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Survey of core UQ methods:  
Sampling 

Local and global reliability 

Stochastic expansions: polynomial chaos, stochastic collocation 

Epistemic UQ 

Overview of advanced topics (as time permits): 

 Scalability: algorithmic and parallel 

 Complexity: mixed uncertainties, multiphysics, multifidelity, … 

Uncertainty Quantification Tutorial for  

Computer Scientists 



Introduction 

Many communities shifting from test-based to M&S-based approaches. For high 

consequence apps, we require confidence in the predictive accuracy of our M&S: 

– Predictive simulations:  verified and validated for application of interest (“best estimate”) 

– Quantified uncertainties:  the effect of variation has been quantified (“plus uncertainty”) 

“Uncertainty quantification” generally includes (or is commonly integrated with): 

– (Global) sensitivity analysis: identification of input set w/ greatest influence on output QoIs 

– Uncertainty characterization: fit or infer from observable data; parametric/non-parametric/KDE 

– Uncertainty propagation: input distributions  output distributions 

– Decision making: model validation, prediction ({interp,extrap}olation), design, … 

Simulation 

Code(s) 
Input   

Distributions 

Output  

Distributions 

Uncertainty can be categorized to be one of two different types: 

– Aleatory/irreducible: inherent variability with sufficient data  objective probabilistic models 

– Epistemic/reducible: uncertainty from lack of knowledge  subjective probabilistic, nonprobabilistic  
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Simulation 

Code(s) 

Input Intervals/BPAs 

Uncertainty can be categorized to be one of two different types: 

– Aleatory/irreducible: inherent variability with sufficient data  objective probabilistic models 

– Epistemic/reducible: uncertainty from lack of knowledge  subjective probabilistic, nonprobabilistic  
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Example: Safety in Abnormal Environments 

System level environment 

Component level environment 

  

 

 

 

 

 

Uncertainties in B.C., matl. properties  

(density, conductivity), failure thesholds 

Thermal race 
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Interval on 90th percentile

Interval on 50th percentile (median)

Red interval lines obtained by 

optimization approach

Blue CDFs are nested sampling results

Interval on 10th percentile 

Additional Examples 

Reliability: b >2 

 10x robustness 

Stochastic design for bi-stable MEMS 

 

d 

Nuclear reactors: conv. of 

CRUD statistics w/ adaptive UQ 

 

 

Circuits/devices in radiation env.: 

Mixed aleatory-epistemic UQ  

 

Penetrator performance 

 

High energy density physics:  

Z-pinch model validation 

 

Wind turbines 

 



Connectivity of Exascale and UQ 

UQ is a natural customer for exascale computing, both in terms of current  

mission needs and algorithmic opportunities 

• Nonintrusive methods: coarse-grained, fully asynchronous w/ local refinement, sim. fault tolerant 

• Embedded methods: rearrange stoch Galerkin for an outer-spatial/inner-stochastic ordering 

 

DOE Program Context: 

• NNSA ASCI/ASC has invested significantly in predictive science since 1995 

• Perform stockpile stewardship using advanced M&S on HPC with limited/no future stockpile testing 

• LANL, LLNL, SNL each have significant V&V programs within ASC, since ~2000 

• Academic alliances; current cycle focused on predictive science/V&V/UQ (2008-12); 

PSAAP II (2013-2017) in proposal phase; marries predictive science/V&V/UQ + exascale 
 

• ASCR has recently funded a program focused on UQ (~FY11-FY13): 

• Alonso/Eldred/Iaccarino: Wind turbine UQ 

• Efendiev/Vassilevski:  Bayesian UQ 

• Lin/Kevrekidis/Zabaras: Stochastic Multiscale 
 

• SciDAC-3: math/CS enabling technology (~FY12-16) and application institutes (~FY13-17) 

• UQ-centric enabling technologies center (QUEST; SNL/LANL/UT/USC/MIT/JHU, PI: Najm)  

• Application institute partnerships currently being defined 
 

• Exascale codesign 

• Shadid/Estep: Adjoint UQ/EE 

• Tong/Lee/Iaccarino: Multiphysics UQ 

• Xiu/Archibald/Deiterding: Adaptive Parallel UQ 



Uncertainty Quantification Algorithms @ SNL: 

New methods bridge robustness/efficiency gap 

Production New Under dev. Planned Collabs. 
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Adv. Deployment  
 

 

Fills Gaps 



Sampling 

Starting from distributions on the uncertain input values, draw observations 

from each distribution, pair samples, and execute the model for each pairing 

 ensemble of results yields distributions of the outputs 

– Monte Carlo: basic random sampling 

– Pseudo Monte Carlo:  Latin Hypercube Sampling (LHS) 

– Quasi Monte Carlo:  Halton, Hammersley, Sobol sequences 

– Orthogonal arrays, Centroidal Voronoi Tesselation (CVT), Importance Sampling 

Sampling is not the most efficient UQ method, but is easy to implement, 

robust, and transparent. 
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Latin Hypercube Sampling 

• LHS is stratified random sampling among equal probability bins for all 1-D 

projections of an n-dimensional set of samples. 

– Early work by McKay and Conover 

– Restricted pairing by Iman  enforce prescribed input correlations 
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Reliability Methods for UQ 



UQ with Reliability Methods 

Mean Value Method 

Rough 

statistics 

G(u) 

MPP search methods 

Reliability Index 

Approach (RIA) 

Find min dist to G level curve 

Used for fwd map z  p/b 

Performance Measure 

Approach (PMA) 

Find min G at b radius 

Used for inv map p/b  z 

Nataf x  u: 

Failure 

region 



Reliability Algorithm Variations: 

Algorithm Performance Results 

Analytic benchmark test problems: lognormal ratio, short column, cantilever 

Note: 2nd-order PMA with prescribed p level is harder 

problem  requires b(p) update/inversion 

43 z levels 43 p levels 



Solution-Verified Reliability Analysis 

and Design of MEMS 

• Problem: MEMS subject to substantial variabilities 

– Material properties, manufactured geometry, residual stresses 

– Part yields can be low or have poor durability 

– Data can be obtained  aleatory UQ  probabilistic methods 

• Goal: account for both uncertainties and errors in design 

– Integrate UQ/OUU (DAKOTA), ZZ/QOI error estimation (Encore),  

adaptivity (SIERRA), nonlin mech (Aria)  MESA application 

– Perform soln verification in automated, parameter-adaptive way 

– Generate fully converged UQ/OUU results at lower cost 

Parameter study 

over 3σ uncertain 

variable range for 

fixed design 

variables dM*.  

Dashed black line 

denotes g(x) = 

Fmin(x) = -5.0. 

• AMV2+ and FORM converge to different 

MPPs (+ and O respectively) 

• Issue: high nonlinearity leading to 

multiple legitimate MPP solns. 

• Challenge: design optimization may 

tend to seek out regions encircled by 

the failure domain.  1st-order and even 

2nd-order probability integrations can 

experience difficulty with this degree of 

nonlinearity. Optimizers can/will exploit 

this model weakness. 
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Efficient Global Reliability Analysis (EGRA) 

True fn 

GP surrogate 

Expected 

Improvement 

From Jones, Schonlau, Welch, 1998 

• Address known failure modes of local reliability methods: 

– Nonsmooth: fail to converge to an MPP 

– Multimodal: only locate one of several MPPs 

– Highly nonlinear: low order limit state approxs. fail to accurately estimate probability at MPP 

• Based on EGO (surrogate-based global opt.), which exploits special features of GPs 

– Mean and variance predictions: formulate expected improvement (EGO) or expected feasibility (EGRA) 

– Balance explore and exploit in computing an optimum (EGO) or locating the limit state (EGRA) 
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Efficient Global Reliability Analysis 

  10 samples   28 samples 

explore 

exploit 

Accuracy similar to exhaustive sampling at cost similar to local reliability assessment 



Stochastic Expansion Methods for UQ 



Polynomial Chaos Expansions (PCE) 

super-algebraic for num. 

integration & regression 

1/sqrt(N) for LHS 

Approximate response w/ spectral proj. using orthogonal polynomial basis fns 

  

 i.e.  using 

 

• Nonintrusive: estimate aj using sampling, regression,  

tensor-product quadrature, sparse grids, or cubature 
 

Generalized PCE (Wiener-Askey + numerically-generated) 

• Tailor basis: selection of basis orthogonal to input PDF avoids additional nonlinearity 

 

 

 

Additional bases generated numerically (discretized Stieltjes + Golub-Welsch) 

 

• Tailor expansion form: 
– Dimension p-refinement: anisotropic TPQ/SSG, generalized SSG 

– Dimension & region h-refinement: local bases with global & local refinement 



Stochastic Collocation (SC) 

Advantages relative to PCE: 

• Somewhat simpler (no expansion order to manage separately) 

• Often less expensive (no integration for coefficients) 

• Expansion only formed for sampling  probabilities (estimating moments of any order is straightforward) 

• Adaptive h-refinement with hierarchical surpluses; explicit gradient-enhancement 
 

Disadvantages relative to PCE: 

• Less flexible/fault tolerant  structured data sets (tensor/sparse grids) 

• Expansion variance not guaranteed positive (important in opt./interval est.) 

• No direct inference of spectral decay rates 
 

With sufficient care on PCE form, PCE/SC performance is essentially identical 

for many cases of interest (tensor/sparse grids with standard Gauss rules) 

Instead of estimating coefficients for known basis functions,  

form interpolants for known coefficients 

• Global:  Lagrange (values) or Hermite (values+derivatives) 

• Local:    linear (values) or cubic (values+gradients) splines 

Sparse interpolants formed using S of tensor interpolants 



Approaches for forming PCE/SC Expansions  

Random sampling: PCE Tensor-product quadrature: PCE/SC 

Smolyak Sparse Grid: PCE/SC Cubature: PCE 

Stroud and extensions (Xiu, Cools) 

 Low order PCE  

 global SA, anisotropy detection 

Expectation (sampling): 

– Sample w/i distribution of x  

– Compute expected value of 

product of R and each Yj 

Linear regression  

(“point collocation”): 

– Sample w/i distribution of x 

– Solves least squares data fit  

for all coefficients at once: 

– Every combination of 1-D rules 

– Scales as mn 

– 1-D Gaussian rule of order m  

 integrands to order 2m – 1 

– Assuming RYj of order 2p,  

select m = p + 1 

 

T
P

Q
 

S
S

G
 

Pascal’s triangle (2D): 

Arbitrary PDF 

Gaussian i = 2  p = 1 



Application Deployment (CASL) 

Plant A (n=4, smooth, mild anisotropy)   Plant B (n=10, discontinuous, high anisotropy) 

Application: Nuclear reactor cores experience localized boiling, which leads to CRUD 

(Chalk River Unidentified Deposit).  These deposits result in undesirable power shifts 

(CIPS) within the core.  Statistics of mass evaporation (ME) rate are of interest. 

Methodology: PCE/SC with uniform/adaptive refinement compared to LHS 



Epistemic UQ 

Epistemic UQ: one does not know enough to specify probability distributions 

Sometimes referred to as subjective, reducible, or lack of knowledge uncertainty 
 

Interval analysis 

– Propagate input intervals to output intervals 

– Intrusive interval methods (operation by operation propagation) have been investigated 

for several decades, but have not become mainstream (key issue: interval growth) 

– Sampling methods (+ surrogate models if expensive evals) are commonly used 

– Optimization methods are promising and some variants exploit data reuse 
 

Dempster-Shafer theory of evidence 

– Basic probability assignment (interval-based) 

– Solve opt. problems (currently sampling-based)  

to compute belief/plausibility for output intervals 

 

 

 

 

 

Imprecise probability (p-boxes), Info gap, … 



Survey of Core UQ Algorithms: 

 strengths, weaknesses, research needs 

Sampling (nongradient-based) 

• Strengths: Simple and reliable, convergence rate is dimension-independent 

• Weaknesses: N-1/2 convergence  expensive for accurate tail statistics 

Local reliability (gradient-based) 

• Strengths: computationally efficient, widely used, scalable to large n (w/ efficient derivs.) 

• Weaknesses: algorithmic failures for limit states with following features 

• Nonsmooth: fail to converge to an MPP 

• Highly nonlinear: low order limit state approxs. insufficient to resolve probability at MPP 

Global reliability (typically nongradient-based) 

• Strengths: handles multimodal and/or highly nonlinear limit states 

• Weaknesses:  

• Conditioning, nonsmoothness   ensemble emulation (recursion, discretization) 

• Scaling to large n   adjoint gradient-enhancement, additional refinement bias 

Stochastic expansions (typically nongradient-based) 

• Strengths: functional representation, exponential convergence rates for smooth problems 

• Weaknesses:  

• Nonsmoothness  local h-refinement based on hierarchical error estimates 

• Scaling to large n   adaptive refinement, adjoint gradient-enhancement 

Epistemic methods (typically nongradient-based) 

• Strengths: extrema are point solutions instead of integrated quantities 

• Weaknesses: high degrees of input structure (Dempster-Shafer) require many extrema 

(bridging intervals and distributions breaks down as continuum is approached discretely) 

• Multimodal: only locate one of several MPPs 



Advanced Topics 

R&D Drivers:  

Efficient/robust/scalable foundation of core UQ algorithms 

• Adaptive refinement 

• Adjoint enhancement 

• Multilevel parallel UQ (circa 2000)  Exascale UQ efforts (intrusive, non-intrusive) 

 

Build on foundation to address more complex random environments 

• Mixed aleatory-epistemic UQ 

• Multiphysics UQ 

• Multifidelity UQ 



High-Performance Computing 

Exploiting parallelism in Opt., UQ, … 

1. Algorithmic coarse-grained: concurrency in data requests: 

• Iterators: Gradient-based, Nongradient-based, Surrogate-based 

• Strategies with concurrent Iterators: Multi-start, Pareto, Hybrid 

• Nested Models: OUU/MCUU, Mixed UQ 

2. Algorithmic fine-grained: computing the internal linear algebra 
of an opt. algorithm in parallel (e.g., large-scale opt., SAND) 

3. Fn eval coarse-grained: concurrent execution of separable 
simulations within a fn. eval. (e.g., multiple loading cases) 

4. Fn eval fine-grained: parallelization of the solution steps within 
a single analysis code (e.g., Salinas, Aria (SIERRA), Xyce) 

Math analysis & experiments 

t 1 =8 

t 1 =4 

t 
1 =2 

t 1 =1 

concurrency at lowest scheduling level 

t 1 / t 2 / t 3  = 8/4/1 is preferred 
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Parallelism simulator: 

4096 procs.: 32 x 128 

simulation heterogeneity 

static scheduling 

Recursive partitioning & scheduling 

ASCI Red Scalability 
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Motivation 

• Very large scale uncertainty quantification 
(UQ) of realistic problems require ‘curse of 
dimensionality’ limiting methods, such as 
sparse grids, and scalable UQ methods, 
such as stochastic collocation. 

• Growing high-performance computing to the 
exascale will require high flop/watt 
computing devices, and next generation 
architectures are adopting these devices in 
hybrid CPU/GPU systems. 

Extending adaptive sparse grids for 

stochastic collocation to hybrid 

architectures 

Results 

• Built an adaptive sparse grid library for 
stochastic collocation 

• Extended this library so that parallel sparse 
grids can be scalable on small hybrid test 
clusters. 

Courtesy of Ralf Deiterding, ORNL 



• Steady-state stochastic problem (for simplicity): 

 

 

• Stochastic Galerkin method (Ghanem and many, many others…): 

 

 

 

• Method generates new coupled spatial-stochastic nonlinear problem (intrusive) 

 

 

 

 

 

• Advantages: 

– Many fewer stochastic degrees-of-freedom for comparable level of accuracy 

• Challenges: 

– Computing SG residual and Jacobian entries in large-scale, production simulation codes 

– Solving resulting systems of equations efficiently 

Embedded stochastic Galerkin (SG) uncertainty 

quantification method generates large block systems 

Stochastic sparsity Spatial sparsity 

Courtesy of Eric Phipps, SNL 



• Rearrange for an outer-spatial, inner-stochastic, ordering 
– Obtain very large, nearly dense blocks 

– Use sparse outer layout for distributed memory parallelism 

– Use dense inner blocks for on-node shared memory parallelism 

 

 

 

 

 

 

 

• Requires heterogeneous multicore parallelism in complete 
forward uncertainty propagation calculation 
– Application fill 

– Iterative solver matrix-vector productions 

– Preconditioning 
 

• FY12-14 SNL LDRD 

Exploit large stochastic blocks for multicore 

shared-memory parallelism 

Stochastic sparsity Spatial sparsity 

Courtesy of Eric Phipps, SNL 



Adaptive Collocation Methods 

Drivers: Efficiency, robustness, scalability  adaptive methods, adjoint enhancement 

Polynomial order (p-) refinement approaches: 

• Uniform: isotropic tensor/sparse grids 

• Increment grid: increase order/level, ensure change (restricted growth in nested rules) 

• Assess convergence: L2 change in response covariance 

Tensor-product quadrature Smolyak sparse grid 



Adaptive Collocation Methods 

Drivers: Efficiency, robustness, scalability  adaptive methods, adjoint enhancement 

Polynomial order (p-) refinement approaches: 

• Uniform: isotropic tensor/sparse grids 

• Increment grid: increase order/level, ensure change (restricted growth in nested rules) 

• Assess convergence: L2 change in response covariance 

• Dimension-adaptive: anisotropic tensor/sparse grids 

• PCE/SC: variance-based decomp.  total Sobol’ indices  anisotropy (dimension preference) 

• PCE: spectral coefficient decay rates  anisotropy (index set weights) 

 

Tensor-product quadrature Smolyak sparse grid 



Adaptive Collocation Methods 

Drivers: Efficiency, robustness, scalability  adaptive methods, adjoint enhancement 

Polynomial order (p-) refinement approaches: 

• Uniform: isotropic tensor/sparse grids 

• Increment grid: increase order/level, ensure change (restricted growth in nested rules) 

• Assess convergence: L2 change in response covariance 

• Dimension-adaptive: anisotropic tensor/sparse grids 

• PCE/SC: variance-based decomp.  total Sobol’ indices  anisotropy 

• PCE: spectral coefficient decay rates  anisotropy 

• Goal-oriented dimension-adaptive: generalized sparse grids 

• PCE/SC: change in QOI induced by trial index sets on active front 

(Gerstner, 2003) 

Fine-grained control: 

frontier not limited by 

prescribed shape of 

index set constraint 

Smolyak sparse grid 
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A 

1. Initialization: Starting from reference grid  

(often w = 0 grid), define active index sets using 

admissible forward neighbors of all old index sets. 

2. Trial set evaluation: For each trial index set, 

evaluate tensor grid, form tensor expansion, 

update combinatorial coefficients, and combine 

with reference expansion. Perform necessary 

bookkeeping to allow efficient restoration. 

3. Trial set selection: Select trial index set that 

induces largest change in statistical QOI.  

4. Update sets: If largest change > tolerance, then 

promote selected trial set from active to old and 

compute new admissible active sets; return to 2.  

If tolerance is satisfied, advance to step 5. 

5. Finalization: Promote all remaining active sets 

to old set, update combinatorial coefficients, and 

perform final combination of tensor expansions to 

arrive at final result for statistical QOI. 
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Algebraic Test Functions 

b = U[5,15], h = U[15,25], 

P = N(500, 100), M = N(2000, 400), 

rP,M = 0.5, Y = logN(5, 0.5) 

Short Column (n=5)  

Sparse 

w, t, R, E, X, Y: U[1,10], U[1,10],  

N(4E4, 2E3), N(2.9E7, 1.45E6),  

N(500, 100), N(1E3, 100); D0 = 2.2535” 
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Cantilever Beam (n=6) 

Displacement Sparse 
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SC SSG uniform

SC SSG adaptive Sobol
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PCE SSG uniform
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Stress Sparse 

• Designed to be challenging for global SA:  

term cancellations at mid-point & bounds 

• Premature convergence in adaptive methods  

 start from higher-order grid 

x1, x2, x3: iid U[0, 1] 

Ishigami (n=3) 



Extend Input Scalability through  

Adjoint Derivative-Enhancement 

PCE: 

• Linear regression with derivatives 

• Gradients/Hessians  addtnl. eqns. 

 

SC: 

• Gradient-enhanced interpolants 

• Local: cubic Hermite splines 

• Global: Hermite interpolation polynomials 

 

EGRA: 

• Gradient-enhanced kriging/cokriging 

• Interpolates function values and gradients 

• Scaling: n2  n 



Gradient-Enhanced Kriging (GEK) 
Enabler for EGRA and Bayesian emulation 



Gradient-Enhanced PCE 

Straightforward regression approach: 

 

 

 

 

 
Vandermonde-like systems known to suffer from ill-conditioning 

• unweighted LLS by SVD 

(LAPACK GELSS) 

• equality constrained LLS by QR 

(LAPACK GGLSE) when under-

determined by values alone  
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Grad-Enhanced PCE: SVD Condition for Pt Colloc ratio = 2

 

 

Rosenbrock no grads

Rosenbrock grads

Short col no grads

Short col grads

Cant beam no grads

Cant beam grads

LHS 2x oversample 
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Gradient-Enhanced PCE: Rosenbrock Moments

 

 

 no grads cr2

 grads GELSS cr2

 grads GGLSE cr2

 no grads cr2

 grads GELSS cr2

 grads GGLSE cr2

 no grads cr1

 grads GELSS cr1

 grads GGLSE cr1

 no grads cr1

 grads GELSS cr1

 grads GGLSE cr1

Error growth as we over-resolve exact solutions 
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Convergence for Gerstner aniso3 for sparse grids under uniform refinement

 

 

PCE Global Legendre

SC Global Lagrange

SC PWLinear Newton-Cotes

SC PWCubic Newton-Cotes
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Convergence for Sobol G Fn for sparse grids under uniform refinement

 

 

PCE Global Legendre

SC Global Lagrange

SC PWLinear Newton-Cotes

SC PWCubic Newton-Cotes
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Smooth 

Nonsmooth 

Dimension-adaptive h-refinement for SC: 

• Local spline interpolants: linear Lagrange (value-based),  

cubic Hermite (gradient-enhanced) 

• Global grids: iso/aniso tensor, iso/aniso/generalized sparse 

• h-refinement: uniform, adaptive, goal-oriented adaptive 

• Basis formulations: nodal, hierarchical 

Dimension-adaptive h-refinement  

with gradient-enhanced interpolants 

and similar for higher-order moments 

Cubic shape fns: type 1 

(value) & type 2 (gradient) 

Multivariate tensor product to arbitrary derivative order (Lalescu): 



Stochastic sensitivity analysis 

• Aleatory or combined expansions including nonprobabilistic dimensions s  

 sensitivities of moments w.r.t. design and/or epistemic parameters 

 

 

 

Design and Model Calibration Under Uncertainty 

 

 

 

 

 

Mixed Aleatory-Epistemic UQ 

• Approaches that are more accurate/efficient than nested sampling 

Build on efficient/scalable UQ core  

epistemic 

sampling 

aleatory 

sampling 

simulation 
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Add resp stats su (, , z/b/p) 

 

 

 

 

Increasing epistemic 

structure (stronger 

assumptions) 

• Interval-valued probability (IVP), aka PBA 

• Dempster-Shafer theory of evidence (DSTE) 

• Second-order probability (SOP), aka PoF 
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Mixed Aleatory-Epistemic UQ: IVP, DSTE, and SOP 

Traditional approach: nested sampling 

• Expensive sims  under-resolved  

sampling (especially @ outer loop) 

• Under-prediction of credible outcomes 

epistemic 

sampling 

aleatory 

sampling 

simulation 

Epistemic uncertainty (aka: subjective, reducible, lack of knowledge  

uncertainty): insufficient info to specify objective probability distributions 

Address accuracy and efficiency 

• Inner loop: stochastic exp. that are epistemic-aware (aleatory, combined) 

• Outer loop: 

• IVP, DSTE: opt-based interval estimation, global (EGO) or local (NLP) 

• SOP: nested stochastic exp. (nested expectation is only post-processing in special cases) 

Increasing epistemic 

structure (stronger 

assumptions) 

Algorithmic approaches 

• Interval-valued probability (IVP), aka probability bounds analysis (PBA) 

• Dempster-Shafer theory of evidence (DSTE) 

• Second-order probability (SOP), aka probability of frequency 



IVP SC SSG Aleatory: b interval converged to 5-6 digits by 300-400 evals 

 

 

 

 

IVP nested LHS sampling: converged to 2-3 digits by 108 evals 

Fully converged area interval = [75., 375.], β interval = [−2.18732, 11.5900] 

Mixed Aleatory-Epistemic UQ: 
IVP, SOP, and DSTE based on Stochastic Expansions 

Multiple cells  

within DSTE 

Analytic C∞ 

Convergence rates for combined expansions 

L∞ metrics:  

IVP mixed,  

DSTE mixed 

L2 metrics: 

Aleatory,  

SOP mixed 

Rational 
Discontinuous C0 Impact: render mixed UQ studies  

practical for large-scale applications 
Current:  

• Global or local opt. for epistemic intervals  

 accuracy or scaling w/ epistemic dimension 

• Global or local UQ for aleatory statistics  

 accuracy or scaling w/ aleatory dimension 

Future: 

• adaptive and adjoint-enhanced global methods  

 accuracy and scaling 



ASCR: Multi-Physics and Network-Coupled UQ 
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Low-fidelity Network Plant Model 

High-fidelity Multi-physics 

Component Model (Core) 

Component 1 

Component 2 

Nonlinear elimination 
Equations Newton Step 

• Component-level UQ via stochastic expansions 

• Stochastic dimension reduction at component interfaces 
(generate new bases orthogonal to (implied) output PDFs)  

• Strongly coupled solver technology for coupled  

stochastic problems 



Multifidelity UQ through stochastic expansion of model discrepancy: 
• Extension of multifidelity opt methods that converge to local HF optimum based on local corrections 

• Converge to global HF statistics based on global corrections (0th/1st consistency @HF collocation pts) 

Multifidelity UQ using Stochastic Expansions 

Adaptive algorithm balances LF/HF cost and targets 

regions where LF predictive capabilities break down: 

• Greedy selection of index sets for LF or model discrepancy 

based on DQOI/DCost 

Nlo >> Nhi 



DAKOTA Software 

Releases: Major/Interim, Stable/VOTD; 5.1 released 12/10 
 

Modern SQE: Linux/Unix, Mac, Windows; Nightly builds/testing; 

 subversion, TRAC, autotools/Cmake 
 

GNU LGPL: free downloads worldwide  

(~9000 total ext. registrations, ~3500 distributions last yr.) 

Community development: open checkouts now available 

Community support: dakota-users, dakota-help 

 

Black box: 

 Sandia simulation codes 

 Commercial simulation codes 

Library mode (semi-intrusive): 

 ALEGRA (shock physics), 

 Xyce (circuits), Sage (CFD), 

 Albany/TriKota (Trilinos-based), 

 MATLAB, Python, ModelCenter,  

 SIERRA (multiphysics) 

DAKOTA 

  Optimization 

  Uncertainty Quant. 

  Parameter Est. 

  Sensitivity Analysis 

Model 

Parameters 

Design 

Metrics 

Iterative systems analysis 

Multilevel parallel computing 

Simulation management 

http://dakota.sandia.gov 

Manuals, Publications, Training matls. online 


