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Abstract. Independent meshing of subdomains separated by an inter-
face can lead to spatially non-coincident discrete interfaces. We present
an optimization-based coupling method for such problems, which does
not require a common mesh refinement of the interface, has optimal H1

convergence rates, and passes a patch test. The method minimizes the
mismatch of the state and normal stress extensions on discrete interfaces
subject to the subdomain equations, while interface “fluxes” provide vir-
tual Neumann controls.
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1 Introduction

Solution of elliptic problems on two or more non-overlapping subdomains, sub-
ject to coupling conditions, occurs in multiple contexts. Independent meshing of
these subdomains induces independent mesh partitions of the interface. In the
more benign case the interface grids are non-matching but spatially coincident.
However, when the interface is curved the induced interface grids may be spa-
tially non-coincident, leading to gaps and/or overlaps between them. This com-
plicates the accurate numerical solution of the coupled problem [1, 2]. We present
a new, optimization-based formulation, which avoids some difficulties associated
with the application of domain decomposition methods [3, 4] to such problems.
Following [5, 6], we switch the roles of the coupling conditions and the subdomain
equations by couching the interface problem into a virtual control formulation in
which the former define the objective, the latter define the constraints, and the
interface flux serves as a Neumann control. Section 2 summarizes the germane
notation and states the model interface problem. The optimization-based formu-
lation, including the necessary state and flux extension operators are presented
in Section 3, while Section 4 contains several representative numerical examples.
Section 5 summarizes our findings.
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2 Notation and statement of the problem
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Fig. 1. Independent meshing of two subdomains
separated by a curved interface σ results in two
spatially non-coincident interface grids σh1 and σh2 .

Consider a bounded open region Ω ⊂
Rd, d = 2, 3 with a Lipschitz con-
tinuous boundary Γ . An interface σ
splits Ω into two non-overlapping sub-
domains Ω1 and Ω2 with Dirichlet
boundaries Γi = ∂Ωi\σ, i = 1, 2.
We assume that each subdomain is
endowed with an independently de-
fined conforming finite element mesh
Ωhi , i = 1, 2 with elements kni . These
meshes induce finite element partitions σh1 and σh2 of the interface σ, containing
the element sides sni that have all their vertices in σ. The geometrical entities de-
scribed by σh1 and σh2 are two different “versions” of the interface, denoted by σ1

and σ2, respectively. These entities and their associated finite element partitions
are not required to match or to be spatially coincident; see Fig. 1. Given a mesh
entity µ we denote the sets of all mesh vertices in µ by V (µ). For example V (σhi )
are the vertices in the interface mesh σhi and V (Ωhi ) is the set of all vertices in
the subdomain mesh Ωhi . If µ is a finite set, then |µ| is its dimension, e.g., |σhi | is
the number of elements in σhi . If µ is a geometric entity, then |µ| is its measure,
e.g., |kni | is the volume (or area) of an element kni .

We denote the standard Sobolev space of order one on Ωi, i = 1, 2, and its
subspace of functions with vanishing trace on Γi by H1(Ωi) and H1

Γi
(Ωi), respec-

tively. Hh
i is a conforming finite element subspace of H1(Ωhi ) with Lagrangian

basis {Nk
i }, Hh

i,Γ is a conforming subspace of H1
Γi

(Ωhi ), Hh
i,σ is the span of all

basis functions associated with vertices on σhi , and Thi = Hh
i,σ

∣∣
σi

. The coefficient

vector of uhi ∈ Hh
i is ui ∈ Rni , where ni = |Hh

i |, the dimension of Hh
i .

In this paper we consider the model transmission problem{
−∇ · (κi∇ui) = fi in Ωi, i=1,2

ui = 0 on Γi, i=1,2

u1 = u2 on σ

κ1∇u1 · n = κ2∇u2 · n on σ
(1)

where n is unit normal on σ and, for simplicity, κi is a positive constant on Ωi.
In this paper we develop stable and accurate methods for (1) that can handle
spatially non-coincident interfaces σ1 6= σ2. Our approach is based on the re-
formulation of (1) into a PDE-constrained optimization problem with virtual
Neumann controls. We start by splitting (1) into a pair of subdomain equations
with mixed Dirichlet and Neumann boundary conditions, and weak forms given
by seek ui ∈ H1

Γi
(Ωi) such that

κi(∇ui,∇vi)Ωi = (fi, vi)Ωi + 〈gi, vi〉σ ∀vi ∈ H1
Γi(Ωi), i = 1, 2. (2)

We treat the Neumann data gi as a virtual control and introduce the objective

Jδ(u1, u2, g1, g2) =
1

2

∫
σ

(u1 − u2)2dS +
1

2

∫
σ

((κ1∇u1 − κ2∇u2) · n)2dS

+
ρ

2

(∫
σ

g1dS +

∫
σ

g2dS

)2

+
δ1
2

∫
σ

g2
1dS +

δ2
2

∫
σ

g2
2dS

(3)
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The reformulation of (4) is then given by the following optimization problem

minimize Jδ(u1, u2, g1, g2) over H1
Γ1

(Ω1)×H1
Γ2

(Ω2)×L2(σ) subject to (2). (4)

This problem provides the basis for our new method.

3 Virtual control formulation

For simplicity we consider C0 piecewise linear elements on affine grids. When
σ1 6= σ2 we cannot discretize (4) directly because the interface integrals in (3)
and (2) are undefined. We resolve this issue by using extension operators

Ei,γ : Thi 7→ L2(σγ) and Gi,γ : ∇Thi 7→ [L2(σγ)]d, γ ∈ {1, 2}, γ 6= i. (5)

to compare finite element fields defined on σhi and their gradients to fields and
gradients defined on σγ . The only requirement for these operators is consistency
for linear and constant fields, respectively, i.e., Ei,γ(p(x)) = p(x)

∣∣
σhγ

for all

p ∈ P1(Rd) and Gi,γ(q(x)) = q(x)
∣∣
σhγ

for all q ∈ [P0(Rd)]d. A simple definition

of Ei,γ , which satisfies this requirement is the linear extension

(Ei,γu
h
i )(xγ) =

{
uhi (x⊥γ ) +∇uhi (x⊥γ ) · (xγ − x⊥γ ) if xγ /∈ Ωi
uhi (xγ) if xγ ∈ Ωi

(6)

where xγ ∈ σγ is a given point and x⊥γ ∈ σi is the “closest” point on σi. Similarly,
we define Gi,γ to be an extension by a constant, i.e., given xγ ∈ σγ we define

(Gi,γ∇uhi )(xγ) = ∇uhi (x⊥γ ). (7)

Finally, we note that although g1 and g2 belong in the same space L2(σ), their

discretization requires two separate discrete control spaces L2,h
1,σ and L2,h

2,σ, defined

on σ1 and σ2, respectively. Here we choose L2,h
i,σ to be a piecewise constant space

on σhi , which is consistent with the piecewise linear discretization in Ωi. These
considerations yield the following extension of (3) to non-coincident interfaces:

Jhδ (uh1 , u
h
2 , g

h
1 , g

h
2 ) =

β1

2

∫
σ1

(uh1 − E2,1u
h
2 )2dS +

β2

2

∫
σ2

(uh2 − E1,2u
h
1 )2dS

+
γ1

2

∫
σ1

((κ1∇uh1−κ2G2,1∇uh2 ) · n1)2dS +
γ2

2

∫
σ2

((κ1G1,2∇uh1−κ2∇uh2 ) · n2)2dS

+
ρ

2

(∫
σ1

gh1dS +

∫
σ2

gh2dS

)2

+
δ1
2

∫
σ1

(gh1 )2dS +
δ2
2

∫
σ2

(gh2 )2dS.

(8)
The first two pairs of terms in (8) generalize the state misfit and the flux misfit
terms in (3), and the fifth term controls the total flux misfit between the in-
terfaces. The last two terms generalize the control penalties necessary for the
well-posedness of the optimization problem. The discretization of (4) on non-
coincident interfaces is thus given by the following problem:

minimize Jhδ (uh1 , u
h
2 , g

h
1 , g

h
2 ) over Hh

1,Γ ×Hh
2,Γ × L

2,h
1,σ × L

2,h
2,σ

subject to a discretized form of the weak equations (2) .
(9)
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Recovery of globally linear fields is desirable for any numerical method for (1).
However, in order to pass this linear “patch test”, methods based on Lagrange
multipliers require carefully constructed multiplier spaces [7] and/or additional
modifications of the interface grids [4, 8]. An attractive property of (9) is that it
does not require any additional considerations to pass a patch test: recovery of
globally linear fields is built into the virtual control formulation.

Theorem 1. Assume that κ1 = κ2 and that the discrete interfaces have match-
ing boundaries, i.e., ∂σ1 = ∂σ2. Then, in the limit δi → 0, (9) recovers exactly
any globally linear solution u` of (1).

Proof. We show that uhi,` = u`
∣∣
σi

and ghi,` = ni · ∇uhi,` = ni · ∇u`
∣∣
σi

, i = 1, 2 is

an optimal solution of (9). Since any conforming discretization of (2) recovers
linear solutions, uhi,` is feasible. By construction Ei,γ and Gi,γ are exact for linear
and constant fields, respectively and so, the first four terms in (8) vanish, i.e.,

Jhδ (uh1,`, u
h
2,`, g

h
1,`, g

h
2,`) =

ρ

2

(∫
σ1

gh1,`dS +

∫
σ2

gh2,`dS

)2

+
δ1
2

∫
σ1

(gh1,`)
2dS +

δ2
2

∫
σ2

(gh2,`)
2dS.

Since u` is linear ∇uhi,` = c for some c ∈ Rd, d = 2, 3. Let u⊥` ∈ R3 be a linear

vector field such that ∇× u⊥` = c. Stokes’ theorem and ∂σ1 = ∂σ2 imply that∫
σ1

n1 · ∇uh2,`dS =

∫
σ1

n1 · ∇ × u⊥` dS =

∫
∂σ1

u⊥` · dl

= −
∫
∂σ2

u⊥` · dl = −
∫
σ2

n2 · ∇ × u⊥` dS = −
∫
σ2

n2 · ∇uh2,`dS,

In two-dimensions the same identity follows by choosing a linear function u⊥`
such that ∇u⊥` = c⊥ = (−c2, c1). Thus, we have that

Jhδ (uh1,`, u
h
2,`, g

h
1,`, g

h
2,`) =

δ1
2

∫
σ1

(gh1,`)
2dS +

δ2
2

∫
σ2

(gh2,`)
2dS.

The theorem follows by taking the limit δi → 0.

3.1 Solution of the discrete optimization problem

Let ui, gi denote the coefficient vectors of the states uhi and controls ghi , respec-
tively. Setting ~u = (u1,u2) and ~g = (g1, g2), the virtual control formulation (9)
is equivalent to the Quadratic Programming problem (QP)

minimize
~u,~g

Jδ(~u, ~g) subject to

{
K1u1 = f1 −G1g1

K2u2 = f2 +G2g2

, (10)

where Ki is the finite element stiffness matrix, fi is the finite element load vector,
gi is the external load vector induced by the control gi, and

Jδ(~u, ~g) =
1

2
~uTH~u + ~gTM~g
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with suitable H and M . For clarity we have subsumed the weights βi, γi and
the penalty coefficients δi into the matrices H and M .

Because K1 and K2 are discretizations of mixed Dirichlet-Neumann bound-
ary value problems they are invertible. Thus, we solve (10) by a reduced space
approach, i.e., we eliminate the states by solving the constraint equations:

ui = K−1
i (fi + gi) , i = 1, 2. (11)

This yields an equivalent unconstrained optimization problem

minimize
~g

1

2
~gT Hred ~g + ~gTfred , (12)

in terms of the virtual Neumann controls only. Setting the first variation of (12)
to zero yields the following necessary condition

Hred ~g = fred (13)

for the optimal virtual Neumann control. Since the dimensions of Hred and fred

equal the dimension of the virtual control vector ~g = (g1, g2), the size of (13) is
much smaller than the size of the optimality system of the original QP (10).

We solve (13) iteratively using GMRES, which requires the application of
the reduced Hessian Hred. The latter involves multiple inversions of the stiffness
matrices Ki. In our case, these matrices correspond to discretizations of second-
order elliptic operators and so, they can be preconditioned by a number of al-
gebraic and geometric multigrid preconditioners. Once the solution ~g = (g1, g2)
has been computed, one can recover the state variables from (11).

4 Numerical Results

Fig. 2. Globally linear solution for an S-curve in-
terface containing large gaps and overlaps.

We present three preliminary numer-
ical studies of the virtual control for-
mulation (9). These studies verify
Theorem 1 and examine the conver-
gence rates of the virtual control for-
mulation for different interface config-
urations. In all cases we discretize the
subdomain equations (2) using inde-
pendently defined partitions Ωhi of Ωi
into affine triangles and standard C0

piecewise linear nodal elements. Then we solve the QP (10) using the equiva-
lent reduced-space formulation (12). This involves solving the optimality system
(13) for the two Neumann controls by GMRES and then recovering the optimal
states. We solve the reduced Hessian system to a relative residual of 1e-15. The
optimization-based method is implemented in FreeFem++ [9].

Linear patch test. The first study confirms numerically Theorem 1, i.e., the
ability of (9) to recover globally linear solutions. To this end, we set u = 3x+ 2y
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and define the Dirichlet boundary condition data and the right hand side by
inserting this solution in (1). Then we set δ1 = δ2 = 0 and solve (9) for several
different interface configurations. In general the well-posedness of (9) may require
positive penalty parameters. However, in the case of the linear patch test, the
optimization problem remained well-posed with δ1 = δ2 = 0. We note that in
some related contexts, such as optimization-based additive operator splitting
[10], one can prove that the associated optimization formulation is well-posed
without control penalties. In all cases (9) recovers the exact solution to machine
precision. Figure 2 shows this solution when the induced interface grids have
a 2 : 3 ratio of elements. Despite the obvious gaps and overlaps between the
interface grids we see a perfect recovery of the linear function.

Convergence study. To study the convergence of (9) we use the method of
manufactured solutions on a domain with an S-curve interface; see Figure 3. We
set the exact solution of (1) to be the following function:

u = x2(y − 2)3 sin(2πx)− (x− 3)3 cos(2πx− y). (14)

Substitution of (14) into the interface problem (1) defines the right hand sides
and Dirichlet boundary conditions for the subdomain problems. We measure the
errors of the optimal finite element state variables uhi against the exact solution
uex of (1) using sums of L2 and H1 norms on the discretized subdomains, i.e.,
we consider the following compound error norms:

∥∥uhi −uex∥∥2

0
:=

2∑
i=1

∥∥uhi −uex∥∥2

0,Ωhi
;
∥∥uhi −uex∥∥2

1
:=

2∑
i=1

∥∥uhi −uex∥∥2

1,Ωhi
. (15)

Fig. 3. An S-curve interface containing small
gaps and overlaps. This is an example of grids hav-
ing a 2:3 ratio of elements on the interface.

This study investigates the accu-
racy of the method when subdomain
meshes have different resolutions. We
consider several combinations of Ωhi
providing a representative range of ra-
tios |σh1 | : |σh2 | between the numbers of
elements in the discrete interfaces σh1
and σh2 . We compute the optimal fi-
nite element states on a sequence of
six successively refined grids on Ω1

and Ω2. While the grids are defined independently on each subdomain by using
the FreeFem++ mesh generator, the ratio of their interface segments |σh1 | : |σh2 |
is kept constant. This is accomplished by starting with an initial vertex distri-
bution along ∂Ω1 and ∂Ω2, which produces the desired ratio |σh1 | : |σh2 |, and
then driving the mesh refinement through doubling the number of vertices on
the subdomain boundaries. We consider a total of eight different ratios in this
study. For all interface ratios in this study we set β1 = β2 = γ1 = γ2 = ρ = 1,
and δ1 = δ2 = 1e-10 in the objective (8).

Results in Figure 4 reveal first order convergence in both compound norms.
We believe that the suboptimal L2 rate is due to the choice of piecewise constant
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Fig. 4. Convergence rates of (9) for interface grids having different element ratios. In each case the

interface element ratio |σh1 | : |σ
h
2 | is preserved throughout the grid refinement process.

controls ghi . Although this choice is enough to pass a linear patch test (see
Theorem 1), it limits the accuracy of the finite element solution in the subdomain
equations. In future work we will investigate a variant of the algorithm, which
uses more accurate control representations.

Flux conservation. Our last example examines global flux conservation across
the interface as a function of the parameter ρ in the objective functional (8). We
set δ1 = δ2 = 1e-10 in (8) and use the S-curve interface in Fig. 3 with a sequence
of refined grid from the convergence study with |σh1 | : |σh2 | ratio of 2:3. Results
in Table 1 compare the compound norm errors and global flux conservation, as
measured by the global flux mismatch

∆g =

(∫
σ1

g1 dS −
∫
σ2

g2 dS

)2

,

for a small (ρ = 1e − 3), medium (ρ = 1) and large (ρ = 1e + 3) values of the
parameter ρ. We observe significant improvements in the global flux conservation
over non-coincident interfaces as the value of this parameter increases. At the
same time, the compound norm errors remain the same for all three cases, i.e.,
the accuracy of the solution is not affected by increasing the weight of the flux
mismatch in the objective.

Parameter ρ=1e-3 ρ=1 ρ=1e+3

h L2 H1 ∆g L2 H1 ∆g L2 H1 ∆g
7.512e-2 2.495e-1 5.727e-0 3.264e-9 2.495e-1 5.727e-0 3.264e-15 2.495e-1 5.727e-0 3.267e-21
3.801e-2 1.036e-1 2.435e-0 1.408e-7 1.036e-1 2.435e-0 1.408e-13 1.036e-1 2.435e-0 1.408e-19
2.023e-2 5.337e-2 1.301e-0 4.072e-1 5.370e-2 1.349e-0 5.513e-7 5.370e-2 1.349e-0 5.515e-13
1.070e-2 2.356e-2 5.711e-1 1.118e-2 2.353e-2 5.751e-1 1.233e-8 2.353e-2 5.751e-1 1.234e-14
5.251e-3 1.240e-2 3.422e-1 3.154e-7 1.240e-2 3.422e-1 3.159e-13 1.240e-2 3.422e-1 3.159e-19
2.770e-3 6.236e-3 1.896e-1 2.772e-6 6.236e-3 1.896e-1 2.788e-12 6.236e-3 1.896e-1 2.788e-18

Table 1. Solution error and global flux conservation as functions of ρ.
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5 Conclusions

We have developed a new, virtual control formulation for discrete transmission
and mesh tying problems with non-coincident discrete interfaces. The method is
linearly consistent, while a moderate weight in the objective ensures conserva-
tion of the global flux between the subdomains to machine precision and without
any additional interface manipulations. Preliminary results reveal first-order ac-
curacy in compound L2 and H1 norms. Future work will consider more accurate
choices for the virtual controls to improve the L2 convergence rates.
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