effective advective velocity. Since the terms
involving Gα and Gβ have the same structure we give the details for the first term only.

Step 1. Algebraic lower bound for φTkGαφk. Let {qi} be an orthonormal basis for the (two-
dimensional) kernel of Gα and consider the orthogonal decomposition of the coefficient vector φk:

φk = φ⊥q + φq with φ⊥q =

(
I −

2∑
i=1

qiq
T
i

)
φk .

It is easy to check that all non-zero eigenvalues of Gα equal 2, and so,

(3.11) φTkGαφk = (φ⊥q + φq)TGα(φ⊥q + φq) = (φ⊥q )TGαφ
⊥
q ≥ 2

∣∣φ⊥q ∣∣2 .
Step 2. Lower bound for |φ⊥q

∣∣. We obtain an analogue of (3.9) for tensor product elements.

Let φ⊥q,h be the finite element function with coefficient vector φ⊥q . Then,

(3.12) ‖∇φ⊥q,h‖20,k = (φ⊥q )TGTkMkGk φ
⊥
q ≤ λ̄(Mk)

∣∣Gk φ
⊥
q

∣∣2 ≤ λ̄(Mk)λ̄(GTkGk)|φ⊥q |2.

Using (3.12) in conjunction with the fact that λ̄(GTkGk) = 4 for quads yields

(3.13) |φ⊥q |2 ≥
1

4λ̄(Mk)
‖∇φ⊥q,h‖20,k.

Step 3. Lower bound for ‖∇φ⊥q,h‖0,k. Bounding of the element forms for tensor product ele-
ments requires one more step that was not necessary for simplicial elements. This step estimates
‖∇φ⊥q,h‖0,k by a norm of the directional derivative ti · ∇φh of the finite element function along the

vector field aligned with the edges eαi . Using (1.4) and the formula for φ⊥q yields

∇φ⊥q,h =
∑

eξ∈E(k)

(
gξφk − gξ

2∑
i=1

(qTi φk)qi

)
~Wξ = ∇φh −

∑
eξ∈E(k)

gξ

(
2∑
i=1

(qTi φk)qi

)
~Wξ

Since qi ∈ kerGα, gαjqi = 0 and summation over E(k) reduces to a sum over eβj only:

∇φ⊥q,h = ∇φh −
2∑
j=1

gβj

(
2∑
i=1

(qTi φk)qi

)
~Wβj .

Using the expression (B.5) for the edge element basis functions we find that

∇φ⊥q,h = ∇φh −

 2∑
j=1

gβj

(
2∑
i=1

(qTi φk)qi

)
Bj(x)

J−Tk (x) j = ∇φh − r(x)
J−Tk (x) j∣∣J−Tk (x) j

∣∣ ,
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where r(x) is a scalar function corresponding to the expression in the square brackets scaled by∣∣J−Tk (x) j
∣∣. On the other hand, from (B.1) it follows that

(J−Tk (x) j)T∣∣J−Tk (x) j
∣∣ ti =

jT
(
J−1
k (x)Jk(x)

)
i∣∣J−Tk (x) j

∣∣ |Jk(x) i|
=

jT i∣∣J−Tk (x) j
∣∣ |Jk(x) i|

= 0 ∀x ∈ k .

i.e., J−Tk (x) j/
∣∣J−Tk (x) j

∣∣ is perpendicular to ti. Accordingly, we denote the former by t⊥i and so,

∇φ⊥q,h = ∇φh − r(x)t⊥i .

Since ti and t⊥i are orthonormal we have the orthogonal decomposition

(3.14) ∇φh = (ti · ∇φh)ti + (t⊥i · ∇φh)t⊥i .

The second term is the orthogonal projection of the gradient onto t⊥i . From the properties of
orthogonal projections and (3.14) it follows that

(3.15)
∣∣∇φ⊥q,h∣∣ =

∣∣∇φh − r(x)t⊥i
∣∣ ≥ ∣∣∇φh − (t⊥i · ∇φh)t⊥i

∣∣ = |(ti · ∇φh)ti| ∀x ∈ k .

Combining this result with the lower bounds in (3.11) and (3.13) yields

φTkGαφk ≥
1

2λ̄(Mk)
‖(ti · ∇φh) ti‖20,k .

Repeating the same steps for the second term in (3.10) leads to

φTkGβφk ≥
1

2λ̄(Mk)
‖(tj · ∇φh) tj‖20,k .

Recalling that ti and tj are unit vectors for every x ∈ k gives the intermediate lower bound∑
eξ∈E(k)

z2
ξ |vξ| ≥

1

2λ̄(Mk)

(
|vi| ‖ti · ∇φh‖20,k + |vj| ‖tj · ∇φh‖20,k

)
.

Since |vi| ≤ 1, we have that |vi|2 ≤ |vi| and the same for vj. Using this, and the triangle inequality

|vi| ‖ti · ∇φh‖20,k + |vj| ‖tj · ∇φh‖20,k ≥ ‖vi ti · ∇φh‖20,k + ‖vj tj · ∇φh‖20,k

≥ ‖vi ti · ∇φh + vj tj · ∇φh‖20,k = ‖(vi ti + vj tj) · ∇φh‖20,k =
1

|u|
‖uk · ∇φh‖20,k .

As a result, ∑
eξ∈E(k)

z2
ξ |vξ| ≥

1

2λ̄(Mk)|u|
‖uk · ∇φh‖20,k .

Together with (3.7) this inequality allows us to conclude that on quads

ahk(φh φh) ≥ ρkhk‖uk · ∇φh‖20,k with ρk =
1

4
Ckκ

−1(Mk) .
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Hexahedral elements. Estimation of the element forms on hexahedra follows the same key steps.
The analogue of (3.10) is given by

(3.16)
∑

eξ∈E(k)

z2
ξ |vξ| ≥ |vi|φ

T
kGαφk + |vj|φTkGβφk + |vk|φTkGγφk.

where Gα =

4∑
i=1

gTαigαi , Gβ =

4∑
i=1

gTβigβi , and Gγ =

4∑
i=1

GTγiGγi have four-dimensional nullspaces.

We briefly discuss bounding the first term on the right hand side of (3.16).

Step 1. Algebraic lower bound for φTkGαφk. Let {qi} denote an orthonormal basis of kerGα.
For hexahedrons all nonzero eigenvalues of Gα equal 2 and so, (3.11) continues to hold:

(3.17) φTkGαφk ≥ 2
∣∣φ⊥q ∣∣2 .

Step 2. Lower bound for |φ⊥q
∣∣. On hexahedra λ̄(GTkGk) = 6 and the analogue of (3.13) is

(3.18) |φ⊥q |2 ≥
1

6λ̄(Mk)
‖∇φ⊥q,h‖20,k.

Step 3. Lower bound for ‖∇φ⊥q,h‖0,k. As for quads, we have that

∇φ⊥q,h = ∇φh −
∑

eξ∈E(k)

gξ

(
4∑
i=1

(qTi φk)qi

)
~Wξ .

Likewise, since qi ∈ kerGα, gαjqi = 0, summation over E(k) reduces to a sum over eβj and eγj

∇φ⊥q,h = ∇φh −
4∑
j=1

gβj

(
4∑
i=1

(qTi φk)qi

)
~Wβj −

4∑
j=1

gγj

(
4∑
i=1

(qTi φk)qi

)
~Wγj

Using (B.6)

∇φ⊥q,h = ∇φh −

(
rj(x)

J−Tk (x) j∣∣J−Tk (x) j
∣∣ + rk(x)

J−Tk (x) k∣∣J−Tk (x) k
∣∣
)

For every x ∈ k the vector field in the parenthesis belongs in the orthogonal complement of the
vector field ti. Using properties of orthogonal projections∣∣∇φ⊥q,h∣∣ ≥ |∇φh − (tj · ∇φh)tj − (tk · ∇φh)tk| = |(ti · ∇φh)ti| ∀x ∈ k .

Repeating the same steps for all three terms leads to

φTkGαφk ≥
1

3λ̄(Mk)
‖(ti · ∇φh) ti‖20,k ; φTkGβφk ≥

1

3λ̄(Mk)
‖(tj · ∇φh) tj‖20,k

and φTkGγφk ≥
1

3λ̄(Mk)
‖(tk · ∇φh) tk‖20,k .
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Proceeding as in the case of quadrilaterals we find that∑
eξ∈E(k)

z2
ξ |vξ| ≥

1

3λ̄(Mk)
‖(vi ti + vj tj + vk tk) · ∇φh‖20,k =

1

3λ̄(Mk)|u|
‖uk · ∇φh‖20,k ,

which produces an analogous lower bound for the element form:

ahk(φh φh) ≥ ρkhk‖uk · ∇φh‖20,k with ρk =
1

6
Ckκ

−1(Mk) .

Theorem 3.3 implies that (2.14) remains stable for ε� h. In conjunction with the Lax-Milgram
lemma, the theorem allows us to conclude that the stabilized method (2.14) has a unique solution.

3.2. Error estimates. We start with an upper bound on the artificial diffusion term Q(·, ·).
Lemma 3.4. There exists a constant C, independent of h, such that for all φh ∈ Nh(Ω)

(3.19) Q(φh, φh) ≤ C h |u| ‖∇φh‖20 .

Proof. The stabilizing term Q(·, ·) can be written as a sum of element forms Qk(φh, ϕh) :=
Q(φh, ϕh)|k. We use the techniques of Theorem 3.3 to bound these forms by ‖∇φh‖20,k. As in the
proof of this theorem it suffices to consider only those φh for which Gkφk 6= 0. Using the upper
bound for θα in (2.10 ) and the fact that λ(GTkGk) ≤ 6 for all elements under consideration

Qk(φh, φh) = φTk
(
GTk DkMkDkGk

)
φTk ≤ λ(Mk)λ(GTkGk)

hk|u|
2
|φk|2 ≤ 3λ(Mk)hk|u| |φk|2 .

On the other hand, since the smallest non-zero eigenvalue λ(GTkGk) ≥ 1 for all element shapes

‖∇φh‖20,k = φTk
(
GTk MkGk

)
φTk ≥ λ(Mk)λ(GTkGk)|φk|2 ≥ λ(Mk)|φk|2 .

Therefore, for every element in K(Ω)

Qk(φh, φh) ≤ Ckhk|u| ‖∇φh‖20,k with Ck = 3κ(Mk) ,

and the Lemma follows with C = maxk Ck.
We proceed to estimate the discrete error of the solution of (2.14).
Theorem 3.5. Assume that the exact solution of (1.1) is in H2(Ω), φh is the solution of

(2.14), and φI := IN (φ). There exists a constant C, independent of h and ε, such that

(3.20) 9φh − φI9 ≤ γ1

√
h‖φ‖2 .

Proof. We have the following “error orthogonality” relation

a(φ, ϕh) = b(ϕh) = ah(φh, ϕh) ∀ϕh ∈ Nh
0 (Ω) .

This identity, the fact that ah(·, ·) = a(·, ·)+Q(·, ·), and the Cauchy-Schwartz inequality imply that

(3.21)

9φh − φI92 = ah(φh − φI , φh − φI)± a(φ− φI , φh − φI)

= a(φ− φI , φh − φI) +
[
a(φI , φh − φI)− ah(φI , φh − φI)

]
= a(φ− φI , φh − φI) +Q(φI , φh − φI)

≤ a(φ− φI , φ− φI)1/2a(φh−φI , φh−φI)1/2 +Q(φI , φI)1/2Q(φh−φI , φh−φI)1/2 .
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Using the interpolation estimate (1.9) and the skew-symmetry of the advection term

a(φ− φI , φ− φI)1/2 ≤
√
ε‖∇φ−∇φI‖0 ≤

√
εh‖φ‖2 ,

while from identity ah(·, ·) = a(·, ·) +Q(·, ·) it follows that

a(φh − φI , φh − φI)1/2 ≤ 9φh − φI 9 and Q(φh − φI , φh − φI)1/2 ≤ 9φh − φI 9 .

Finally, using (3.19) in Lemma 3.4 and the boundedness (1.10) of IN we find that

Q(φI , φI)1/2 ≤ C
√
h |u| ‖∇φI‖0 ≤ C

√
h |u| ‖φ‖2 .

Inserting these bounds into (3.21) and dividing through by the energy norm of φh − φI yields

9φh − φI9 ≤
√
εh‖φ‖2 + C

√
h |u| ‖φ‖2 = C

√
h
(√

ε h+ |u|
)
‖φ‖2 ,

which completes the proof.

Corollary 3.6. Under the assumptions of Theorem 3.5 there holds

(3.22)
√
ε‖ ∇φ−∇φh‖0 ≤ C

√
h‖φ‖2

with a constant C that does not depend on h and ε.
Proof. We use triangle inequality to split the error

√
ε‖ ∇φ−∇φh‖0 ≤

√
ε‖ ∇φ−∇φI‖0 +

√
ε‖ ∇φI −∇φh‖0 .

The assertion follows by noting that

ε‖ ∇φI −∇φh‖20 = a(φI − φh, φI − φh) ≤ ah(φI − φh, φI − φh) = 9φI − φh, φI − φh92

and applying the result of Theorem 3.5.

Let eh := φ−φh. To estimate the L2 error of the stabilized solution we assume that the adjoint
problem: find ψ ∈ H1

0 (Ω) such that

(3.23) a(ϕ, ψ) = (eh, ϕ), ∀ϕ ∈ H1
0 (Ω),

has full elliptic regularity, i.e., there is γε > 0 such that

(3.24) ‖ψ‖2 ≤ γε‖eh‖0 .

Theorem 3.7. Under the hypotheses of Theorem 3.5 there exists C(ε) such that

(3.25) ‖φh − φ‖0 ≤ C(ε)h ‖φ‖2.

Proof. Let ψI be the interpolant of the solution of the adjoint problem and φh the stabilized
solution. Setting ϕ = eh in (3.23) and using that a(φ, ψI) = ah(φh, ψI) gives

‖eh‖20 = a(eh, ψ)± a(eh, ψI)

= a(φ− φh, ψ − ψI) + a(φ− φh, ψI)

= a(φ− φh, ψ − ψI) +
(
ah(φh, ψI)− a(φh, ψI)

)
= a(φ− φh, ψ − ψI)−Q(φh, ψI) .
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Using the Cauchy-Schwartz inequality for the first term gives the bound

a(φ− φh, ψ − ψI) ≤ ε‖∇eh‖0 ‖∇ψ −∇ψI‖0 + |u| ‖eh‖0 ‖∇ψ −∇ψI‖0

Using interpolation theory (1.9) and elliptic regularity (3.24)

‖∇ψ −∇ψI‖0 ≤ C h‖ψ‖2 ≤ C h‖eh‖0 ,

while from Corollary 3.6
√
ε‖∇eh‖0 ≤ C

√
h‖φ‖2. Therefore,

a(φ− φh, ψ − ψI) ≤ C
(
h3/2
√
ε‖φ‖2‖eh‖0 + h |u| ‖eh‖20

)
.

Using the Cauchy-Schwartz inequality, (3.19) in Lemma 3.4, (1.10) and elliptic regularity (3.24),

Q(φh, ψI) ≤ Q(φh, φh)1/2Q(ψI , ψI)1/2

≤ C h |u| ‖∇φh‖0 ‖∇ψI‖0 ≤ C h |u| ‖∇φh‖0 ‖ψ‖2 ≤ C h |u| ‖∇φh‖0 ‖eh‖0 .

This gives the following intermediate upper bound for ‖eh‖0:

‖eh‖20 ≤ C
(
h3/2
√
ε‖φ‖2‖eh‖0 + h |u| ‖eh‖20 + h |u| ‖∇φh‖0 ‖eh‖0

)
For h small enough, Ch |u| < 1/2 and Ch |u| ‖eh‖20 can be absorbed into the left hand side. After
dividing the result by ‖eh‖0 the intermediate bound assumes the form

‖eh‖0 ≤ C h
(√

ε h ‖φ‖2 + |u| ‖∇φh‖0
)
.

Using Corollary 3.6, the regularity assumption φ ∈ H2(Ω) and the triangle inequality,

‖∇φh‖0 ≤ ‖∇φh −∇φ‖0 + ‖∇φ‖0 ≤
1√
ε

(√
ε‖∇φh −∇φ‖0

)
+ ‖φ‖2 ≤

(
C

√
h

ε
+ 1

)
‖φ‖2 .

Combining all results together shows that for h small enough

‖eh‖0 ≤ C h

(
√
ε h+ |u|

(
C

√
h

ε
+ 1

))
‖φ‖2 ,

which completes the proof.

4. Computational study. This section provides a brief numerical illustration of the “sym-
metrized” stabilized method (2.14). We refer to [3] and [4] for thorough numerical studies of the
finite element method (2.11) and the related control volume finite element method, respectively,
both of which utilize the whole edge element flux FE .

We solve (1.1) on the unit square Ω = [0, 1]2 using conforming partitions Kh(Ω) of Ω into
quadrilateral and triangular elements. Thus, Nh(Ω) is either the isoparametric bilinear finite ele-
ment space on quads, or the affine piecewise linear finite element on triangles. The domain boundary
Γ = ΓB ∪ ΓT ∪ ΓL ∪ ΓR, where ΓB , ΓT , ΓL and ΓR are the bottom, top, left and right sides of Ω,
respectively.
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4.1. Convergence rates. The objective is to illustrate the theoretical error estimates (3.20),
(3.22) and (3.25) in Section 3.2. To this end, we use the manufactured solution φ = x3 − y2 and
the velocity field u = (− sinπ/6, cosπ/6) from [8, Example 3.1.3, p.118]. Substitution of φ and u
into (1.1) defines the boundary data and the forcing term.

Convergence rates of the discrete error 9φI−φh9, the H1-seminorm error ‖∇φ−∇φh‖0 and the
L2-norm error ‖φ−φh‖ are estimated by solving (2.14) on a sequence of uniform quadrilateral and
triangular grids for two different values of ε. Triangular grids are obtained by splitting each element
in the quadrilateral grids into two triangles. Tables 4.1–4.2 present solution errors in various norms
and the corresponding convergence rate estimates.

Table 4.1
Errors and convergence rates for (2.14) on uniform quads and triangles with ε = 0.001.

Quadrilaterals Triangles

Grid ‖φ− φh‖ ‖∇φ−∇φh‖0 9φI − φh9 ‖φ− φh ‖∇φ−∇φh‖0 9φI − φh9
32 0.4260E-02 0.7533E-01 0.6333E-02 0.7707E-02 0.8804E-01 0.9588E-02
64 0.2073E-02 0.4794E-01 0.3052E-02 0.3854E-02 0.5712E-01 0.4633E-02
128 0.1061E-02 0.2764E-01 0.1425E-02 0.2029E-02 0.3804E-01 0.2338E-02

Rate 1.002 0.723 1.076 0.963 0.605 1.018

Table 4.2
Errors and convergence rates for (2.14) on uniform quads and triangles with ε = 0.00001.

Quadrilaterals Triangles

Grid ‖φ− φh‖ ‖∇φ−∇φh‖0 9φI − φh9 ‖φ− φh‖ ‖∇φ−∇φh‖0 9φI − φh9
32 0.4739E-02 0.7949E-01 0.6835E-02 0.8594E-02 0.9514E-01 0.1054E-01
64 0.2518E-02 0.5497E-01 0.3552E-02 0.4616E-02 0.6664E-01 0.5485E-02
128 0.1299E-02 0.3842E-01 0.1809E-02 0.2402E-02 0.4684E-01 0.2796E-02

Rate 0.934 0.524 0.959 0.916 0.511 0.957

The results in the tables confirm that the solution of (2.14) is first-order accurate in L2. These
results also suggest that the dependence on ε in the theoretical bound (3.25) appears to be fairly
benign. Indeed, decreasing the diffusion coefficient by a factor of 100 does not reduce significantly
the L2 convergence rates, which drop only by 7% and 5%, on triangles and quads, respectively.
The H1-seminorm errors are also in line with the theoretical estimate (3.22). In particular, for
ε = 0.00001 the rate of convergence is in an almost perfect agreement with the theoretical prediction.

We note that numerically, the discrete error outperforms the theoretical rate of convergence
in (3.20). This may indicate a possible superconvergent behavior of the discrete error on uniform
grids that cannot be captured by the proof of Theorem 3.5, which addresses general unstructured
grids. Since this superconvergent behavior does not seem to extend to the H1-seminorm error, its
further investigation is beyond the scope of this paper.

Finally, it is worth pointing out that convergence rates on quadrilaterals are slightly, but con-
sistently, higher than on triangles. Theorem 3.3 provides a possible explanation of this observation.
Specifically, stability bounds (3.3) and (3.4) suggest that the stabilized method (2.14) is less diffusive
on quadrilateral girds. We will further examine this conjecture in Section 4.2.

4.2. Qualitative properties. Although asymptotic convergence rates are an important quan-
titative measure of the accuracy of numerical methods they don’t always tell the whole story about
their computational properties. In this section we use the challenging “Double Glazing” advection
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Fig. 4.1. Solution (b) of the Double Glazing test problem (4.1) with ε = 0.00001 on a 64×64 uniform triangular
grid (a) and a 64× 64 uniform quadrilateral grid (c) by (2.14).

test [8, Example 3.1.4, p.119] to provide a complementary, qualitative perspective on (2.14). On
the unit square the Double Glazing advection test is specified by

(4.1) u =

(
2(2y − 1)(1− (2x− 1)2)
−2(2x− 1)(1− (2y − 1)2)

)
; f = 0; and g =

{
1 on ΓR
0 on ΓB ∪ ΓT ∪ ΓL

.

Problem (4.1) models temperature distribution in a cavity with a “hot” external wall (ΓR). The
discontinuities at the two corners of the hot wall create boundary layers near its corners.

Triangles vs. quadrilaterals. According to Theorem 3.3 on tensor product elements the stabi-
lized form ah(·, ·) is bounded from below by the streamline derivative of the finite element solution
along the effective elemental advective velocity uk. On the other hand, for simplicial elements this
form is bounded from below by the gradient of the finite element solution. The difference in the
stability bounds (3.3) and (3.4) prompts a conjecture that (2.14) will be less diffusive on tensor
product elements. To test this conjecture we solve (4.1) with ε = 0.00001 on uniform 64 × 64
triangular and quadrilateral grids. Figure 4.1 presents the solution plots, which clearly show the
more diffusive behavior of the finite element solution on the triangular grid.

Edge flux stabilized vs. “symmetrized” stabilized formulations. Direct stabilization by the edge
element flux FE(φh) in (2.11) introduces the non-symmetric artificial diffusion kernel exposed in
(2.12). The lack of symmetry in this kernel may be detrimental for the accuracy on unstructured
grids. Figure 4.2 compares solution of the Double Glazing test problem with ε = 0.0001 by (2.11)
and the new “symmetrized” formulation (2.14) on a 64×64 randomly perturbed quadrilateral grid.
From the plots it is evident that the solution of (2.11) suffers from numerical noise, whereas the
“symmetrized” formulation is not affected by the mesh structure. These observations can be further
quantified by measuring the violation of global bounds by the two solutions. For the test problem
φmin = 0 and φmax = 1 and so, the quantity ∆ = (φmax

h −φmin
h )− 1 provides a measure of the total

violation of global solution bounds by the finite element approximations. For the solution of (2.11)

φmax
h = 1.0936, φmin

h = −0.0986 and ∆ = 0.19,

whereas for the solution of (2.14)

φmax
h = 1.0792, φmin

h = −0.0052 and ∆ = 0.08

In other words, violation of global bounds in (2.11) is twice the violation in (2.14).
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Fig. 4.2. Solution of the Double Glazing test problem (4.1) with ε = 0.0001 on a 64 × 64 randomly perturbed
quadrilateral mesh (a) by the stabilized formulation (2.11) (b) and the “symmetrized” stabilized method (2.14) (c).

“Symmetrized” stabilized formulation vs. Artificial Diffusion and SUPG. The final qualitative
study compares and contrasts (2.14) with the classical artificial diffusion method [14, p.181] and
the Streamline Upwind Petrov-Galerkin (SUPG) method [12]. For this test we solve the Double
Glazing problem with ε = 0.00001 on a 64 × 64 uniform quadrilateral grid. Figure 4.3 presents
the results. From the solution plots in this figure it is immediately obvious that our formulation
is significantly less diffusive than the artificial diffusion method. It also appears to be more robust
than the SUPG solution, which develops spurious oscillations near the boundary layers, leading to
significant violations of the global solution bounds. In particular, for the SUPG solution

φmax
h = 1.19, φmin

h = −0.28 and ∆ = 0.47,

resulting in a 47% violation of the global solution bounds. In contrast, for the solution of (2.14)

φmax
h = 1.00, φmin

h = −0.0097 and ∆ = 0.0097,

i.e., the total violation of the solution bounds is less than 1%.
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Fig. 4.3. Solution of the Double Glazing test problem (4.1) with ε = 0.00001 on a 64×64 uniform quadrilateral
mesh by the Artificial Diffusion method (a) the “symmetrized” stabilized method (2.14) (b), and SUPG (c).
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Appendix A. Extensions to non-constant diffusion and velocity. Throughout this
section we assume that ε and u are of class C1(Ω) and∇·u = 0. Whenever necessary, dependence on
diffusivity and velocity will be indicated explicitly by including these fields in the list of arguments,
e.g., ah(φh, ϕh; ε,u), θα(ε, ūα), pα(ε, ūα), and so on. To extend the results of Theorem 3.3 to
non-constant ε and u it suffices to show that on every k ∈ K(Ω) the element form ahk(φh, φh; ε,u)
can be bounded from below by a constant times ahk(φh, φh; εk,uk), where εk and uk are constant
approximations of ε and u on element k. Here, we set these approximations to

εk := max
x∈k

ε(x) and uk =
1

|k|

∫
k

udV ,

respectively, i.,e., the largest value of ε on k and the average element velocity, respectively.
Lemma A.1. For sufficiently small mesh size h there exists a positive constant C such that

(A.1) ahk(φh, φh; ε,u) ≥ Cahk(φh, φh; εk,uk) ∀k ∈ K(Ω) .

Proof. For variable ε and u

ahk(φh, φh; ε,u) = ‖
√
ε∇φh‖20,k +Qk(φh, φh; ε,u) .

Regularity assumptions imply the existence of a positive constant γ such that εk ≤ (1 + γ) ε on
every element k ∈ K(Ω). This yields the following bound for the first term in ahk(φh, φh; ε,u):

(A.2) ‖
√
ε∇φh‖20,k ≥

εk
1 + γ

‖∇φh‖20,k .

We bound the second term from below in two steps, starting with an estimate of Qk(φh, φh; ε,u) by
Qk(φh, φh; εk,u). Proceeding as in the proof of Theorem 3.3, and using that θα(ε, ūα) is monotone
decreasing with respect to its first argument, we find that

Qk(φh, φh; ε,u) ≥ λ(Mk)
∑

eξ∈E(k)

θξ(ε, ūξ) z
2
ξ ≥ λ(Mk)

∑
eξ∈E(k)

θξ(εk, ūξ) z
2
ξ ,

where, as before, zξ is the element of zk = φkGk. On the other hand,

Qk(φh, φh; εk,u) ≤ λ(Mk)
∑

eξ∈E(k)

θξ(εk, ūξ)z
2
ξ .

Combining these two results yields the intermediate estimate

(A.3) Qk(φh, φh; ε,u) ≥ κ−1(Mk)Qk(φh, φh; εk,u) .

We proceed to bound Qk(φh, φh; εk,u) from below in terms of Qk(φh, φh; εk,uk). Let

Dk(u) := Dk(εk,u) = diag
(
θ̃ξ(εk, ūξ)

)
; Dk := Dk(εk,uk) = diag

(
θ̃ξ(εk, uk,ξ)

)
and D∆

k = Dk(u)−Dk = diag
(
θ̃ξ(εk, ūξ)− θ̃ξ(εk, uk,ξ)

)
,
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where θ̃ξ =
√
θξ and ūξ and ūk,ξ are the average tangential components of u and uk, respectively,

along edge eξ. In terms of these matrices

Qk(φh, φh; εk,u) = zTk
(
Dk +D∆

k

)
Mk

(
Dk +D∆

k

)
zk

= zTk (DkMkDk) z + zTk
(
D∆

k MkD
∆
k

)
zk + 2zTk

(
DkMkD

∆
k

)
zk .

Applying the Schwartz’s and Young’s inequalities to the last, mixed term gives

2zTk
(
DkMkD

∆
k

)
zk ≤ 2

(
zTk
(
D∆

k MkD
∆
k

)
zk
)1/2 (

zTk (DkMkDk) zk
)1/2

≤ δ zTk
(
D∆

k MkD
∆
k

)
zk +

1

δ
zTk (DkMkDk) zk

with a constant δ > 1 that will be determined later. Therefore,

(A.4) Qk(φh, φh; εk,u) ≥
(

1− 1

δ

)
Qk(φh, φh; εk,uk)− (δ − 1)zTk

(
D∆

k MkD
∆
k

)
zk .

We estimate the last term in (A.4) as follows. Note that

zTk
(
D∆

k MkD
∆
k

)
zk ≤ λ(Mk)

∑
eξ∈E(k)

(
θ̃ξ(εk, ūξ)− θ̃ξ(εk, ūk,ξ)

)2

z2
ξ

Recalling that θ̃ξ =
√
θξ allows us to conclude that(
θ̃ξ(εk, ūξ)− θ̃ξ(εk, ūk,ξ)

)2

≤ |θξ(εk, ūξ)− θξ(εk, ūk,ξ)| .

Expanding θξ(εk, ūξ) in a Taylor series about ūk,ξ shows that

|θξ(εk, ūξ)− θξ(εk, ūk,ξ)| ≤
∣∣∣∣∂θξ(εk, v̄ξ)∂ūξ

∣∣∣∣ |ūξ − ūk,ξ| ,
where v̄ξ = λūξ + (1− λ)ūk,ξ for some 0 < λ < 1. Direct calculation reveals that∣∣∣∣∂θξ(εk, v̄ξ)∂ūξ

∣∣∣∣ =
hξ
2

[
coth pξ(εk, v̄ξ) + pξ(εk, v̄ξ)

(
1− coth2 pξ(εk, v̄ξ)

)]
≤ hξ

2

with the last inequality following from the fact that 0 ≤ cothx + x(1 − coth2 x) ≤ 1. Finally,
consider the Taylor expansion u(x) = uk +∇u(ω) · (x− x̄), where u(x̄) = uk and ω is some point
in k. Using this expansion we find that

|ūξ − ūk,ξ| =
1

hξ

∣∣∣∣∣
∫
eξ

tξ · ∇u(ω) · (x− x̄)d`

∣∣∣∣∣ ≤ 1

hξ
‖∇u‖0,∞,k

∫
eξ

|x− x̄|d` ≤ hξ‖∇u‖0,∞,k .

After combining all of the above bounds we find that

zTk
(
D∆

k MkD
∆
k

)
zk ≤ λ(Mk)

h2
k

2
‖∇u‖0,∞,k|zk|2 .
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Since ‖∇φh‖20,k ≥ λ(Mk)|zk|2 it follows that

zTk
(
D∆

k MkD
∆
k

)
zk ≤ κ(Mk)

h2
k

2
‖∇u‖0,∞,k‖∇φh‖20,k .

Owing to the regularity assumptions, for a sufficiently small mesh size

κ(Mk)
h2
k

2
‖∇u‖0,∞,k ≤ γεk .

Using this inequality together with (A.4) allows us to conclude that

Qk(φh, φh; εk,u) ≥
(

1− 1

δ

)
Qk(φh, φh; εk,uk)− (δ − 1)γεk‖∇φh‖20,k .

To complete the proof we combine the above inequality with (A.2) and (A.3):

ahk(φh, φh; ε,u) ≥ εk
1 + γ

‖∇φh‖20,k + κ−1(Mk)

[(
1− 1

δ

)
Qk(φh, φh; εk,uk)− (δ − 1)γεk‖∇φh‖20,k

]
=

(
1

1 + γ
− κ−1(Mk)(δ − 1)γ

)
εk ‖∇φh‖20,k + κ−1(Mk)

(
1− 1

δ

)
Qk(φh, φh; εk,uk) .

Setting δ = 1 + κ(Mk)/(γ + 1)2 gives

ahk(φh, φh; ε,u) ≥
εk‖∇φh‖20,k

(1 + γ)2
+
Qk(φh, φh; εk,uk)

κ(Mk) + (1 + γ)2
≥ C(γ) ahk(φh, φh; εk,uk) ,

which proves the theorem with C(γ) = 1/(κ(Mk) + (1 + γ)2).

Appendix B. Tensor product finite element spaces. We label the edges of quadrilateral
and hexahedral elements according to the versors of the reference coordinate system.
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Fig. B.1. Edge numbering for reference quadrilateral and hexahedral elements.

A reference quadrilateral k̂ has two pairs of edges {êα1 , êα2} and {êβ1 , êβ2}, parallel to i and j,

respectively; see Fig. B.1. Let Fk be the bilinear map between k̂ and a quadrilateral k ∈ K(Ω). The
edges of k are images of the reference edges under Fk and form the pairs {eα1 , eα2} and {eβ1 , eβ2},
respectively. The unit tangents to the edges of k form another two pairs labeled by {tα1 , tα2} and
{tβ1 , tβ2}, respectively. Let Jk(x) be the Jacobian of Fk and define the vector fields

ti(x) =
Jk(x) i

|Jk(x) i|
and tj(x) =

Jk(x) j

|Jk(x) j|
.
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It is easy to see that {tα1 , tα2} are the restrictions of ti to {eα1 , eα2}: tα1 = ti(x)|êα1
and tα2 =

ti(x)|êα2
. Likewise, {tβ1 , tβ2} are the restrictions of tj(x) to {eβ1 , eβ2}.

A reference hexahedral k̂ has three four-tuples of edges parallel to i, j and k, respectively,
labeled as shown in Figure B.1. The edges of an element k ∈ K(Ω) are images of the reference edges
under a trilinear map Fk. They form three four-tuples, which we denote by {eα1 , eα2 , eα3 , eα4},
{eβ1 , eβ2 , eβ3 , eβ4}, and {eγ1 , eγ2 , eγ3 , eγ4}, respectively. Likewise, restrictions of the vector fields

(B.1) ti(x) =
Jk(x) i

|Jk(x) i|
; tj(x) =

Jk(x) j

|Jk(x) j|
and tk(x) =

Jk(x) k

|Jk(x) k|

to four-tuples of reference edges give the unit tangents of the associated four-tuples of edges on k.
Stability analysis on tensor product elements requires a notion of an effective advective velocity

field uk for element k. To define this field consider the normalized projections of the given velocity
field u onto the four-tuples of element edges associated with the versor directions

(B.2) vαi =
u · tαi
|u|

; vβi =
u · tβi
|u|

; vγi =
u · tγi
|u|

,

and let

(B.3) vi = arg min
i

|vαi |; vj = arg min
i

|vβi |; vk = arg min
i

|vβi | .

The effective advective velocity on a tensor product element k is then given by

(B.4) uk =

{
|u|
(
vi ti + vj tj

)
for quadrilaterals

|u|
(
vi ti + vj tj + vk tk

)
for hexahedrons

.

Finally, note that the edge element basis functions on a quadrilateral element k can be written as

(B.5) ~Wαi = Ai(x)J−Tk (x)i and ~Wβi = Bi(x)J−Tk (x)j; i = 1, 2;

where Ai(x) and Bi(x) are scalar functions, whereas for hexahedral elements

(B.6) ~Wαi = Ai(x)J−Tk (x)i; ~Wβi = Bi(x)J−Tk (x)j and ~Wγi = Ci(x)J−Tk (x)k i = 1, . . . , 4

for some other scalar functions Ai(x), Bi(x) and Ci(x).
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