
SANDIA REPORT
SAND2004-XXXX
Unlimited Release
Printed October 2004

Amesos 2.0 Reference Guide

Marzio Sala

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States Govern-
ment, any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
EP

ARTMENT OF ENERG
Y

•
 •
U
N

IT
ED

STATES OF AM

ER
IC

A

���������
	�	
�

��������
������������������� ������!�"��

Printed #�$ ��%�&'�)(�
	�	
�

Amesos 2.0 Reference Guide

Marzio Sala
Computational Math & Algorithms

Sandia National Laboratories
P.O. Box 5800, MS 1110

Albuquerque, NM 87185-1110

Abstract

This document describes the main functionalities of the AMESOS package, version 2.0.
AMESOS, a Trilinos package, provides an object-oriented interface to several serial and par-
allel sparse direct solvers libraries, for the solution of the linear systems of equations

*,+.-0/
(1)

where
*

is a real sparse, distributed matrix, defined as an Epetra RowMatrix object, and
+

and
/

are defined as Epetra MultiVector objects. Supported libraries include: LAPACK,
KLU, UMFPACK, SuperLU, SuperLU DIST, MUMPS, DSCPACK.

AMESOS provides a common look-and-feel, insulating the user from each package’s de-
tails, such as matrix and vector formats, and data distribution.

3

Acknowledgments

The authors would like to acknowledge the support of the ASCI and LDRD programs that funded
development of AMESOS.

4

Amesos 2.0 Reference Guide

Contents

1 Introduction . 6
2 Configuring and Installation AMESOS . 8
3 Supported Matrix Formats . 11
4 Parameters for All AMESOS Solvers . 11
5 AMESOS Interface to LAPACK . 13
6 AMESOS Interface to KLU . 15
7 AMESOS Interface to UMFPACK 4.3 . 15
8 AMESOS Interface to SuperLU 3.0 . 16
9 AMESOS Interface to SuperLU DIST 2.0. 16
10 AMESOS Interface to MUMPS 4.3.1 . 17
11 AMESOS Interface to DSCPACK . 21
12 Preconditioners Based on AMESOS . 21
13 Guide to the Examples . 21

5

1 Introduction

Aim of the AMESOS package is to provide an object-oriented interface to several sparse direct
solvers1 . AMESOS is developed by (in alphabetical order) T. Davis, M. Heroux, R. Hoekstra, M.
Sala, K. Stanley.

For each solver, AMESOS provides a C++ interface. All the interfaces have the same look-
and-feel, and accept matrices defined as Epetra RowMatrix objects2 , and vectors defined as Epe-
tra MultiVector objects. AMESOS makes easy for users to switch from one direct solver library
from another.

AMESOS contains several classes, as reported in table 2. The classes covered in this guide are:

� Amesos_LAPACK: Interface to LAPACK’s dense solvers (in Section 5). This class is the
only interface to dense solver in AMESOS;

� Amesos_KLU: Interface to AMESOS’s internal solver KLU (in Section 6);

� Amesos_Umfpack: Interface to Tim Davis’s UMFPACK [4], version 4.3 (in Section 7);

� Amesos_Superlu: Interface to Xiaoye S. Li’s serial SuperLU [9] (in Section 8);

� Amesos_Superludist: Interface to Xiaoye S. Li’s distributed SuperLU [9] (in Sec-
tion 9);

� Amesos_Mumps: Interface to MUMPS 4.3.1 [1] (in Section 10).

� Amesos_Dscpack: Interface to DSCPACK [10] (in Section 11).

A simple fragment of code using AMESOS can read as follows. First, we need to include the
header files for AMESOS:

#include "Amesos.h"
#include "Amesos_BaseSolver.h"

Note that these header files will not include the header files for the supported libraries (which are
of course needed to compile the AMESOS library itself). Now, let define the linear system matrix,
the vector that will contain the solution, and the right-hand side as:

Epetra_LinearProblem Problem;
Epetra_RowMatrix* A; // linear system matrix
Epetra_MultiVector* LHS; // vector that will contain the solution
Epetra_MultiVector* RHS; // right-hand side

1AMESOS is an interface to other packages, mainly developed outside the Trilinos framework. In order to use those
packages, the user should carefully check copyright and licensing of those third-party codes. Please refer to the web
page or the documentation of each particular package for details.

2Most interfaces take advantage of linear system matrices that can be casted to Epetra CrsMatrix or
Epetra VbrMatrix.

6

All AMESOS object (derived from pure virtual class Amesos_BaseSolver3) can be created
using the function class Amesos4, as follows:

Amesos_BaseSolver * Solver;
Amesos Factory;
char* SolverType = "Amesos_Klu";
Solver = Factory.Create(SolverType, Problem);

The complete list of parameters recognized by Create() is reported in Table 2.

Remark 1. It is important to note that all available solvers can be selected simply by changing an
input parameter. Some solvers are serial, other parallel; generally, each solver has its own matrix
format. However, the user will still have the same interface to all of them.

The Factory object will create an Amesos_Klu object (if AMESOS has been configure
to support this solver). Factory.Create() returns 0 if the requested solver is not avail-
able. Parameter names are case-sensitive; misspelled parameters will not be recognized. Method
Factory.Query() can be used to query the factory about the availability of a given solver:

char* SolverType = "Amesos_Klu";
bool IsAvailable = Factory.Query(SolverType);

Parameters for all AMESOS solvers are specified using a Teuchos5 parameters list, whose
definition requires the input file Teuchos_ParameterList.hpp. For a detailed description,
we refer to the Teuchos documentation. We report the most important methods of this class in
Table 1. The user may decide to proceed without calling SetParameters().

set(Name,Value) Add entry Name with value and type specified by Value. Any
C++ type (like int, double, a pointer, etc.) is valid.

get(Name,DefValue) Get value (whose type is automatically specified by DefValue).
If not present, return DefValue.

subList(Name) Get a reference to sublist List. If not present, create the sublist.

Table 1. Some methods of Teuchos::ParameterList class.

Here, we simply recall that the parameters list can be created as

Teuchos::ParameterList List;

and parameters can be set as

3A pure virtual class is a class that defines interfaces only, and contains no executable code. Pure virtual classes
cannot be instantiated; however, it is possible to declare and use pointers and references to a pure virtual class, as
normally done with class Amesos BaseSolver.

4A function class is a class that contains methods, but no private data. Function classes can be used, for example, to
create objects.

5AMESOScannot be compiled without the support for TEUCHOS.

7

List.set(ParameterName,ParameterValue);

Here, ParameterName is a string containing the parameter name, and ParameterValue
is any valid C++ object that specifies the parameter value (for instance, an integer, a pointer to
an array or to an object). The list of parameters that affect all AMESOS solvers are reported in
Section 4, while parameters that are specific to a given solver (if any) are reported in the Section
of this document dedicated to that solver.

After setting in Problem the pointer to the linear system matrix, we can perform the symbolic
factorization of the linear system matrix:

Solver->SetOperator(A);
AMESOS_CHK_ERR(Solver->SymbolicFactorization());

This phase does not require the numerical values of A, that can therefore be changed after the
call to SymbolicFactorization(). However, the nonzero pattern of A cannot be changed.
AMESOS_CHK_ERR is a macro (defined in Amesos_ConfigDefs.h) that checks the return
code. If this return code is not zero, the macro prints out an error message, and returns.

The numeric factorization is performed by

AMESOS_CHK_ERR(Solver->NumericFactorization());

The values of RHS must be set before solving the linear system, which simply reads

Problem.SetLHS(LHS);
Problem.SetRHS(RHS);
AMESOS_CHK_ERR(Solver->Solve());

Should users need to re-factorize the matrix, they must call NumericFactorization().
If the structure of the matrix is changed, they must call SymbolicFactorization(). How-
ever, it is supposed that the linear system matrix and the solution and right-hand side vectors are
still defined with the same Epetra_Map.

2 Configuring and Installation AMESOS

AMESOS is distributed through the Trilinos project, and can be downloaded from the web site

http://software.sandia.gov/trilinos/packages/amesos

Each of the AMESOS classes provides an interface to a third-party direct sparse solver code6.
In order to configure and compile a given interface, the user must first install the underlying direct
sparse solver code. Generally, the BLAS library is required. Some solvers may need CBLACS,
LAPACK, BLACS, ScaLAPACK. AMESOS also requires Epetra and Teuchos (both part of Trili-
nos).

AMESOS is configured and built using the GNU autoconf [6] and automake [7] tools. To con-
figure AMESOS from the Trilinos top directory, a possible procedure is as follows. Let $TRILINOS_HOME

6Exception to this rule is KLU, which is distributed within AMESOS.

8

Class Communicator Matrix type Interface to
Amesos Klu serial general KLU
Amesos Umfpack serial general UMFPACK 4.3
Amesos Superlu serial general SuperLU 3.0
Amesos Superludist parallel general SuperLU DIST 2.0
Amesos Mumps parallel SPD, sym, general MUMPS 4.3.1
Amesos Dscpack parallel symmetric DSCPACK 1.0

Table 2. Supported interfaces. “serial” means that the supported direct
solver is serial. When solving with more than one processor, the linear
problem is gathered to process 0, here solved, then the solution is broad-
casted to the distributed solution vector. “parallel” means that a subset or
all the processes in the current communicator will be used by the solver.
“general” means general unsymmetric matrix, If “sym” (symmetric ma-
trix) or “SPD” (symmetric positive definite), the direct solver library can
take advantage of that particular matrix property.

be a shell variable representing the location of the Trilinos source directory, and % the shell
prompt sign. Let us suppose that we want to configure AMESOS on a LINUX machine with
MPI, with support for KLU and UMFPACK. Header files for UMFPACK are located in directory
/usr/local/umfpack/include, while the library, called libumfpack.a is located in
/usr/local/umfpack/lib. The configure like will look like:

% cd $TRILINOS_HOME
% mkdir LINUX_MPI
% cd LINUX_MPI
% ../configure \
--with-mpi-compilers \
--prefix=$TRILINOS_HOME/LINUX_MPI \
--enable-amesos \
--enable-amesos-klu \
--enable-amesos-umfpack \
--with-incdirs="-I/usr/local/umfpack/include" \
--with-ldflags="-L/usr/local/umfpack/lib" \
--with-libs="-lumfpack"

% make
% make install

Other flags may be required depending on the location of MPI, BLAS and LAPACK. Supported
architectures are reported in Table 3.

9

Architecture Communicator LAPACK KLU UMFPACK SuperLU SuperLU DIST 2.0 MUMPS 4.3.1 DSCPACK
LINUX SERIAL � � � � – – –
LINUX, GNU LAM/MPI � � � – � – �

LINUX, Intel MPICH � � � – – � �

SGI 64 MPI � � � – � � –
DEC/Alpha MPI � � � – – – –
MAC OS X/G4 MPICH � � – – – – –
Sandia Cplant MPI � � � – � � –
Sandia ASCI Red MPI � � � – � – –

Table 3. Supported architectures for various interfaces. ‘� ’ means that
the interface has been successfully compiled, ‘–’ means that it has not
been tested.

10

3 Supported Matrix Formats

Table 4 reports the supported matrix types for all the AMESOS classes. In the table, “Transp”
means that AMESOS can solve both the linear system with the linear system matrix and with its
transpose. ‘ � ’ means that the interface can take advantage of the given matrix format, ‘–’ means
that it doesn’t.

Class Transp Epetra RowMatrix Epetra CrsMatrix Epetra VbrMatrix
Amesos Lapack yes � � –
Amesos Klu yes � � –
Amesos Umfpack yes � � –
Amesos Superlu no � � –
Amesos Superludist no � � –
Amesos Mumps yes � – –
Amesos Dscpack yes � – –

Table 4. Supported matrix formats. “Transp” means that AMESOS can
solve both the linear system with the linear system matrix and with its
transpose. ‘ � ’ means that the interface can take advantage of the given
matrix format, ‘–’ means that it doesn’t.

4 Parameters for All AMESOS Solvers

We now list all the parameters that may affect all the AMESOS solvers. To know whether a specific
interface supports a given parameter, we refer to table 5.

UseTranspose If false, solve linear system (1). Otherwise, solve the
linear system with the transpose matrix

���
.

MatrixType Set it to SPD if the matrix is symmetric positive definite,
to symmetric if symmetric, and to general is the
matrix is general unsymmetric. At this stage of devel-
opment, only the MUMPS interface can take advantage
of SPD and symmetric.

Threshold In the conversion from Epetra RowMatrix to a pack-
age’s format, do not include elements whose absolute
value is below the specified threshold.

AddZeroToDiag If true, in the conversion from Epetra RowMatrix to a
package’s format, a zero element will be added to the
diagonal if not present.

11

PrintTiming Print some timing information when the AMESOS ob-
ject is destroyed.

PrintStatus Print some information about the linear system and the
solver when the AMESOS object is destroyed.

ComputeVectorNorms After solution, compute the 2-norm of each vector in
the Epetra MultiVector � and � .

ComputeTrueResidual After solution, compute the real residual ����� � �����
for all vectors in Epetra MultiVector.

MaxProcs If positive, the linear system matrix will be distributed
on the specified number of processes only (or the all
the processes in the MPI communicator if the specified
number is greater). If MaxProcs=-1, AMESOS will
estimate using internal heuristics the optimal number of
processes that can efficiently solve the linear system. If
MaxProcs=-2, AMESOS will use the square root of
the number of processes. If MaxProcs=-3, all pro-
cesses in the communicator will be used.
This option may require the conversion of a C++
MPI communicator to a FORTRAN MPI communi-
cator. If this is not supported, the specified value of
MaxProcs will be ignored, and all the processes in
MPI COMM WORLD will be used.

OutputLevel If 0, no output is printed on the standard output. If
1, output is reported as specified by other param-
eters. If 2, all output is printed (this is equivalent
to PrintTiming == true, PrintStatus
== true, ComputeVectorNorms == true,
ComputeTrueResidual == true).

Refactorize “Refactorization” of a matrix refers to the use of a prior
symbolic and numeric factorization (including row and
column ordering), to factorize a subsequent matrix us-
ing the same pivot ordering. This can be significantly
faster, but the numerical quality of the factorization may
suffer. If true, then attempt to re-use the existing sym-
bolic and numeric factorization, to factorize a new ma-
trix using the identical pivot ordering (both row and col-
umn ordering) as a prior pivot-capable factorization.

12

RcondThreshold After a refactorization, an estimate of the reciprocal
of the condition number is computed. If this estimate
is too small (less than RcondThreshold), then the
pivot-less factorization is aborted, and the matrix is fac-
torized again with normal numerical pivoting.

ScaleMethod Most methods can scale the input matrix prior to fac-
torization. This typically improves the quality of the
factorization and reduces fill-in as well. Setting this pa-
rameter to zero turns off scaling. A value of 1 selects
the method’s default scaling method (which may in fact
be not to scale at all). A value of 2 means to scale the
matrix using the first non-default method the package
has, 3 means to use its 2nd alternative method, and so
on.

Solver-specific parameters are reported in each package’s subsection. The general procedure
is to create a sublist with a given name (for instance, the sublist for MUMPS is ”mumps”), then
set all the solver’s specific parameters in this sublist. An example is as follows:

int ictnl[40];
// defines here the entries of ictnl
Teuchos::ParameterList & AmesosMumpsList =
AmesosList.sublist("mumps");

AmesosMumpsList.set("ICTNL", ictnl);

Parameters and sublists not recognized are simply ignored. Recall that spaces are important, and
that parameters list is case sensitive!

5 AMESOS Interface to LAPACK

In some cases, the linear system matrix can be of relatively small size, or it can be quite dense, or
both. If this happens, it may be convenient to convert the sparse matrix to dense format, then use
LAPACK routines.

In order to use LAPACK, AMESOS must be configured with the options

--enable-amesos-lapack

Header files and library are automatically located by configure.

LAPACK is a (suite of) serial solver(s). AMESOS will gather all matrix rows on processor
zero before the symbolic factorization, and all matrix values before the numeric factorization. On
process 0, the matrix will be converted to dense storage, using Epetra_SerialDenseMatrix
objects. A call to Solve() requires a gather of the right-hand side on process 0, the local solution
of the linear system, and finally a scatter operation, to redistribute as necessary the solution vector.

No specific parameters are available for this class.

13

option type default value K
L

U

U
M

F
PA

C
K

S
up

er
L

U
D

IS
T

M
U

M
P

S

L
A

PA
C

K

D
S

C
PA

C
K

UseTranspose bool false � � – � � –
MatrixType string general – – – � – –
Threshold double 0.0 – – – – – –
AddZeroToDiag bool false – – � – – –
PrintTiming bool false � � – � � �

PrintStatus bool false � � � � � �

MaxProcs int -1 – – � � � �

MaxProcsMatrix int -4 – – – � – –
ComputeVectorNorms bool false � � � � � �

ComputeTrueResidual bool false � � � � � �

OutputLevel int 1 � � � � � �

DebugLevel int 0 � � � � � �

Refactorize bool false � – – – – –
RcondThreshold double � �

� �� � – – – – –
ScaleMethod int 1 � – – – – –

Table 5. Supported options. ‘� ’ means that the interface supports the
options, ‘–’ means that it doesn’t.

14

6 AMESOS Interface to KLU

KLU is a serial, unblocked code ideal for getting started. Particular classes of matrices, such as
circuit matrices, may perform well with KLU.

KLU is Tim Davis’ implementation of Gilbert-Peierl’s left-looking sparse partial pivoting al-
gorithm, with Eisenstat and Liu’s symmetric pruning. It doesn’t exploit dense matrix kernels, but
it is the only sparse LU factorization algorithm known to be asymptotically optimal, in the sense
that it takes time proportional to the number of floating-point operations. It is the precursor to
SuperLU, thus the name (”Clark Kent LU”). For very sparse matrices that do not suffer much
fill-in (such as most circuit matrices when permuted properly) dense matrix kernels do not help,
and the asymptotic run-time is of practical importance.

In order to use KLU, AMESOS must be configured with the options

--enable-amesos-klu

The KLU sources are distributed with the AMESOS package. We strongly encourage to configure
AMESOS with KLU support. KLU is the only interface that is turned on by default.

No specific parameters are available for this class.

KLU is a serial solver. AMESOS will gather all matrix rows on processor zero before the
symbolic factorization, and all matrix values before the numeric factorization. A call to Solve()
requires a gather of the right-hand side on process 0, the local solution of the linear system, and
finally a scatter operation, to redistribute as necessary the solution vector.

7 AMESOS Interface to UMFPACK 4.3

UMFPACK is a C package copyrighted by Timothy A. Davis. More information can be obtained
at the web page

http://www.cise.ufl.edu/research/sparse/umfpack

In order to use UMFPACK, AMESOS must be configured with the options

--enable-amesos-umfpack

Location of the header files should be specified using --with-incdirs, location of the library
with --with-ldflags, and the library to be linked by --with-libs. See Section 2 for an
example.

No specific parameters are available for this class.

UMFPACK is a serial solver. AMESOS will gather all matrix rows on processor zero before the
symbolic factorization, and all matrix values before the numeric factorization. A call to Solve()
requires a gather of the right-hand side on process 0, the local solution of the linear system, and
finally a scatter operation, to redistribute as necessary the solution vector.

15

8 AMESOS Interface to SuperLU 3.0

SuperLU, written by Xiaoye S. Li, is a serial solver. SuperLU is written in ANSI C. It is copy-
righted by The Regents of the University of California, through Lawrence Berkeley National Lab-
oratory. We refer to the web site

http://www.nersc.gov/˜xiaoye/SuperLU

and to the SuperLU manual [5] for more information.

In order to interface with SuperLU DIST 2.0, AMESOS must be configured with the options

--enable-amesos-superlu

Location of the header files should be specified using --with-incdirs, location of the library
with --with-ldflags, and the library to be linked by --with-libs. See Section 2 for an
example.

No specific parameters are available for this class.

SuperLU 3.0 is a serial solver. AMESOS will gather all matrix rows on processor zero be-
fore the symbolic factorization, and all matrix values before the numeric factorization. A call to
Solve() requires a gather of the right-hand side on process 0, the local solution of the linear
system, and finally a scatter operation, to redistribute as necessary the solution vector.

9 AMESOS Interface to SuperLU DIST 2.0

SuperLU DIST, written by Xiaoye S. Li, is a parallel extension to the serial SuperLU library.
SuperLU DIST is written in ANSI C, using MPI for communication, and it is targeted for the
distributed memory parallel machines. SuperLU DIST includes routines to handle both real and
complex matrices in double precision. However, as AMESOS is currently based on the Epetra
package (that does not handle complex matrices), only double precision matrices can be consid-
ered.

Amesos Superludist can solve the linear system on a subset of the processes, as specified in
the parameters list. This is done by creating a new process group derived from the MPI group of
the Epetra Comm object, with function superlu_gridinit().

In order to interface with SuperLU DIST 2.0, AMESOS must be configured with the options

--enable-amesos-superludist

Location of the header files should be specified using --with-incdirs, location of the library
with --with-ldflags, and the library to be linked by --with-libs. See Section 2 for an
example.

The SuperLU DIST constructor will look for a sublist, called Superludist. The follow-
ing parameters reflect the behavior of SuperLU DIST options argument, as specified in the Su-
perLU DIST manual [5, pages 55–56]. The user is referred to this manual for a detailed explana-
tion of the reported parameters. Default values are as reported in the SuperLU DIST manual.

16

Fact (string) Specifies whether or not the fac-
tored form of the matrix

�
is supplied on en-

try and, if not, how the matrix will be fac-
tored. It can be: DOFACT, SamePattern,
SamePattern SameRowPerm, FACTORED.
Default: SamePattern SameRowPerm.

Equil (bool) Specifies whether to equilibrate the system of
not. Default: true.

ColPerm (string) Specifies the column ordering strategy. It
can be: NATURAL, MMD AT PLUS A, MMD ATA,
COLAMD, MY PERMC. Default: MMD AT PLUS A.

perm c (int *) Specifies the ordering to use when ColPerm
= MY PERMC.

RowPerm (string) Specifies the row ordering strategy. It can
be: NATURAL, LargeDiag, MY PERMR. Default:
LargeDiag.

perm r (int *) Specifies the ordering to use when RowPerm
= MY PERMR.

ReplaceTinyPivot (bool) Specifies whether to replace the tiny diagonals
with � � � � during LU factorization. Default: true.

IterRefine (string) Specifies how to perform iterative refine-
ment. It can be: NO, DOUBLE, EXTRA. Default:
DOUBLE.

10 AMESOS Interface to MUMPS 4.3.1

MUMPS (“MUltifrontal Massively Parallel Solver”) is a parallel direct solver, written in FOR-
TRAN 90 with C interface, copyrighted by P. R. Amestoy, I. S. Duff, J. Koster, J.-Y. L’Excellent.
Up-to-date copies of the MUMPS package can be obtained from the Web page

http://www.enseeiht.fr/apo/MUMPS/

MUMPS can solve the original system (1), as well as the transposed system, given an assem-
bled or elemental matrix. Note that only the assembled format is supported by Amesos Mumps.
Mumps offers, among other features, error analysis, iterative refinement, scaling of the original
matrix, Schur complement with respect to a prescribed subset of rows. Reordering techniques
can take advantage of PORD (distributed within MUMPS), or METIS [8]7. For details about the

7At this time, METIS ordering is not supported by Amesos Mumps.

17

algorithms and the implementation, as well as of the input parameters, we refer to [2]
Amesos Mumps is based on the distributed double-precision version of MUMPS (which re-

quires MPI, BLAS, BLACS and ScaLAPACK [3]).

In order to interface with MUMPS 4.3.1, AMESOS must be configured with the options8

--enable-amesos-mumps

Location of the header files should be specified using --with-incdirs, location of the library
with --with-ldflags, and the library to be linked by --with-libs. See Section 2 for an
example.

It is also possible to configure with support for the single precision version of MUMPS, using
option

--enable-amesos-smumps

which enables the AMESOS interface support for the single-precision version of MUMPS. This is
intended to be used when the precision of the solution is not of primary importance, for example,
is AMESOS is used to solve the coarse problem in multilevel preconditioners, like ML [11]. In this
case, users may decide to use single-precision solves of the coarse problem to save memory and
computational time. As AMESOS is based on the Epetra LinearProblem class (defined for double
precision only), this interface still requires double-precision matrix and vectors. After the solver
phase, the single precision vector is copied into the double-precision solution vector of the given
Epetra LinearProblem. If the single precision interface is enabled, this automatically disables the
double-precision one.

The MUMPS constructor will look for a sublist, called mumps. The user can set all the
MUMPS’s parameters, by sticking pointers to the integer array ICNTL and the double array CNTL
to the parameters list, or by using the functions reported at the end of this section.

ICTNL (int[40]) Pointer to an integer array, containing the
integer parameters (see [2, pages 13–17]).

CTNL (double[5]) Pointer to an double array, containing
the double parameters (see [2, page 17]).

PermIn (int *) Use integer vectors of size NumGlobalEle-
ments (global dimension of the matrix) as given order-
ing. PermIn must be defined on the host only, and
allocated by the user, if the user sets ICNTL(7) = 1.

Maxis (int) Set Maxis value.

Maxs (int) Set Maxis value.

8The MUMPS interface can take be used on a subset of the processes. To that aim, it must be possible to convert from
a C++ MPI communicator to a FORTRAN MPI communicator. Such a conversion is not always possible. In you experi-
ence compilation problems with Amesos Mumps, you can try the option --disable-amesos-mumps mpi c2f.

18

ColPrecScaling (double *) Use double precision vectors of size
NumGlobalElements (global dimension of the matrix)
as scaling for columns and rows. The double vector
must be defined on the host only, and allocated by the
user, if the user sets ICNTL(8) = -1.

RowPrecScaling (double *) Use double precision vectors of size
NumGlobalElements (global dimension of the matrix)
as scaling for columns and rows. The double vector
must be defined on the host only, and allocated by the
user, if the user sets ICNTL(8) = -1.

Other functions are available to check the output values. The following Amesos Mumps meth-
ods are not supported by the Amesos BaseSolver class; hence, the user must create an Ame-
sos Mumps object in order to take advantage of them.

double * GetRINFO()

Gets the pointer to the RINFO array (defined on all processes).

int * GetINFO()

Gets the pointer to the INFO array (defined on all processes).

double * GetRINFOG()

Gets the pointer to the RINFOG array (defined on host only).

int * GetINFOG()

Gets the pointer to the INFOG array (defined on host only).

A functionality that is peculiar to MUMPS, is the ability to return the Schur complement
matrix, with respect to a specified set of nodes.

int ComputeSchurComplement(bool flag,
int NumSchurComplementRows,
int * SchurComplementRows);

This method computes (if flag is true) the Schur complement with respect to the set of indices in-
cluded in the integer array SchurComplementRows , of size NumSchurComplementRows.
This is a global Schur complement, and it is formed (as a dense matrix) on processor 0 only.

19

Epetra_CrsMatrix * GetCrsSchurComplement();

This method returns the Schur complement in an Epetra CrsMatrix, on host only. No checks are
performed to see whether this action is legal or not (that is, if the call comes after the solver has
been invoked). The returned Epetra CrsMatrix must be freed by the user.

Epetra_SerialDenseMatrix * GetDenseSchurComplement();

This method returns the Schur complement as a Epetra SerialDenseMatrix (on host only).

As an example, the following fragment of code shows how to use MUMPS to obtain the Schur
complement matrix with respect to a given subsets of nodes. First, we need to create an parameter
list, and an Amesos Mumps object.

Teuchos:::ParameterList params;
Amesos_Mumps * Solver;
Solver = new Amesos_Mumps(*Problem,params);

Then, we define the set of nodes that will constitute the Schur complement matrix. This must be
defined on processor 0 only. For instance, one may have:

int NumSchurComplementRows = 0;
int * SchurComplementRows = NULL;
if(Comm.MyPID() == 0) {
NumSchurComplementRows = 4;
SchurComplementRows = new int[NumSchurComplementRows];
SchurComplementRows[0] = 0;
SchurComplementRows[1] = 1;
SchurComplementRows[2] = 2;
SchurComplementRows[3] = 3;

}

Now, we can ask for the Schur complement using

Solver->ComputeSchurComplement(true, NumSchurComplementRows,
SchurComplementRows);

The Schur complement matrix can be obtain after the solver phase:

Solver->Solve();
Epetra_CrsMatrix * SC;
SC = Solver->GetCrsSchurComplement();
Epetra_SerialDenseMatrix * SC_Dense;
SC_Dense = Solver->GetDenseSchurComplement();

20

11 AMESOS Interface to DSCPACK

DSCPACK can be used to solve symmetric sparse linear systems of equations. DSCPACK pro-
vides a variety of sparsity preserving (fill-reducing) ordering and computes either an

��� �
(Cholesky)

or
����� �

factorization of the linear system matrix. This solver is written in C, and it uses MPI
for inter-processor communication, and the BLAS library for improved chace-performances. The
implementation is based on the idea of partitioning the sparse matrix into domains and separators.

We refer to the web site

http://www.cse.psu.edu/˜ragavan/dscpack

and to the DSCPACK manual [10] for more information.

In order to use DSCPACK, AMESOS must be configured with the options

--enable-amesos-dscpack

Location of the header files should be specified using --with-incdirs, location of the library
with --with-ldflags, and the library to be linked by --with-libs. See Section 2 for an
example.

DSCPACK solves the linear system using a number of processors that is a power of 2. If
necessary, we linear system matrix will be automatically redistributed on the highest number of
processors (either all the processors, or the number specified in MaxProcs) that is a power of 2.

No specific parameters are available for this class.

12 Preconditioners Based on AMESOS

AMESOS is used in other TRILINOS packages. In particular, IFPACK can take advantage of AME-
SOS to define additive overlapping domain decomposition preconditioners (of Schwarz type). We
refer to the IFPACK documentation for more details.

Remark 2. AMESOS is also used by another TRILINOS package, ML. ML takes advantages of
the AMESOS interfaces to solve the coarse problem that arises in multilevel preconditioners; see
the ML guide for more details [11].

13 Guide to the Examples

The AMESOS distribution contains examples in subdirectory

$TRILINOS_HOME/packages/amesos/example

Most of the example requires AMESOS to be configured with support for TRIUTILS. TRIUTILS is
a Trilinos package, automatically compiled unless the user specifies

--disable-triutils

TRIUTILS is used to generate the linear system matrix. New users can start from file

21

$TRILINOS_HOME/packages/amesos/example/example_AmesosFactory.cpp

which contains detailed comments about all the AMESOS commands. Example

$TRILINOS_HOME/packages/amesos/example/example_AmesosFactory_HB.cpp

shows how to read a matrix stored in Harwell/Boeing format, redistribute it to all the processes
used in the computation, and use AMESOS to solve the corresponding linear system. Finally,
example

$TRILINOS_HOME/packages/amesos/example/example_AmesosFactory_Tridiag.cpp

creates a simple tridiagonal matrix, and solves the corresponding linear system.

References

[1] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster. MUMPS home page.
http://www.enseeiht.fr/lima/apo/MUMPS, 2003.

[2] P.R. Amestoy, I.S. Duff, J.-Y. L’Excellent, and J. Koster. MUltifrontal Massively Parallel
Solver (MUMPS Versions 4.3.1) Users’ Guide, 2003.

[3] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Jemmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. W alker, and R. C. Whaley. ScaLA-
PACK Users’ Guide. SIAM Pub., 1997.

[4] T .A. Davis. UMFPACK home page. http://www.cise.ufl.edu/research/sparse/umfpack,
2003.

[5] J. W. Demmel, J. R. Gilbert, and X. S. Li. SuperLU Users’ Guide, 2003.

[6] Free Software Foundation. Autoconf Home Page. http://www.gnu.org/software/autoconf.

[7] Free Software Foundation. Automake Home Page. http://www.gnu.org/software/automake.

[8] G. Karypis and V. Kumar. METIS: Unstructured graph partitining and sparse matrix ordering
sy stem. Technical report, University of Minnesota, Department of Computer Science, 1998.

[9] X. S. Li and J. W. Demmel. SuperLU home page. http://crd.lbl.gov/ xiaoye/SuperLU/, 2003.

[10] P .Raghavan. Domain-separator codes for the parallel solution of sparse linear systems. Tech-
nical Report CSE-02-004, Department of Computer Science and Engineering, The Pennsyl-
vania State University, 2002.

[11] M. Sala, J. Hu, and R. Tuminaro. Ml 3.0 smoothed aggregation user’s guide. Technical
Report SAND-2195, Sandia National Laboratories, May 2004.

22

