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Abstract 1 

Following the events of 9/11 2001 in the US, world public awareness for possible 2 

terrorist attacks on water supply systems has increased dramatically. Among the 3 

different threats for a water distribution system, the most difficult to address is a 4 

deliberate chemical or biological contaminant injection, due to both the uncertainty of 5 

the type of injected contaminant and its consequences, and the uncertainty of the time 6 

and location of the injection. An online contaminant monitoring system is considered 7 

as a major opportunity to protect against the impacts of a deliberate contaminant 8 

intrusion. However, although optimization models and solution algorithms have been 9 

developed for locating sensors, little is known about how these design algorithms 10 

compare to the efforts of human designers, and thus the advantages they propose for 11 

practical design of sensor networks. To explore these issues, the Battle of the Water 12 

Sensor Networks (BWSN) was undertaken as part of the 8th Annual Water 13 

Distribution Systems Analysis Symposium, Cincinnati, Ohio, U.S.A., August 27-29, 14 

2006. This manuscript summarizes the outcome of the BWSN effort and suggests 15 

future directions for water sensor networks research and implementation. 16 

 17 

Introduction 18 

Since the early days of King Hezekiah (late 8th - early 7th century BCE) who 19 

constructed a 533 m underground tunnel to channel the Gihon Spring outside 20 

Jerusalem into the city as part of his war against Sennacherib, water resources systems 21 

were the subject of threats and conflicts along history with diverse intensities (Gleick, 22 

1998). 23 

 24 

 25 
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Related water terrorist activities were reported in ancient Rome, in the US during the 1 

Civil War, in Europe and Asia during World War II, and in 1999 in Kosovo. Hickman 2 

(1999) and Deininger and Meier (2000) discussed the topic of deliberate 3 

contamination of water supply systems. 4 

 5 

For the last decade there has been increasing interest in the development of sensor 6 

networks to cope with both deliberate and accidental hazard's intrusions into water 7 

distribution systems. Optimization models and solution algorithms have been 8 

developed for identifying the most efficient sensor locations. These optimization 9 

models and solution algorithms have involved simplifying assumptions about design 10 

objectives, network contaminant transport, sensor response, event detection, 11 

emergency response, installation and maintenance costs, etc. Little is known about 12 

how these design algorithms compare from one design methodology to the other, and 13 

thus what advantages they provide for practical design of sensor networks. To explore 14 

these issues, the Battle of the Water Sensor Networks (BWSN) was held (Ostfeld et 15 

al., 2006) as part of the 8th Annual Water Distribution Systems Analysis Symposium, 16 

Cincinnati, Ohio, U.S.A., August 27-29, 2006.   17 

 18 

The BWSN was aimed at objectively comparing the performance of contributed 19 

sensor network designs, as applied to two water distribution systems examples. 20 

Fifteen independent research groups and practicing engineers contributed their 21 

designs. All the teams were asked to develop designs according to a set of rules, 22 

which defined the design performance metrics and the characteristics of the 23 

contamination events. Teams were free to develop their designs and methodologies 24 

yet, for comparison, all outcome designs were evaluated using identical procedures. 25 
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The objective of this manuscript is to summarize the outcome of the BWSN effort and 1 

to highlight future directions for water sensor networks research. The following 2 

describes: (1) the BWSN design objectives, (2) design assumptions and cases, (3) a 3 

synopsis of the teams' design approaches, (4) a comparison of the design results, and 4 

(5) conclusions and future research directions. 5 

 6 

Design objectives  7 

Contributed sensor network designs were evaluated using the following four 8 

quantitative design objectives:  9 

 10 

Expected Time of Detection (Z1)  11 

For a particular contamination scenario, the time of detection by a sensor is the 12 

elapsed time from the start of the contamination event, to the first identified presence 13 

of a non-zero contaminant concentration. The time of first detection, tj, refers to the j-14 

th sensor location. The time of detection for the sensor network for a particular 15 

contamination event, td, is the minimum among all sensors present in the design:  16 

 d jj
t  = min t     (1)  17 

The objective function to be minimized is the expected value computed over the 18 

assumed probability distribution of contamination events: 19 

 1 dZ = E (t )     (2)  20 

where dE (t )  denotes the mathematical expectation of the minimum detection time td. 21 

Since undetected events had no detection times, they were not included in the 22 

analysis. This acknowledged limitation pertains to all of the design objectives and is 23 

discussed later in the paper.  24 

 25 
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Expected Population Affected Prior to Detection (Z2)  1 

For a specific contamination scenario, the population affected is a function of the 2 

ingested contaminant mass. The ingested contaminant mass in turn depends on the 3 

time of detection for the sensor network, as described above; two key assumptions are 4 

that no mass is ingested after detection and that all mass ingested during undetected 5 

events is not counted. For a particular contamination scenario, the mass ingested – 6 

prior to detection – by any individual at network node i is: 7 

 
N

i ik ik
k = 1

M  =  φ ∆t  c  ρ∑     (3)  8 

where φ  is the mean amount of water consumed by an individual (Liters/day/person), 9 

∆t is the evaluation time step (days), cik is the contaminant concentration for node i 10 

and time step k (mg/Liter), ρik is a "dose rate multiplier" (Murray et al., 2006) for 11 

node i and time step k (unitless), and N is the number of evaluation time steps prior to 12 

detection, i.e., the largest integer such that N∆t ≤ td.  The series ρik, k = 1,…,N has a 13 

mean of 1 (so φ  is truly the mean volumetric ingestion rate) and is intended to model 14 

the variation in ingestion rate throughout the day. It is assumed that the ingestion rate 15 

varies with the water demand rate at the respective node, thus: 16 

  ik ik iρ = q  / q                        k N∀ ∈    (4) 17 

where qik is the water demand for time step k and node i, and iq is the average water 18 

demand at node i. 19 

 20 

A dose-response model (Chick et al., 2001, 2003) is used to express the probability 21 

that any person ingesting mass Mi will be affected (i.e., becomes infected or  22 

 23 

 24 
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symptomatic): 1 

 i 10 i 50R = Φ [ β log ( (M /W) / D ) ]   (5) 2 

where Ri is the probability [0, 1] that a person who ingests contaminant mass Mi will 3 

become infected or symptomatic, β is the so-called Probit slope parameter (unitless), 4 

W is the assumed (average) body mass (kg/person), D50 is the dose that would result 5 

in a 0.5 probability of becoming infected or symptomatic (mg/kg), and Ф is the 6 

Standard Normal Cumulative Distribution Function. 7 

 8 

The population affected, Pa, for a particular contamination scenario is calculated as:  9 

 
V

a i i
i = 1

P  = R  P∑    (6) 10 

where Pi is the population assigned to node i, and V is the total number of nodes.  The 11 

objective function to be minimized is the expected value of Pa computed over the 12 

assumed probability distribution of contamination events: 13 

 2 aZ = E (P )   (7)  14 

where aE (P )  denotes the mathematical expectation of the affected population Pa.  15 

 16 

Expected Consumption of Contaminated Water Prior to Detection (Z3)  17 

Z3 is the expected volume of contaminated water consumed prior to detection:  18 

 3 dZ = E (V )   (8) 19 

where dV  denotes the total volumetric water demand that exceeds a predefined hazard 20 

concentration threshold C, and dE (V )  is the mathematical expectation of Vd. As for 21 

the expected population affected, key assumptions are that no water is delivered after 22 

detection and undetected events are not counted. Z3 (as Z2 and Z1) is to be minimized. 23 
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Detection likelihood (Z4)  1 

Given a sensor network design (i.e., number and locations) the detection likelihood 2 

(i.e., the probability of detection) is estimated by: 3 

                                                               
S

4 r
r = 1

1Z  =   d
S ∑                                              (9) 4 

where dr equals 1 if contamination scenario r is detected, and zero otherwise, and S 5 

denotes the total number of the contamination scenarios considered. Z4 is to be 6 

maximized. 7 

 8 

The variables that constitute the design objectives are subject to right censoring as a 9 

result of the finite simulation durations used to compute their values (96 hours for the 10 

small network, 48 hours for the large network).  The variable that is directly censored 11 

is the time to detection, td, which cannot exceed the difference between the end of the 12 

simulation period and the start of the contamination event (that is, there are varying 13 

censoring times for td, depending on when the event begins). The other variables: 14 

population affected prior to detection (Pa); the demand of contaminated water prior to 15 

detection (Vd); and the detection indicator variable (dr); are all co-censored along with 16 

td, though not by an amount that can be determined a-priori by knowing the start time 17 

of the contamination event and the duration of the simulation period. In addition, as 18 

noted below, the expectations for these variables (Z1 – Z4) were computed in this 19 

study using only the events that were detected.  As such, the random variables were in 20 

fact truncated (rather than censored), introducing an even greater downward bias in 21 

the computed values of their expectations. While this truncation was viewed as the 22 

only feasible approach for implementing this evaluation, approaches that explicitly 23 

recognize the censoring caused by finite simulation durations are considered in the 24 

concluding section that addresses future research needs. 25 
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Design assumptions and cases 1 

Participants were asked to provide designs for locating five sensors and twenty 2 

sensors for a base case (A) and three derivative cases (B, C, and D) using EPANET 3 

version 2.00.10 (USEPA, 2002). The four cases are described below.  4 

 5 

Base Case (A) 6 

1. All quantities affecting network model water quality predictions are assumed to be  7 

known and deterministic. Sensor network designs will be challenged by an ensemble 8 

of contamination scenarios sampled from a statistical distribution; the probability 9 

distribution of contamination events is described herein. Contaminant intrusions occur 10 

at network nodes, with an injection flow rate of 125 (Liter/hr), contaminant 11 

concentration of 230,000 (mg/L), and injection duration of 2 (hrs). The contaminant is 12 

assumed conservative after injection. Each contamination scenario involves a single 13 

injection location, which may occur at any network node and begin at any time with 14 

equal probability. For purposes of design evaluation, contaminant concentrations are 15 

evaluated using a five minute time step.  16 

2. For purposes of calculating the expected population affected prior to detection (Z2):    17 

φ = 2 (Liters/day), β = 0.34 (-), D50 = 41 (mg/kg), W = 70 (kg).  For purposes of 18 

estimating node population, the total per capita water demand rate is assumed to be 19 

300 (Liters/day).  20 

3. For purposes of calculating the expected demand of contaminated water prior to 21 

detection (Z3), the hazard concentration threshold is C = 0.3 (mg/Liter). 22 

4. Sensors instantly detect any non-zero contaminant concentration and action is taken  23 

to eliminate further exposure without delay. 24 

 25 
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Derivative Case (B) 1 

Identical to base case (A) except that the injection duration is increased to 10 (hrs). 2 

 3 

Derivative Case (C) 4 

Identical to base case (A) except that the response delay is 3 (hrs), i.e., it takes 3 (hrs) 5 

after detection for emergency response to limit contaminant exposure. 6 

 7 

Derivative Case (D) 8 

Identical to base case (A) except that all contamination scenarios involve two 9 

injection locations, which may occur at any two distinct nodes with equal probability. 10 

The contamination scenario may begin at any time with equal probability, but both 11 

injections are synchronized to begin at the same time. 12 

 13 

Design approaches 14 

Fifteen sensor designs were submitted to the BWSN. This section gives a brief 15 

description of each contribution.  16 

  17 

Alzamora and Ayala (2006) suggested a general framework for sensor locations using 18 

topological algorithms. Berry et al. (2006) proposed a p-median formulation adopted 19 

from discrete location theory to define the sensors location problem, which was 20 

further solved using a heuristic method. Dorini et al. (2006) suggested a constrained 21 

multiobjective optimization framework entitled the Noisy Cross-Entropy Sensor 22 

Locator (nCESL) algorithm, which is based on the Cross Entropy methodology 23 

proposed by Rubinstein (1999). Eliades and Polycarpou (2006) proposed a 24 

multiobjective solution, using an "Iterative Deepening of Pareto Solutions" algorithm. 25 
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Ghimire and Barkdoll (2006a, 2006b) suggested a heuristic demand-based approach 1 

in which sensors are located at the junctions with the highest demands (Ghimire and 2 

Barkdoll, 2006a), or the highest mass released (Ghimire and Barkdoll, 2006b). Guan 3 

et al. (2006) proposed a genetic algorithm simulation-optimization methodology 4 

based on a single objective function approach in which the four quantitative design 5 

objectives were embedded. Gueli (2006) suggested a predator-prey model applied to 6 

multiobjective optimization, based on an evolution process. Huang et al. (2006) 7 

proposed a multiobjective genetic algorithm framework coupled with data mining. 8 

Krause et al. (2006) applied a greedy algorithm for the sensors locations, noting that a 9 

limitation in the BWSN formulation is that the Zi (i = 1, 2, 3) objectives are being 10 

evaluated against only the scenarios that are detected, thus not considering the effects 11 

of the undetected scenarios, which might be critical. Ostfeld and Salomons (2006) and 12 

Preis and Ostfeld (2006) used the multiobjective Non-Dominated Sorted Genetic 13 

Algorithm–II (NSGA-II) (Deb et al., 2000) scheme. Propato and Piller (2006) used a 14 

mixed-integer linear program to solve the sensors' locations. Trachtman (2006) 15 

suggested an engineering “strawman” approach for locating the sensors taking into 16 

consideration factors such as, population distribution, system pressure and flow 17 

patterns, critical customer locations, etc. Wu and Walski (2006) used a multiobjective 18 

optimization formulation, which was solved using a genetic algorithm, with the 19 

contamination events randomly generated using a Monte Carlo scheme. 20 

 21 

Case studies 22 

Two water distribution systems of increasing complexity were used for the designs. 23 
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Network 1 (Fig. 1) is comprised of 126 nodes, one constant head source, two tanks, 1 

168 pipes, two pumps, eight valves, and is subject to four variable demand patterns. 2 

The system was simulated for a total extended period duration of 96 hours.  3 

Network 2 (Fig. 2) has 12523 nodes, two constant head sources, two tanks, 14822 4 

pipes, four pumps, five valves, and is subject to five variable demand patterns. The 5 

system was simulated for a total extended period duration of 48 hours.  6 

 7 

Both networks are real water distribution systems that were "twisted" to preserve their 8 

anonymity. Space limitation prohibits the description of all of their details (e.g., pipe 9 

lengths, base demands, diameters, and elevations). The network's EPANET input files 10 

can be downloaded from the Centre for Water Systems at the University of Exeter 11 

(ECWS, 2007). 12 

 13 

Design results 14 

A methodology for evaluating a given sensors design should comply with two basic 15 

requirements: (1) it should be objective, and (2) it should assess a design regardless of 16 

the method used to receive it, thus solutions from academia, practitioners, utilities, 17 

etc., will all be assessed on the same basis. To accomplish this task, a utility was 18 

developed by Salomons (2006). 19 

 20 

The utility is comprised of two stages: (1) generation of a matrix of contamination 21 

injection events in either of two mechanisms: random – using Monte Carlo type 22 

simulations selected by the user, or deterministic – injection at each node each five 23 

minutes, and (2) evaluation of Zi (i = 1, ..,4) according to the matrix of contamination 24 

injection events constructed in stage 1.  25 
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The utility was distributed to all participants prior to the BWSN for testing case A of 1 

Networks 1 and 2, and is used herein to compare the results of the contributed 2 

designs. 3 

 4 

Although not defined explicitly in the BWSN rules (Ostfeld et al., 2006), it became 5 

evident during the groups' design preparations and during the BWSN, that the 6 

expected time of detection (Z1), the expected population affected prior to detection 7 

(Z2), and the expected demand of contaminated water prior to detection (Z3), compete 8 

against the detection likelihood (Z4), thus the BWSN is inherently a multiobjective 9 

problem.  10 

 11 

In a multiobjective context the goal is to find, from all the possible feasible solutions, 12 

the set of non-dominated solutions, where a non-dominated solution is optimal in the 13 

sense that there is no other solution which dominates it (i.e., there is no other solution 14 

that is better than that solution with respect to all objectives).  15 

 16 

This leads to two observations: (1) comparisons can be made on the Zi (i =1, 2, 3) 17 

versus Z4 domains, and (2) a unique single optimal solution cannot be identified, thus 18 

a “winner” cannot be declared. It should also be emphasized in this context that 19 

alternate comparison methods could have been employed, thus there is no claim that 20 

the adopted comparison approach is better in an absolute sense than an alternative 21 

methodology. 22 

 23 

 24 

 25 



Revised Submission WR/2007/023438 

 13

Network 1 1 

Tables 1 and 2 and Figs. 3 - 9 provide the results for Network 1 for cases A-D. To 2 

evaluate N1A (Network 1, base case A), N1B, and N1C, the full matrices of 37152 3 

injection events were generated (each node, every five minutes, for an extended 4 

period simulation time of 24 hrs), and for N1D - 30000 random events. Each injection 5 

event simulation took about 10 sec on an IBM PC 3.2 GHz, 1GB RAM. All matrices 6 

used for Networks 1 and 2 can be downloaded from ECWS (2007). 7 

 8 

Krause et al. (2006) published node ID numbers for all their solutions to the BWSN 9 

networks and scenarios.  In the present work, the evaluation is based on junction ID. 10 

Thus, Krause et al. (2006) solutions are converted from node ID to junction ID.  For 11 

Network 2, this is a simple offset of -1 to all node numbers. For Network 1 there are 12 

no junction numbers 107 and 108, therefore junctions are offset -1 from nodes for 13 

those below 107 and +1 for those above 109. 14 

 15 

Tables 1 and 2 show the participants' detailed sensor designs for N1A5 (Network 1, 16 

base case A, 5 sensors), and for N1A20, respectively; Fig. 3 describes the layout of 17 

the suggested designs for N1A5; Fig. 4 presents tradeoff curves for Zi (i = 1, 2, 3) 18 

versus Z4 for N1A5; Fig. 5 shows tradeoff curves for Zi (i = 1, 2, 3) versus Z4 for 19 

N1A20. 20 

 21 

It can be seen from Fig. 3 that most of the participant groups' solutions chose node 83 22 

as a sensor location which is a downstream node of the system, and nodes 68 and 118, 23 

at the southern and northern parts of the system, respectively. At those locations, most 24 

of the non-dominated solutions (Fig. 4) are present.  25 
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Observing Fig. 4, it can be seen that the relative locations on the Zi (i = 1, 2, 3) - Z4 1 

plane of the different parties solutions are alike and that the Zi objective functions are 2 

correlated (i.e., a non-dominated solution obtained by a specific method will likely 3 

remain regardless of the objective function used). This is also evident in Fig. 5. An 4 

improvement of the results can be inspected when matching Figs. 4 and 5 (i.e., results 5 

for systems of five versus twenty sensors, respectively).   6 

 7 

Fig. 6 outlines tradeoff curve results for derivative cases B, C, and D for Z1 versus Z4; 8 

Fig. 7 for derivative cases B, C, and D for Z2 versus Z4; and Fig. 8 for derivative cases 9 

B, C, and D for Z3 versus Z4. 10 

 11 

It can be seen from Figs. 6-8 that similar patterns of solutions were received for cases 12 

B and C, but significantly different for case D. As case D considers two simultaneous 13 

injections beginning at the same time, but at different random locations, the detection 14 

likelihood increased considerably, with all solutions having a detection likelihood of 15 

above 0.8 for twenty sensors. In most solutions the Zi (i = 1, 2, 3) values were reduced 16 

for case D, compared to cases B and C. 17 

 18 

In Fig. 9 Z2 versus Z4 for N1A5 and for N1C5 are plotted for each of the group's 19 

solutions. It can be seen from Fig. 9, as expected, that as the detection delay increases 20 

(derivative case C), the expected population affected prior to detection (Z2) increases, 21 

for all the solutions.   22 

 23 

 24 

 25 



Revised Submission WR/2007/023438 

 15

Network 2 1 

Tables 3 and 4, and Figs. 10 and 11 provide results for Network 2 for base case A. To 2 

evaluate N2A (Network 2, base case A) a randomized matrix of 25054 events (two 3 

injections at each node of the system, at two random times) was generated. Each 4 

injection event simulation took about 2.1 min on an IBM PC 3.2 GHz, 1GB RAM. 5 

Krause et al. (2006) noted that the full matrix of simulated results for Network 2 can 6 

be computed using parallel processing and optimized storage algorithms. 7 

 8 

Tables 3 and 4 provide the participants detailed sensor designs for N2A5 (Network 2, 9 

base case A, five sensors), and for N2A20, respectively; Fig. 10 presents tradeoff 10 

curves for Zi (i = 1, 2, 3) versus Z4 for N2A5, and Fig. 11 shows tradeoff curves for Zi 11 

(i = 1, 2, 3) versus Z4 for N2A20. Note that for N2A5 both Berry et al. (2006) and 12 

Krause et al. (2006) found the same solution (see Table 3 and Fig 10), which is non-13 

dominated, using different approaches. 14 

 15 

It can be seen from Figs. 10 and 11 (and for Network 1 with Figs. 4 and 5), that the 16 

relative locations on the Zi (i = 1, 2, 3) - Z4 plane of the different solutions are similar, 17 

thus the Zi objective functions are correlated. Compared to Network 1, the number of 18 

non-dominated solutions was reduced considerably in Network 2. 19 

 20 

There are an infinite number of intrusion scenarios possible on a water distribution 21 

system, due to varying durations, locations, etc.  The BWSN utilized cases B, C, and 22 

D as variations on case A, but they are different.   23 

 24 
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Table 5 provides a summary of the non-dominated solutions received by the 1 

participant groups for all the explored cases as presented in Figs. 4-11 (e.g., Berry et 2 

al. obtained two non-dominated solutions for N1A5, as shown in Fig. 4). Krause et al. 3 

(2006) received the highest total number of 26 non-dominated solutions for all the 4 

explored cases. 5 

 6 

The BWSN results do not support the assumption that case A is the most critical and a 7 

design that performs well in case A would also do reasonably well in other cases.  8 

However, the BWSN results did prompt additional research, which indicated that for 9 

the two water distribution systems used in the BWSN, sensor networks based on cases 10 

A, B, and C, are spatially similar.  Due to this attribute, a sensor network design that 11 

performs well in case A will also do reasonably well in cases B and C (Isovitsch and 12 

VanBriesen, 2008).   13 

 14 

Observations 15 

Non-detect events 16 

The evaluation of sensor design is made in the presence of a varied ensemble of 17 

contamination incidents. In real life, each of these incidents would play out over many 18 

days. Therefore, it is important that the hydraulic models be sufficiently calibrated to 19 

support extended period simulations, and that these should be used in the evaluation  20 

of any sensor design. 21 

 22 

Consider one such simulation. Regardless of the objective being evaluated, the 23 

contamination plume will propagate through the network until the simulation has run 24 

its course. If, at the end of the simulation, no sensor has experienced contamination, 25 
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this condition is referred to as a "non-detection." In a large ensemble of potential 1 

incidents in a sizable network protected by a small number of sensors, occasions of 2 

non-detections are inevitable. A decision should be made whether or not to include 3 

the impact of these non-detections in the calculation of the mean impact over all 4 

incidents. This decision is heavily influenced by the objective(s) in question, as  5 

Demonstrated below. 6 

 7 

First, consider Z1 - the time to detection.  If an incident is detected by a sensor, this 8 

detection will often occur within a few hours of the injection. However, there are 9 

many injection points on the periphery of a network that lead to small plumes which 10 

do not permeate the network and are never detected. When the impact of these non-11 

detections are included in the calculation of the Z1 objective, non-intuitive behavior 12 

ensues. Specifically, recalling that the analysis depends on extended period 13 

simulations, note that the impact of non-detections is very severe and dwarfs that of 14 

detections. Optimizing for minimum time to detection in the presence of non-15 

detections means avoiding non-detections at all costs, and results in sensor placements 16 

that are directly correlated with those optimizing the number of failed detections (Z4).  17 

In real terms, this means placing sensors far from the center of a network in order to 18 

maximize detections. This is exactly opposed to an intuitive approach for minimizing 19 

the time to detection. In order to avoid this non-intuitive behavior, it was decided to 20 

not include non-detections in the evaluation of objective Z1. 21 

 22 

The situation is different for Z2, the population exposed.  In the discussion above, it is 23 

shown that non-detections in the periphery of the system with very small real impact, 24 

are penalized severely in terms of the time to detection Z1, and can trick optimizers 25 
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into selecting nonsensical solutions. With Z2, however, this pathology does not exist.  1 

A small incident that does not spread has small impact, no matter how long the 2 

simulation is run. Therefore, it does not disproportionately affect the solution. It is 3 

noted that including non-detections in this case would be desirable. In effect, doing so 4 

would improve Z4 without requiring an explicit multiobjective solution. However, in 5 

the interest of a "clean" design of experiments, and noting that Z1 does not make sense 6 

in the context of non detections, it was chosen to evaluate Z1, Z2, and Z3 without 7 

considering non-detections, and to challenge multiple objective solvers with the 8 

addition of Z4 as a separate objective. 9 

 10 

System's properties  11 

The experimental design in the BWSN was constrained by limitations on available 12 

datasets. Despite the size of Network 2 which is considered in this study as a 13 

complicated system, it is a fairly simple network that has properties unlike those of 14 

more complex networks.  Some research teams on this proposal (e.g., Berry et al., 15 

2006) have experience with the latter, and point out that these can be more 16 

challenging for sensor placement algorithms.   17 

 18 

One example of a property that both Network 1 and Network 2 share, but more 19 

complex networks might not, is that the average plume size over the possible set of 20 

injections is very small.  This is due to the relatively simple structure of these network 21 

models, which have few pumps and a largely homogeneous flow pattern over a 24 22 

hour period. A simple analysis of the plume extent shows that the average injection in 23 

Network 2 contaminates roughly 2% of the network, and in fact, many injections 24 

contaminate closer to 0.2% of the network. Furthermore, these injections of small 25 
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extent are usually independent of the injection time since flow patterns do not change 1 

drastically from one time to the next.  In a complex network with many pressure 2 

zones, both the expected plume size and the behavior of injections beginning at 3 

different times can be quite unlike those of Network 2. 4 

 5 

Conclusions  6 

This manuscript provides a summary of the Battle of the Water Sensors (BWSN) 7 

(Ostfeld et al., 2006), the goal of which was to objectively compare the solutions 8 

obtained using different approaches to the problem of sensor placement in water 9 

distribution systems. 10 

 11 

Participants were requested to place five and twenty sensors for two real water 12 

distribution systems of increasing complexity and for four derivative cases, taking 13 

into account four design objectives: (1) minimization of the expected time of 14 

detection (Z1), (2) minimization of the expected population affected prior to detection 15 

(Z2), (3) minimization of the expected demand of contaminated water prior to 16 

detection (Z3), and (4) maximization of the detection likelihood (Z4). Fifteen 17 

contributions were received from academia and practitioners, spanning a range of 18 

approaches and computational methods ranging from pure heuristic engineering 19 

judgment to sophisticated mathematical optimization algorithms. 20 

 21 

As the BWSN evolved, it became clear that the problem of sensor placements is 22 

multiobjective. As only compromised non-dominated solutions can be defined in a 23 

multiobjective space, determination of the "best" received solution is not possible, but 24 

this assessment provides indications of breadth and similarity of findings, as desired 25 
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using different mathematical algorithms.  1 

 2 

From a practical perspective, the most practical conclusion that can be drawn is that 3 

general guidelines cannot be set. Engineering judgment and intuition alone are not 4 

sufficient for effectively placing sensors. Both engineering judgment and intuitive 5 

processes need to be supported by quantitative analysis. The analysis on both 6 

examples has shown that sensors do not need to be clustered and that placing sensors 7 

at vertical assets (sources, tanks, and pumps) is not a necessity. In fact most of the 8 

designs have not placed sensors at vertical assets. In some cases (e.g., see Fig. 3) there 9 

were considerable similarities where the same nodes (or nodes at immediate vicinity) 10 

were selected by many of the methodologies. 11 

 12 

Future research directions 13 

The BWSN highlighted the following issues which need further consideration and 14 

research efforts: 15 

 (1) Contamination warning systems (CWS) evaluation. For Network 1 the full event 16 

matrix (i.e., all possible injection times and locations) was utilized for one possible 17 

injection (derivative cases A, B, and C). For Network 2, the 25054 random events 18 

matrix generated for testing case A is only a small portion of the entire space of 19 

possible injection events. Hence, generation of different event matrices will likely 20 

produce different solutions. For Network 2 the research challenge is to identify 21 

procedures by which efficient sampling from the entire set of contamination events 22 

can be computed for a rare sub-set (i.e., a sub-set of events with a small probability to 23 

occur, but with an extreme impact), which will provide an "upper bound" (i.e., worst 24 

case estimation) for contamination warning system evaluations. 25 
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 (2) Aggregation. Because the sensor placement problem rapidly becomes too 1 

complex to explore thoroughly, there would be great merit in developing a water-2 

quality aggregation algorithm that can construct an "equivalent" but reduced network 3 

of a water distribution system, containing fewer nodes and links but matching both the 4 

hydraulics and the water quality of the original system. 5 

(3) Multiobjective optimization. The study identified some correlations between 6 

objectives, and these correlations should inform future studies. In particular, the 7 

objectives Z1, Z2, and Z3 are positively correlated with one another, and are negatively 8 

correlated with Z4. Stopping the damage from the average injection more quickly 9 

tends to decrease the population infected and the volume of contaminated water 10 

consumed, while maximizing the detection probability tends to generate more 11 

conservative sensor placements that tolerate slow detections. A greater multiobjective 12 

challenge for the future would be to select only one of Z1, Z2, and Z3, and then to 13 

compare the selection of representative "quick detection" to Z4, and possibly with 14 

objectives not closely related to either.   15 

(4) Selection of number of sensors. Since sensors involve significant capital and 16 

operational expenditures, research is needed to identify the marginal returns for 17 

additional sensors as guidance in establishing the number of sensors appropriate, for 18 

different water distribution networks. 19 

(5) Dual use of sensors. Sensors should comply with dual use benefits. Sensors 20 

location and type should be integrated not only for achieving water security goals but 21 

also for accomplishing other water utility objectives, such as satisfying regulatory 22 

monitoring requirements or collecting information to solve water quality problems. 23 

Such an objective would be particularly interesting and likely to be highly correlated 24 

with security objectives. 25 
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(6) Criteria for identifying areas of higher risk of threat and protection. In 1 

assessments to date, equal likelihoods of threat and need for protection have been 2 

employed. The reality is that particular emphasis should be given to areas of greater 3 

threat and, equally likely, areas of likely greater need for protection, and methods to 4 

improve prioritization are definitely warranted.  5 

(7) Inclusion of risk. In the BWSN, the assessments for the four design objectives 6 

were completed on the basis of expected values. There is substantial merit in 7 

considering risk inclusion as opposed to expected value. A sensor design should 8 

comply with its associated risk. 9 

(8) Sensor reliability. In reality, the correct functioning of sensors is not guaranteed; 10 

both false positive and false negative rates need to be considered. The challenge is to 11 

develop methodologies for incorporating the uncertainty of sensor detections as part 12 

of the design process for sensors layout and the extent to which action can be taken 13 

before there is confirmation that there is indeed a contaminant event. 14 

(9) Incorporation of operational conditions. Once sensors are placed they should 15 

address different operational conditions and account for problems such as providing 16 

data for identifying the location of the contaminant intrusion, and for implementing a 17 

containment procedure. Methodologies should be developed for incorporating in one 18 

framework both design and operational objectives. 19 

 20 

Acknowledgements 21 

The contributions of Alzamora and Ayala (2006) and Guan et al. (2006), and the 22 

verification of the solutions accuracy by Dr. Zheng Wu, are gratefully acknowledged.  23 



Revised Submission WR/2007/023438 

 23

Appendix I: References 1 

Alzamora F. M. and Ayala H. B. (2006). "Optimal sensor location for detecting 2 

contamination events in water distribution systems using topological algorithms."  3 

Proceedings of the 8th Annual Water Distribution System Analysis Symposium 4 

Cincinnati, Ohio, USA. 5 

 6 

Berry J. W., Hart W. E., Phillips C. A., and Watson J. P. (2006). "A facility location 7 

approach to sensor placement optimization." Proceedings of the 8th Annual Water 8 

Distribution System Analysis Symposium Cincinnati, Ohio, USA. 9 

 10 

Chick S. E., Koopman J. S., Soorapanth S., and Brown M. E. (2001). "Infection 11 

transmission system models for microbial risk assessment." The Science of the Total 12 

Environment, Vol. 274, No. 1, pp. 197-207.  13 

 14 

Chick S. E., Soorapanth S., Koopman J. S. (2003). "Inferring infection transmission 15 

parameters that influence water treatment decisions." Management science, Vol. 49, 16 

No. 7, pp. 920-935. 17 

 18 

Deb K., Agrawal S., Pratap A., and Meyarivan T. (2000). "A fast elitist non-19 

dominated sorting genetic algorithm for multi-objective optimization: NSGA-II." 20 

Proceedings of the Parallel Problem Solving from Nature VI Conference, Paris, 21 

France, pp. 849-858. 22 

 23 

 24 

 25 



Revised Submission WR/2007/023438 

 24

Deininger R. A. and Meier P. G. (2000). "Sabotage of public water supply systems." 1 

In Security of Public Water Supplies. Edited by Deininger R. A., Literathy P., and 2 

Bartram J. NATO Science Series, 2. Environment – Vol. 66. Dordrecht: Kluwer 3 

Academic Publishers. 4 

 5 

Dorini G., Jonkergouw P., Kapelan Z., Pierro F. di, Khu S. T., and Savic D. (2006). 6 

"An efficient algorithm for sensor placement in water distribution systems."  7 

Proceedings of the 8th Annual Water Distribution System Analysis Symposium 8 

Cincinnati, Ohio, USA. 9 

 10 

ECWS (2007). "University of Exeter Centre for Water Systems." Available online at:  11 

http://www.exeter.ac.uk/cws/bwsn (accessed 19 December 2007). 12 

 13 

Eliades D. and Polycarpou M. (2006). "Iterative deepening of Pareto solutions in 14 

water sensor Networks."  Proceedings of the 8th Annual Water Distribution System 15 

Analysis Symposium Cincinnati, Ohio, USA. 16 

 17 

Ghimire S. R. and Barkdoll B. D. (2006a). "Heuristic method for the battle of the 18 

water network sensors: demand-based approach." Proceedings of the 8th Annual 19 

Water Distribution System Analysis Symposium Cincinnati, Ohio, USA. 20 

 21 

Ghimire S. R. and Barkdoll B. D. (2006b). "A heuristic method for water quality 22 

sensor location in a municipal water distribution system: mass related based 23 

approach." Proceedings of the 8th Annual Water Distribution System Analysis 24 

Symposium Cincinnati, Ohio, USA. 25 



Revised Submission WR/2007/023438 

 25

Gleick P. H. (1998). "Water and conflict." In Gleick P. H., The World’s Water 1998-1 

1999, Island Press, Washington, D. C. pp. 105-135. 2 

 3 

Guan J., Aral M. M., Maslia M. L., Grayman W. M. (2006). "Optimization model and 4 

algorithms for design of water sensor placement in water distribution systems." 5 

Proceedings of the 8th Annual Water Distribution System Analysis Symposium 6 

Cincinnati, Ohio, USA. 7 

 8 

Gueli R. (2006). "Predator – prey model for discrete sensor placement." Proceedings 9 

of the 8th Annual Water Distribution System Analysis Symposium Cincinnati, Ohio, 10 

USA. 11 

 12 

Hickman D. C. (1999). "A chemical and biological warfare threat: USAF water 13 

systems at risk." Counterproliferation paper no. 3, Maxwell Air Force Base, Alabama: 14 

USAF Counterproliferation Center. Available online at: 15 

http://www.au.af.mil/au/awc/awcgate/cpc-pubs/hickman.pdf (accessed December 16 16 

2007).    17 

 18 

Huang J. J., McBean E. A., and James W. (2006). "Multi-objective optimization for 19 

monitoring sensor placement in water distribution systems." Proceedings of the 8th 20 

Annual Water Distribution System Analysis Symposium Cincinnati, Ohio, USA. 21 

 22 

Isovitsch S. and VanBriesen J. (2008).  "Sensor placement and optimization criteria 23 

dependencies in a water distribution system." Journal of Water Resources Planning 24 

and Management Division, ASCE, Vol. 134, No. 2 (to appear March/April 2008). 25 



Revised Submission WR/2007/023438 

 26

Krause A., Leskovec J., Isovitsch S., Xu J., Guestrin C., VanBriesen J., Mitchell 1 

Small M., Fischbeck P. (2006). "Optimizing sensor placements in water distribution 2 

systems using submodular function maximization." Proceedings of the 8th Annual 3 

Water Distribution System Analysis Symposium Cincinnati, Ohio, USA. 4 

 5 

Murray R., Uber J., and Janke R. (2006). "Model for estimating acute health impacts 6 

from consumption of contaminated drinking water." Journal of Water Resources 7 

Planning and Management Division, ASCE, Vol. 132, No. 4, pp. 293-299. 8 

 9 

Ostfeld A. and Salomons E. (2006). "Sensor network design proposal for the battle of 10 

the water sensor networks (BWSN)." Proceedings of the 8th Annual Water 11 

Distribution System Analysis Symposium Cincinnati, Ohio, USA. 12 

 13 

Ostfeld A., Uber J., and Salomons E. (2006). "Battle of the Water Sensor Networks 14 

(BWSN): A Design Challenge for Engineers and Algorithms." Proceedings of the 8th 15 

Annual Water Distribution System Analysis Symposium Cincinnati, Ohio, USA. 16 

 17 

Preis A. and Ostfeld A. (2006). "Multiobjective sensor design for water distribution 18 

systems security." Proceedings of the 8th Annual Water Distribution System Analysis 19 

Symposium Cincinnati, Ohio, USA. 20 

 21 

Propato M. and Piller O. (2006). "Battle of the water sensor networks." Proceedings 22 

of the 8th Annual Water Distribution System Analysis Symposium Cincinnati, Ohio, 23 

USA. 24 

 25 



Revised Submission WR/2007/023438 

 27

Rubinstein R. Y. (1999). "The simulated entropy method for combinatorial and 1 

continuous optimization." Methodology and Computing in Applied Probability, Vol. 2 

2, pp. 127-190. 3 

 4 

Salomons E. (2006). "BWSN – software utilities." Available online at: 5 

http://www.water-simulation.com/wsp/bwsn (accessed 14 December 2007). 6 

 7 

Trachtman G. B. (2006). "A "strawman" common sense approach for water quality 8 

sensor site selection." Proceedings of the 8th Annual Water Distribution System 9 

Analysis Symposium Cincinnati, Ohio, USA. 10 

 11 

USEPA (2002). "EPANET 2.00.10" Available online at:  12 

http://www.epa.gov/ORD/NRMRL/wswrd/epanet.html (accessed 15 July 2007). 13 

 14 

Wu Z. Y. And Walski T. (2006). "Multi objective optimization of sensor placement in 15 

water distribution systems." Proceedings of the 8th Annual Water Distribution System 16 

Analysis Symposium Cincinnati, Ohio, USA. 17 



Revised Submission WR/2007/023438 

 28

Appendix II: Notation 1 

The following symbols are used in this paper: 2 

C = hazard concentration threshold (mg/L), 3 

cik = contaminant concentration for node i and time step k (mg/Liter), 4 

D50 = the dose that would result in a 0.5 probability of becoming infected or  5 

 symptomatic (mg/kg), 6 

dr = a detection flag for the r-th contamination scenario, receiving 1 if the r-th contamination  7 

 scenario is detected, and zero otherwise,  8 

E (Pa) = the mathematical expectation of the affected population Pa, 9 

E (td) = the mathematical expectation of the minimum detection time td, 10 

dE (V )  = the mathematical expectation of Vd, 11 

Mi = mass ingested – prior to detection – by any individual at Network node i (mg), 12 

N = number of evaluation time steps prior to detection, 13 

Pa = population affected for a particular contamination scenario, 14 

Pi = the population assigned to node i,  15 

iq = the average water demand at node i, 16 

qik = the water demand for time step k and node i,  17 

Ri = the probability [0, 1] that a person who ingests contaminant mass Mi will become  18 

 infected or symptomatic, 19 

S = total number of contamination scenarios considered for computing Z4, 20 

td = minimum sensors detection time, 21 

tj = time of first detection at the j-th sensor location,  22 

V = total number of nodes (for calculating Z2), 23 

Vd = total volumetric water demand that exceeds a predefined hazard concentration, 24 

W = assumed (average) body mass (kg/person), 25 
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Z1 = expected time of detection, 1 

Z2 = expected population affected prior to detection, 2 

Z3 = expected volume of consumed contaminated water prior to detection, 3 

Z4 = detection likelihood, 4 

β = Probit slope parameter (unitless), 5 

∆t = evaluation time step (days), 6 

Ф = the Standard Normal Cumulative Distribution Function, 7 

φ = mean amount of water consumed by an individual (Liters/day/person), and 8 

ρik = a "dose rate multiplier" for node i and time step k (unitless). 9 
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Table 1 

Authors Sensor locations 
(nodes) 

Z1 
(minutes) 

Z2 
(people) 

Z3 
(gallons) 

Z4 
(detection 
likelihood) 

Berry et al. 17, 21, 68, 79, 122 542 140 2459 0.609 
Dorini et al. 10, 31, 45, 83, 118 1068 258 7983 0.801 
Eliades and 
Polycarpou 

17, 31, 45, 83, 126 912 221 7862 0.763 

Ghimire and 
Barkdoll 
(demand) 

126, 30, 118, 102, 34 432 357 4287 0.367 

Ghimire and 
Barkdoll 
(mass) 

126, 30, 102, 118, 58 424 331 3995 0.402 

Guan et al. 17, 31, 81, 98, 102 642 159 2811 0.663 
Gueli 112, 118, 109, 100, 84 794 403 10309 0.699 
Huang et al. 68, 81, 82, 97, 118 541 280 4465 0.676 
Krause et al. 17, 83, 122, 31, 45 842 181 3992 0.756 
Ostfeld and 
Salomons 

117, 71, 98, 68, 82 461 250 4499 0.622 

Preis and 
Ostfeld 

68, 101, 116, 22, 46 439 151 7109 0.477 

Propato and 
Piller 

17, 22, 68, 83, 123 711 164 3148 0.725 

Trachtman 1, 29, 102, 30, 20 391 142 2504 0.237 
Wu and Walski 45, 68, 83, 100, 118 704 303 8406 0.787 



 

Table 2 

Authors Sensor locations 
(nodes) 

Z1 
(minutes) 

Z2 
(people) 

Z3 
(gallons) 

Z4 
(detection 
likelihood) 

Berry et al. 3, 4, 17, 21, 25, 31, 34, 37, 46, 64, 68, 81, 82, 90, 98, 
102, 116, 118, 122, 126 

287 68 408 0.770 

Dorini et al. 0, 10, 14, 17, 31, 34, 39, 45, 49, 68, 74, 82, 83, 90, 100, 
102, 114, 122, 124, 128 408 72 642 0.855 

Eliades and 
Polycarpou 

10, 11, 14, 17, 19, 21, 31, 35, 45, 68, 74, 83, 90, 100, 
102, 114, 118, 123, 124, 126 

368 96 969 0.893 

Ghimire and 
Barkdoll 
(demand) 

126, 30, 118, 102, 34, 17, 58, 68, 93, 27, 42, 82, 45, 35, 
83, 89, 99, 70, 18, 32 

377 104 750 0.792 

Ghimire and 
Barkdoll 
(mass) 

126, 30, 102, 118, 58, 68, 17, 93, 82, 34, 99, 98, 89, 83, 
100, 96, 70, 27, 32, 35 

370 106 787 0.769 

Guan et al. 4, 11, 17, 21, 27, 31, 34, 35, 46, 68, 75, 79, 82, 83, 98, 
100, 102, 118, 122, 126 

337 78 503 0.854 

Gueli 112, 1, 103, 24, 21, 102, 35, 19, 116, 85, 61, 73, 114, 31, 
7, 8, 64, 28, 93, 124 

226 88 1181 0.577 

Huang et al. 8, 11, 42, 46, 52, 68, 70, 75, 76, 82, 83, 95, 97, 99, 100, 
109, 111, 117, 123, 126 

375 148 1799 0.849 

Krause et al. 17, 83, 122, 31, 45, 100, 11, 126, 68, 90, 21, 35, 34, 118, 
123, 114, 124, 76, 10, 19 

401 93 865 0.900 

Ostfeld and 
Salomons 

68, 5, 40, 65, 51, 69, 88, 89, 22, 72, 34, 71, 53, 112, 63, 
78, 122, 28, 118, 97 

198 115 1039 0.647 

Propato and 
Piller 

11, 17, 34, 37, 38, 45, 49,  68, 76, 83, 90, 100, 102, 106, 
114, 118, 123, 124, 125, 126 

433 106 934 0.879 

Trachtman 1, 29, 102, 30, 20, 18, 58, 5, 3, 76, 98, 17, 126, 68, 93, 
27, 42, 82, 46, 35  

325 99 862 0.739 

Wu and 
Walski 

10, 12, 19, 21, 34, 35, 40, 45, 68, 75, 80, 83, 98, 100, 
102, 114, 118, 123, 124, 126 

370 142 1158 0.901 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

              
Table 3 

Authors Sensor locations 
(nodes) 

Z1 
(minutes) 

Z2 
(people) 

Z3 
(gallons) 

Z4 
(detection 
likelihood) 

Berry et al. 3357, 4684, 10874, 11184, 11304 789 1515 95403 0.259 
Dorini et al. 636, 3585, 4684, 9364, 10387 1285 2393 221461 0.303 
Eliades and 
Polycarpou 532, 1486, 3357, 4359, 4609 1249 2560 251856 0.299 
Ghimire and 
Barkdoll 
(demand, and 
mass) 9271, 1486, 4482, 5585, 4609 1243 2757 310672 0.103 
Guan et al. 321, 3770, 4084, 4939, 7762 795 1731 119219 0.227 
Huang et al. 3355, 5088, 5430, 9005, 9550 940 2372 203215 0.227 
Krause et al. 10874, 4684, 11304, 3357, 11184 789 1515 95403 0.259 
Ostfeld and 
Salomons 5039, 4646, 1515, 3234, 5541 1443 2605 270496 0.285 
Preis and 
Ostfeld 871, 1917, 2024, 4115, 4247 825 1739 123344 0.173 
Trachtman 5420, 542, 12505, 12514, 12509 1759 4968 650176 0.126 
Wu and 
Walski 3709, 4957, 6583, 8357, 9364   1189 2590 249710 0.310 



 
 
 

 

Table 4 

Authors Sensor locations 
(nodes) 

Z1 
(minutes) 

Z2 
(people) 

Z3 
(gallons) 

Z4 
(detection 
likelihood) 

Berry et al. 636, 1917, 3357, 3573, 3770, 4132, 4240, 4594, 5114, 6583, 6700, 7652, 
8999, 9142, 9722, 10614, 10874, 11177, 11271, 12258 

540 548 17456 0.366 

Dorini et al. 647, 928, 1478, 1872, 2223, 2848, 3573, 4650, 5076, 5366, 6835, 7422, 
8336, 8402, 9204, 9364, 10874, 11271, 11528, 12377 

915 1325 90255 0.401 

Eliades and 
Polycarpou 

532, 1426, 1486, 1976, 3231, 3679, 3836, 4234, 4359, 4609, 5087, 5585, 
6922, 7670, 7858, 8629, 9360, 9787, 10885, 12167 

1108 1600 121574 0.409 

Ghimire and 
Barkdoll 
(demand, 
and mass) 

9271, 1486, 4482, 5585, 4609, 4359, 9787, 532, 5953, 12341, 4808, 4662, 
4638,  3864, 1667, 3806, 1590, 7858, 9303, 12220 

1090 1924 189281 0.300 

Guan et al. 174, 311, 1486, 1905, 2589, 2991, 3548, 3757, 3864, 4184, 4238, 5091, 
6995, 7145, 7689, 8826, 9308, 9787, 10614, 12086 

645 966 43585 0.308 

Huang et al. 73, 108, 1028, 1112, 1437, 2526, 3180, 4036, 4648, 5363, 5826, 5879, 
6581, 8439, 8580, 8841, 9363, 9616, 10216, 10385 

829 1264 78533 0.342 

Krause et al. 10874, 4684, 11304, 3357, 11184, 1478, 9142, 1904, 4032, 9364, 4240, 
4132, 3635, 2579, 3836, 6700, 8999, 3747, 8834, 3229 

665 699 27458 0.397 

Ostfeld and 
Salomons 

2872, 4319, 4782, 3281, 8766, 3712, 11184, 4433, 22, 11623, 8560, 3129, 
9785, 8098, 10734, 6738, 7428, 611, 7669, 7500 

1093 1554 109931 0.384 

Trachtman 5420, 542, 12505, 12514, 12509, 7962, 7469, 8617, 3070, 3180, 11314, 
12237, 6390, 12135, 1795, 5089, 4892, 10917, 3817, 10211 

913 1555 116922 0.217 

Wu and 
Walski 

871, 1334, 2589, 3115, 3640, 3719, 4247, 4990, 5630, 6733, 7442, 7714, 
8387, 8394, 9778, 10290, 10522, 10680, 11151, 11519 

850 1353 77312 0.420 



  
Network 1 Network 2 Authors 

N1A5 N1A20 N1B5 N1B20 N1C5 N1C20 N1D5 N1D20 N2A5 N2A20 
Total 

Berry et al. 2 3 2 3 2 3   3 3 21 
Dorini et al. 3 2 3 2 3  2 3 2  20 
Eliades and 
Polycarpou 1 1 1 1  1 3 3   11 

Ghimire and 
Barkdoll 
(demand) 

  1  1      2 

Ghimire and 
Barkdoll (mass) 1  1    1    3 

Guan et al. 2 2         4 

Gueli   1   1     2 
Huang et al. 1  2  1  3    7 
Krause et al. 2 2 2 2 3 3 3 3 3 3 26 
Ostfeld and 
Salomons 1 1 3 2 2 2 1 2   14 

Preis and 
Ostfeld 1          1 

Propato and 
Piller 2  3  3 2 2    12 

Trachtman 1    1 1     3 
Wu and Walski 1 3  3 1 3 1 2 3 3 20 
Total 18 14 19 13 17 16 16 13 11 9 146 

   
   Legend: N1A5 = Network 1, base case A, 5 sensors  
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Legend  

1 = Berry et al.; 2 = Dorini et al.; 3 = Eliades and Polycarpou; 4 = 
Ghimire and Barkdoll (demand); 5 = Ghimire and Barkdoll (mass); 
6 = Guan et al.; 7 = Gueli; 8 = Huang et al.; 9 = Krause et al.; 10 
= Ostfeld and Salomons; 11 = Preis and Ostfeld; 12 = Propato 
and Piller; 13 = Trachtman; 14 = Wu and Walski; -1- = non-
dominated solution of group 1 
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Legend  

1 = Berry et al.; 2 = Dorini et al.; 3 = Eliades and Polycarpou; 4 = 
Ghimire and Barkdoll (demand); 5 = Ghimire and Barkdoll (mass); 
6 = Guan et al.; 7 = Gueli; 8 = Huang et al.; 9 = Krause et al.; 10 
= Ostfeld and Salomons; 11 = Preis and Ostfeld; 12 = Propato 
and Piller; 13 = Trachtman; 14 = Wu and Walski; -1- = non-
dominated solution of group 1 

Fig. 5 
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Legend  

1 = Berry et al.; 2 = Dorini et al.; 3 = Eliades and Polycarpou; 4 = Ghimire 
and Barkdoll (demand); 5 = Ghimire and Barkdoll (mass); 6 = Guan et al.; 7 
= Gueli; 8 = Huang et al.; 9 = Krause et al.; 10 = Ostfeld and Salomons; 11 
= Preis and Ostfeld; 12 = Propato and Piller; 13 = Trachtman; 14 = Wu and 
Walski; -1- = non-dominated solution of group 1 

    = 5 monitors solution;    = 20 monitors solution 
 
 

Fig. 6 
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Legend  

1 = Berry et al.; 2 = Dorini et al.; 3 = Eliades and Polycarpou; 4 = Ghimire 
and Barkdoll (demand); 5 = Ghimire and Barkdoll (mass); 6 = Guan et al.; 7 
= Gueli; 8 = Huang et al.; 9 = Krause et al.; 10 = Ostfeld and Salomons; 11 
= Preis and Ostfeld; 12 = Propato and Piller; 13 = Trachtman; 14 = Wu and 
Walski; -1- = non-dominated solution of group 1 

    = 5 monitors solution;    = 20 monitors solution 
 
 

Fig. 7 
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Legend  

1 = Berry et al.; 2 = Dorini et al.; 3 = Eliades and Polycarpou; 4 = Ghimire 
and Barkdoll (demand); 5 = Ghimire and Barkdoll (mass); 6 = Guan et al.; 7 
= Gueli; 8 = Huang et al.; 9 = Krause et al.; 10 = Ostfeld and Salomons; 11 
= Preis and Ostfeld; 12 = Propato and Piller; 13 = Trachtman; 14 = Wu and 
Walski; -1- = non-dominated solution of group 1 

    = 5 monitors solution;    = 20 monitors solution 
 
 

Fig. 8
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 Fig. 9

Solution for N1A5 (network 1, base case A, 5 sensors)      
Solution for N1C5 (network 1, derivative case C, 5 sensors)  
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Legend  

1 = Berry et al.; 2 = Dorini et al.; 3 = Eliades and Polycarpou; 4 = Ghimire 
and Barkdoll (demand); 5 = Ghimire and Barkdoll (mass); 6 = Guan et al.; 7 
= Gueli; 8 = Huang et al.; 9 = Krause et al.; 10 = Ostfeld and Salomons; 11 
= Preis and Ostfeld; 12 = Propato and Piller; 13 = Trachtman; 14 = Wu and 
Walski; -1- = non-dominated solution of group 1 

Fig. 10 
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Legend  

1 = Berry et al.; 2 = Dorini et al.; 3 = Eliades and Polycarpou; 4 = Ghimire 
and Barkdoll (demand); 5 = Ghimire and Barkdoll (mass); 6 = Guan et al.; 7 
= Gueli; 8 = Huang et al.; 9 = Krause et al.; 10 = Ostfeld and Salomons; 11 
= Preis and Ostfeld; 12 = Propato and Piller; 13 = Trachtman; 14 = Wu and 
Walski; -1- = non-dominated solution of group 1 

Fig. 11 
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