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1. Introduction and Theory 

ALEGRA is a finite-element multiphysics code designed for modeling shock 
hydrodynamics and coupled electromagnetic phenomena including 
magnetohydrodynamics (MHD). This multiphysics capability is a key feature of 
ALEGRA and the result of many years of multidisciplinary effort. Verification and 
validation (V&V) of ALEGRA is also a significant undertaking. Fortunately, the 
proper compartmentalization is ingrained in the architecture of ALEGRA. In other 
words, various modules of ALEGRA can be used without others when necessary. 
Therefore, the V&V procedures can be compartmentalized as well.  

We have 2 goals in pursuing this project. First, we explore in the quasi-static 
approximation the evolution of the magnetic fields inside and outside an inclusion 
and the parameters for which the quasi-static approach provides for self-consistent 
results. Second, we explore how reliable ALEGRA is in its static limit, specifically 
for magnetic diffusion. By the static limit we understand the stationary states 
without macroscopic current. We choose quite a general class of 3-D solutions for 
which a linear isotropic metallic matrix is placed inside a stationary magnetic field 
approaching a constant value at infinity. 

Analysis for related magnetic diffusion problems appears throughout the literature. 
Knoepfel1 considered linear and nonlinear magnetic diffusion for simple 
geometries and nonpermeable materials. Rieben and White2 performed simulations 
for linear transient magnetic diffusion in several geometries, including annular and 
spherical shapes. Woodson and Melcher3 analyzed permeable materials for a slab 
geometry. Brauer4 considered slabs and cylinders with linear and nonlinear 
permeability and finite-element modeling. Here we consider linear permeability 
with an ellipsoidal geometry in 3-D. This expands upon the previous work 
described in Refs. 5 and 6, which examine 2-D magnetic diffusion into an elliptic 
cylinder. The 3-D ellipsoidal situation is considerably more challenging because of 
the size of the simulations required to resolve the inclusion. 

1.1 MHD Master System 

The analysis of quasi-statics is based on the following reduced Maxwell system: 
 

                           𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖∇𝑗𝑗𝐸𝐸𝑘𝑘 = −
1
𝑐𝑐
𝜕𝜕𝐵𝐵𝑖𝑖

𝜕𝜕𝜕𝜕
,              𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖∇𝑗𝑗𝐻𝐻𝑘𝑘 =

4𝜋𝜋
𝑐𝑐
𝐽𝐽𝑖𝑖 .                           (1) 
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These bulk partial differential equations (PDEs) should be augmented with 1) the 
constitutive equations 𝐽𝐽𝑖𝑖 = 𝜎𝜎𝑖𝑖𝑖𝑖𝐸𝐸𝑗𝑗 (Ohm's law), 2) the constitutive equation 𝐵𝐵𝑖𝑖 =
𝐵𝐵𝑖𝑖(𝐻𝐻𝑘𝑘), 3) boundary conditions �𝐵𝐵𝑖𝑖�

−
+
𝑛𝑛𝑖𝑖 = 0, �𝐻𝐻𝑖𝑖�

−
+
𝜏𝜏𝑖𝑖 = 0, 4) the conditions at 

infinity, and 5) appropriate conditions at infinity as well as with corresponding 
initial conditions. 

Here, 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖 is the covariant Levi-Civita skew-symmetric tensor; 𝐸𝐸𝑖𝑖, 𝐻𝐻𝑖𝑖, and 𝐵𝐵𝑖𝑖 are 
the electric and magnetic field and magnetic induction, respectively; 𝐽𝐽𝑖𝑖 is the 
electric current density of free charges, 𝑐𝑐 is the speed of light in vacuum, and 𝜎𝜎𝑖𝑖𝑖𝑖 is 
electrical conductivity. In the boundary conditions, 𝑛𝑛𝑖𝑖 and 𝜏𝜏𝑖𝑖 are the normal and 
tangent vectors to the discontinuity boundaries. The ALEGRA code uses the vector 
potential 𝐴𝐴𝑖𝑖 . The vectors 𝐴𝐴𝑖𝑖 and 𝐻𝐻𝑖𝑖 are interconnected by the covariant differential 
relation 𝐻𝐻𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖∇𝑗𝑗𝐴𝐴𝑘𝑘. 

1.2 Exact Solution for an Ellipsoidal Inclusion 

There are few exact 2-D and 3-D solutions on the MHD master system. For the 
static equilibrium configuration, a closed-form solution can be obtained for an 
ellipsoidal inclusion in an infinite isotropic matrix, in particular, in vacuum, which 
allows generalization for anisotropic and nonlinear media.7–9 Its origin traces back 
to the pioneering papers by Eshelby.10,11  This solution is described in the following 
paragraphs and used in our project for verification purposes. 

Consider an ellipsoid with the semi-axes 𝑎𝑎1, 𝑎𝑎2, and 𝑎𝑎3 coinciding with the 
Cartesian axes 𝑧𝑧1, 𝑧𝑧2, and 𝑧𝑧3. We assume that the ellipsoidal domain is filled with 
a linear isotropic substance with magnetic permeability 𝜇𝜇. We then assume that the 
ellipsoid is immersed in the unbounded space in which there is a uniform magnetic 
field 𝐻𝐻𝑖𝑖°. 

If there is an ellipsoidal inclusion, the otherwise uniform field 𝐻𝐻𝑖𝑖 = 𝐻𝐻𝑖𝑖° will 
change. The changes are particularly strong inside the ellipse and in its vicinity. At 
infinity, the newly generated field 𝐻𝐻𝑖𝑖 approaches its original value 𝐻𝐻𝑖𝑖°. 

For the time-independent fields and in the absence of macroscopic currents 𝐽𝐽𝑖𝑖, the 
system (Eq. 1) splits into 2: one for the electrostatic field and the other for the 
magnetic field 

 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖∇𝑗𝑗𝐻𝐻𝑘𝑘 = 0 , (2)  

with these normal and tangential boundary conditions at the surface of the 
inclusion: 

 �𝜇𝜇𝐻𝐻𝑖𝑖�
−
+
𝑛𝑛𝑖𝑖 = 0,          �𝐻𝐻𝑖𝑖�

−
+
𝜏𝜏𝑖𝑖 = 0. (3) 
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The initial conditions become unnecessary in this case. Let 𝐻𝐻𝑖𝑖° = 𝐵𝐵𝑖𝑖° be the 
uniform magnetic field in vacuum occupying the whole space. Consider a magneto-
sensitive body 𝜔𝜔 immersed in a uniform field. When the body is introduced, the 
magnetic field 𝐻𝐻𝑖𝑖° and induction 𝐵𝐵𝑖𝑖° change, both inside and outside the inclusion. 
If the inclusion is finite in size, then the outside field 𝐻𝐻𝑖𝑖 = 𝐵𝐵𝑖𝑖 in the vacuum only 
asymptotically approaches the uniform fields 𝐻𝐻𝑖𝑖° = 𝐵𝐵𝑖𝑖° at 𝑧𝑧𝑖𝑖 → ∞ : 

 𝐻𝐻|𝒛𝒛|→∞
𝑖𝑖 = 𝐵𝐵|𝒛𝒛|→∞

𝑖𝑖   →   𝐻𝐻𝑖𝑖° = 𝐵𝐵𝑖𝑖°, (4) 

where 𝑧𝑧𝑖𝑖 are the spatial coordinates. The disturbance (𝐻𝐻𝑖𝑖 − 𝐻𝐻𝑖𝑖°) will be generated 
because of the dipole magnetization 𝑀𝑀𝑖𝑖 appearing inside the inclusion, but whose 
influence will be sensed both inside and outside the inclusion. 

This problem for an ellipsoidal inclusion in unbounded space has been analyzed by 
many outstanding mathematicians and physicists. First, the problem was 
considered in the contexts of gravitation and cosmology. Later on, the problem and 
its solutions found multiple applications in many other disciplines, including 
electromagnetism, and it is in this context that we use it here. 

We seek solutions assuming that 𝐻𝐻𝑖𝑖 is a potential field, that is,   

 𝐻𝐻𝑖𝑖 = −∇𝑖𝑖𝜂𝜂 , (5) 

where 𝜂𝜂(𝑧𝑧) is a scalar potential field that should not be confused with the scalar 
potential of the electrostatic field, or with the vector potential 𝐴𝐴𝑖𝑖 of the magnetic 
field. When dealing with an ellipsoid immersed in the uniform field 𝐻𝐻𝑖𝑖 = 𝐻𝐻𝑖𝑖° at 
infinity, we will be looking for a solution 𝜂𝜂−(𝑧𝑧) inside the ellipsoid in the following 
form: 

 𝜂𝜂−(𝑧𝑧) = −𝐾𝐾𝑖𝑖𝑧𝑧𝑖𝑖 , (6) 

which automatically satisfies the PDE in Eq. 2 and implies that 𝐻𝐻𝑖𝑖 = 𝐾𝐾𝑖𝑖 inside the 
ellipsoid. 

For the solution outside the ellipsoidal inclusion, we will be seeking an expression 
of the form 

 𝜂𝜂+(𝑧𝑧) = 𝑆𝑆𝑖𝑖∇𝑖𝑖Θ+ − 𝐻𝐻𝑖𝑖°𝑧𝑧𝑖𝑖 , (7) 

where Θ is the Newtonian potential of the ellipsoid, given by the relationship 
  

                                                             Θ(𝑧𝑧) = �
𝑑𝑑𝜔𝜔∗

|𝑧𝑧 − 𝑧𝑧∗|

 

𝜔𝜔
                                          (8) 
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and it satisfies the PDEs: 

                  ∇𝑖𝑖∇𝑖𝑖Θ = −4𝜋𝜋       Inside the ellipsoid. 

                    ∇𝑖𝑖∇𝑖𝑖Θ = 0            Outside the ellipsoid. (9) 

Solutions of this form automatically satisfy the PDE in Eq. 2 and the condition at 
infinity 

 𝐻𝐻𝑖𝑖(𝑧𝑧) → 𝐻𝐻𝑖𝑖°  at  |𝑧𝑧| → ∞ , (10) 

and it is implied that the following expression holds outside the ellipsoid: 

 𝐻𝐻𝑖𝑖 = 𝐻𝐻𝑖𝑖° − 𝐺𝐺𝑖𝑖
𝑗𝑗∇𝑗𝑗Θ , (11) 

where 𝐺𝐺𝑖𝑖
𝑗𝑗 is a uniform tensor to be determined. 

As is well-known,12 the Newtonian potential within the ellipsoid is described by 
the quadratic form 

                                                            Θ−(𝑧𝑧) = 𝐶𝐶 −
1
2
𝑌𝑌𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗 ,                                      (12) 

 
where 𝐶𝐶 is a constant and 𝑌𝑌𝑖𝑖𝑖𝑖 is a symmetric tensor. 𝑌𝑌𝑖𝑖𝑗𝑗 depends only on the 
geometry of the ellipsoid—we call it the “geometric tensor”.  It is described in 
Section 1.3. Thus, to find an exact solution for 𝐻𝐻𝑖𝑖, we need to find the constant 𝐶𝐶 
and the 2 unknown vectors 𝐾𝐾𝑖𝑖 (interior) and 𝑆𝑆𝑖𝑖 (exterior). 

The potential Θ+(𝑧𝑧) outside the ellipsoid is much more complex. Fortunately, if the 
potential inside the inclusion is known (i.e., the constants 𝐶𝐶 and 𝑌𝑌𝑖𝑖𝑖𝑖 are known), 
then we can uniquely recover the potential outside the inclusion. Using the 
boundary conditions in Eq. 3, we can find all of the constants. 

Using the potential-based definition of 𝐻𝐻𝑖𝑖 in Eq. 5, we can rewrite the surface 
tangential and normal boundary conditions in Eq. 3 as follows: 

 𝜂𝜂− = 𝜂𝜂+      (tangential component) (13) 

and  

 𝜇𝜇−∇𝑖𝑖𝜂𝜂−𝑛𝑛𝑖𝑖 = ∇𝑖𝑖𝜂𝜂+𝑛𝑛𝑖𝑖       (normal component) . (14) 

Then, with the help of Eqs. 6 and 7, we get 

 𝐾𝐾𝑖𝑖𝑧𝑧𝑖𝑖 = −𝑆𝑆𝑘𝑘∇𝑘𝑘Θ+ + 𝐻𝐻𝑖𝑖°𝑧𝑧𝑖𝑖 (15) 
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and 

 𝜇𝜇−𝐾𝐾𝑖𝑖𝑛𝑛𝑖𝑖 = (−𝑆𝑆𝑘𝑘∇𝑖𝑖∇𝑘𝑘Θ+ + 𝐻𝐻𝑖𝑖°) 𝑛𝑛𝑖𝑖 . (16) 

First derivatives of the potential Θ remain continuous across the ellipsoid surface. 
Therefore, we can rewrite the surface tangential boundary condition in Eq. 15 as  

 𝐾𝐾𝑖𝑖 − 𝑌𝑌𝑘𝑘𝑘𝑘𝑆𝑆𝑘𝑘 = 𝐻𝐻𝑖𝑖° . (17) 

Similarly, we can rewrite the pointwise surface normal boundary condition in Eq. 
16 as the following algebraic condition: 

 𝜇𝜇−𝐾𝐾𝑖𝑖 + 𝑆𝑆𝑘𝑘(4𝜋𝜋𝛿𝛿𝑖𝑖𝑖𝑖 − 𝑌𝑌𝑖𝑖𝑖𝑖) = 𝐻𝐻𝑖𝑖° , (18) 

where 𝛿𝛿𝑖𝑖𝑖𝑖 is the Kronecker delta tensor. Using Eq.17, we can rewrite Eq. 18 as 

 (𝜇𝜇− − 1)𝐾𝐾𝑖𝑖 + 4𝜋𝜋𝜋𝜋𝑖𝑖 = 0 . (19) 

To summarize, Eqs. 17 and 19 comprise a system of 2 linear vector equations with 
2 unknown vectors 𝐾𝐾𝑖𝑖 and 𝑆𝑆𝑖𝑖. Eliminating 𝑆𝑆𝑖𝑖 from the system yields  
 

                                                     �𝛿𝛿𝑘𝑘𝑘𝑘 + 𝑌𝑌𝑘𝑘𝑘𝑘
𝜇𝜇− − 1

4𝜋𝜋
�𝐾𝐾𝑘𝑘 = 𝐻𝐻𝑖𝑖°.                                  (20) 

 
After solving Eq. 20 with respect to 𝐾𝐾𝑘𝑘, we can find 𝑆𝑆𝑖𝑖 from the equation 

                                                                  𝑆𝑆𝑖𝑖 =
𝜇𝜇− − 1

4𝜋𝜋
𝐾𝐾𝑖𝑖 .                                              (21) 

 
Since we have thus found the vectors 𝐾𝐾𝑖𝑖 and 𝑆𝑆𝑖𝑖, the determination of the exact 
solution is complete, and all that remains is to work out closed-form solutions for 
𝐻𝐻𝑖𝑖, which can be used in verification studies for ALEGRA. 

1.3 Geometric Tensor 

To build closed-form solutions, first the geometric tensor 𝑌𝑌𝑖𝑖𝑖𝑖 must be determined. 
The main components of 𝑌𝑌𝑖𝑖𝑖𝑖 for an ellipsoid with semi-axes equal to 𝑎𝑎𝑖𝑖 are given 
by the formulae 

                       𝑌𝑌𝑖𝑖𝑖𝑖 = 2𝜋𝜋𝑎𝑎1𝑎𝑎2𝑎𝑎3 �
𝑑𝑑𝑑𝑑

(𝑎𝑎𝑖𝑖2 + 𝑞𝑞)�(𝑎𝑎12 + 𝑞𝑞)(𝑎𝑎22 + 𝑞𝑞)(𝑎𝑎32 + 𝑞𝑞)

∞

0

             (22) 

 
and the constant 𝐶𝐶 appearing in Eq. 12 is given by  
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                                     𝐶𝐶 = 𝑎𝑎1𝑎𝑎2𝑎𝑎3 �
𝑑𝑑𝑑𝑑

�(𝑎𝑎12 + 𝑞𝑞)(𝑎𝑎22 + 𝑞𝑞)(𝑎𝑎32 + 𝑞𝑞)

∞

0

 .                    (23) 

 
Here, we simplify the problem by limiting our interest to an ellipsoidal inclusion 
that has 2 planes of symmetry—that is, it has 2 axes equal in length, in which case 
it is a spheroid. In the case of a spheroid with semi-axes 𝑎𝑎1 = 𝑎𝑎2 = 𝑀𝑀 and 𝑎𝑎3 = 𝑁𝑁, 
we get        
 

𝑌𝑌11 = 𝑌𝑌22 = 2𝜋𝜋𝑀𝑀2𝑁𝑁�
𝑑𝑑𝑑𝑑

(𝑀𝑀2 + 𝑞𝑞)�𝑁𝑁2 + 𝑞𝑞

∞

0

    and  

                                                              𝑌𝑌33 = 4𝜋𝜋 − 2𝑌𝑌11                                                (24) 
 

The integral in Eq. 22 can be evaluated using elliptic integrals. For a spheroidal 
shape, the elliptic integrals reduce to the more elementary trigonometric functions. 
Defining a spheroid aspect ratio 𝑒𝑒 = 𝑁𝑁/𝑀𝑀, we can generate expressions for oblate 
(𝑒𝑒 ≤ 1) and elongated (𝑒𝑒 ≥ 1) spheroids.  For the oblate (saucer-like) case with the 
axis oriented in the 3-direction, we get 

 
𝑌𝑌11 = 𝑌𝑌22 = 2𝜋𝜋

𝑒𝑒
(1 − 𝑒𝑒2)3/2 �arccos 𝑒𝑒 − 𝑒𝑒�1 − 𝑒𝑒2�     and 

 
                                                        𝑌𝑌33 = 4𝜋𝜋 − 2𝑌𝑌11,       𝑒𝑒 ≤ 1 .                                 (25)             

For the prolate or “elongated” (cigar-like) case with the axis oriented in the  
1-direction, we get 

𝑌𝑌22 = 𝑌𝑌33 = 2𝜋𝜋
𝑒𝑒

(𝑒𝑒2 − 1)3/2 �𝑒𝑒�𝑒𝑒
2 − 1 − arccos 𝑒𝑒�      and 

 
                                                         𝑌𝑌11 = 4𝜋𝜋 − 2𝑌𝑌22,       𝑒𝑒 ≥ 1  .                              (26)       
 
The geometric tensor can be written more generally for a spheroid as 

 𝑌𝑌𝑘𝑘𝑘𝑘 = 𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑘𝑘𝑙𝑙𝑖𝑖 + �2𝜋𝜋 − 1
2
𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎� (𝛿𝛿𝑘𝑘𝑘𝑘 − 𝑙𝑙𝑘𝑘𝑙𝑙𝑖𝑖) , (27) 

where the unit vector 𝑙𝑙𝑖𝑖 is aligned with the spheroid axis, and 𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is given by 𝑌𝑌33 
in Eq. 25 for the oblate case, and by 𝑌𝑌11 in Eq. 26 for the prolate case. The off-
diagonal components of the geometric tensor are zero by the assumed alignment of 
the spheroid to the 1, 2, 3 axes. 
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1.4 Closed-Form Solution  

To work out a closed-form solution for the field in the ellipsoid interior, we first 
solve Eq. 20 for 𝐾𝐾𝑖𝑖. Component-wise, this yields  

𝑖𝑖 = 1 

     ��𝛿𝛿𝑘𝑘1𝐾𝐾𝑘𝑘 + 𝑌𝑌𝑘𝑘1
𝜇𝜇− − 1

4𝜋𝜋
𝐾𝐾𝑘𝑘�

3

𝑘𝑘=1

= 𝐻𝐻1° 

             𝐾𝐾1 �1 + 𝑌𝑌11
𝜇𝜇− − 1

4𝜋𝜋
� = 𝐻𝐻1° .                                     (28) 

 

𝑖𝑖 = 2 

     ��𝛿𝛿𝑘𝑘2𝐾𝐾𝑘𝑘 + 𝑌𝑌𝑘𝑘2
𝜇𝜇− − 1

4𝜋𝜋
𝐾𝐾𝑘𝑘�

3

𝑘𝑘=1

= 𝐻𝐻2° 

                                                  𝐾𝐾2 �1 + 𝑌𝑌22
𝜇𝜇− − 1

4𝜋𝜋
� = 𝐻𝐻2°  .                                     (29) 

 
𝑖𝑖 = 2 

       ��𝛿𝛿𝑘𝑘3𝐾𝐾𝑘𝑘 + 𝑌𝑌𝑘𝑘3
𝜇𝜇− − 1

4𝜋𝜋
𝐾𝐾𝑘𝑘�

3

𝑘𝑘=1

= 𝐻𝐻3° 

                                                   𝐾𝐾3 �1 + 𝑌𝑌33
𝜇𝜇− − 1

4𝜋𝜋
� = 𝐻𝐻3°  .                                    (30) 

 

Simplifying these expressions, we have  
 

                                                 𝐾𝐾𝑖𝑖 = 𝐻𝐻𝑖𝑖° �1 +
𝜇𝜇− − 1

4𝜋𝜋
𝑌𝑌𝐼𝐼𝐼𝐼�

−1

 ,                                   (31) 

 
where the subscript II notation indicates diagonal components rather than 
summation over repeated indices.  

Having found 𝐾𝐾𝑖𝑖, we can write an expression for the field in the ellipsoid interior. 
To obtain the exterior solution, we must also substitute 𝐾𝐾𝑖𝑖 into Eq. 21, as follows:  
 

                                          𝑆𝑆𝑖𝑖 = 𝐻𝐻𝑖𝑖° �
𝜇𝜇− − 1

4𝜋𝜋
� �1 +

𝜇𝜇− − 1
4𝜋𝜋

𝑌𝑌𝐼𝐼𝐼𝐼�
−1

 .                          (32) 
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However, the form of the potential Θ+outside the ellipsoid is not analytically 
simple. Thus, even having found 𝑆𝑆𝑖𝑖, it will not be straightforward to comprehend 
the behavior of 𝐻𝐻𝑖𝑖 outside the ellipsoid. At this point, we proceed by limiting the 
scope of our study to the ellipsoid interior. 

The ellipsoid interior has a relatively simple solution, which is found by combining 
Eqs. 5 and 6 and to yield 𝐻𝐻𝑖𝑖 = 𝐾𝐾𝑖𝑖, or, from Eq. 31,   
  

                                                     𝐻𝐻𝑖𝑖 = 𝐻𝐻𝑖𝑖° �1 +
𝜇𝜇− − 1

4𝜋𝜋
𝑌𝑌𝐼𝐼𝐼𝐼�

−1

 .                               (33) 

 
Extending this to the magnetic induction and retaining the assumed orientation of 
the ellipsoid axis along the 1-direction, we have   
  

                                                   𝐵𝐵𝑖𝑖 = 𝜇𝜇−𝐻𝐻𝑖𝑖° �1 +
𝜇𝜇− − 1

4𝜋𝜋
𝑌𝑌𝐼𝐼𝐼𝐼�

−1

 .                             (34) 

 
Together with the definitions of the geometric tensor 𝑌𝑌𝐼𝐼𝐼𝐼 in Eqs. 25 and 26 for the 
oblate and prolate spheroids, we have a simple closed-form solution for the 
magnetic induction interior to the spheroid, which lends itself well to verification 
of computational electromagnetics simulations. This represents the magnetic 
induction remaining in the material after magnetic diffusion has saturated and 
currents have decayed to zero, leaving the steady-state “equilibrium” configuration 
of the field. This field is uniform within the ellipsoid and depends only on the 
geometry of the ellipsoid, its relative permeability, and the imposed field at infinity. 

2. Numerical Model and Simulations 

Having now arrived at a transparent closed-form solution for the magnetic field at 
equilibrium inside an ellipsoidal inclusion, we can use it as a verification tool for 
numerical modeling. Transient magnetic diffusion calculations can be performed 
using the ALEGRA-MHD code,13 and the accuracy of these calculations can be 
probed. 

2.1 The ALEGRA-MHD Code 

The “transient magnetics” module of the ALEGRA-MHD code (henceforward 
ALEGRA) computes solutions to the reduced Maxwell system of Eq. 1 in  
quasi-static fashion. It is assumed the medium is stationary, with an electrical 
conductivity 𝜎𝜎 and a magnetic permeability 𝜇𝜇 that are fixed for each material. The 
system is recast in terms of the vector potential 𝐴𝐴𝑖𝑖 and transformed to SI units, and 
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appropriate constitutive relationships are incorporated. These include Ohm’s law 
𝐽𝐽𝑖𝑖 = 𝜎𝜎𝐸𝐸𝑖𝑖 and a simple linear relationship between the magnetic field and the 
magnetic induction, 𝐵𝐵𝑖𝑖 = 𝜇𝜇𝐻𝐻𝑖𝑖. An implicit linear solver is used with a finite-
element discretization to evolve the solution forward in time.  

ALEGRA is equipped to handle a much broader class of problems, including  
high-strain-rate deformation, mechanical and electromagnetic forces, and Ohmic 
heating. These are encompassed within ALEGRA’s broader MHD capability. In 
these systems, body-fitted meshes and purely Lagrangian approaches are usually 
impractical because of large strains that are encountered. Therefore, ALEGRA 
includes a 2-step Lagrange-remap formulation that permits material motion across 
the mesh, and the presence of multiple materials in a single element. For the present 
work, only the transient magnetics module is considered—that is, ALEGRA’s 
capability to simulate the evolution of magnetic fields in a domain containing 
stationary materials of differing conductivity and permeability. But connections to 
the broader class of problems are retained by using a regular Eulerian mesh, as 
would be used in those situations, with material interfaces only resolved in 
volumetrically mixed multimaterial elements. This facilitates investigation into 
whether transient magnetics problems can be accurately represented in this way. 
Considering only Eulerian meshes, however, poses a significant obstacle, since 
material interfaces are not resolved explicitly. Here we examine the impact of the 
Eulerian approximation. 

2.2 Verification Strategy 

The equilibrium solution for the ellipsoid problem described previously is obtained 
in ALEGRA in quasi-static fashion by a series of implicitly integrated timesteps 
capturing the time evolution. After some time, the transient magnetic diffusion 
process saturates, leading to a distribution of the magnetic induction that is no 
longer varying in time. At this time, the distribution of the magnetic induction 
exterior to the inclusion remains spatially nonuniform, but interior to the ellipsoid, 
the analysis outlined in Section 1.4 shows that the magnetic induction must be 
spatially uniform. A useful verification test then is to compare the configuration of 
the magnetic induction interior to the ellipsoid computed by ALEGRA to that 
predicted by the analysis. 

To carry out this verification test, a series of simulations is designed for ALEGRA 
in 3-D. Dimensions and material properties including conductivity and 
permeability are chosen for the inclusion and the surrounding region, and an 
imposed magnetic field 𝐻𝐻𝑖𝑖° is defined. Discretizations are then chosen to allow a 
convergence analysis by spatial refinement of the mesh. The simulations are set to 
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run sufficiently late in time to reach the equilibrium condition, and comparison to 
the analytic result is made at this time. 

2.3 Sample Simulation Results 

Results from a sample 3-D ALEGRA simulation are shown in Fig. 1. Here, an 
ellipsoid with a major/minor radius of 1.8/0.56 cm is modeled for an imposed 
magnetic induction of 1.0 T oriented in the y-direction (vertical in these images). 
The ellipsoid axis lies along the z-direction, and 60 mesh elements span the  
z-dimension of the ellipsoid. It has a conductivity of 107 S/m and a permeability 
exceeding the permeability of free space 𝜇𝜇0 by a factor of 3 (i.e., a relative 
permeability 𝜇𝜇_ = 3). The exterior region has a conductivity of 10-6 S/m and 
permeability equal to 𝜇𝜇0 (i.e., a relative permeability of 1). The magnetic induction 
𝐵𝐵𝑖𝑖 evolves over time until a steady state is reached and negligible current persists. 
At that time, the magnetic induction inside the ellipsoid is uniform, as predicted by 
the preceding analysis.  
 

  

Fig. 1 Computed solutions for the vertical magnetic induction (𝑩𝑩𝒚𝒚) from ALEGRA during 
and after equilibration. The analytic solution predicts 1.5788 T inside the ellipsoid. 

Evaluating Eq. 34 for this geometry and imposed magnetic field predicts a vertical 
magnetic induction 𝐵𝐵𝑦𝑦 inside the ellipsoid of 1.5788 T. In the simulation, the mean 
equilibrium interior field is approximately 𝐵𝐵𝑦𝑦 = 1.596 T. Comparison with the 
analytic solution reveals that the approximation used to insert the ellipsoidal shape 
into the domain must be improved for precise comparison. Increasing the number 
of analytical points in the elliptical cross section when computing initial  
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element-wise volume fractions from 90 to 720 improves the computed result. The 
lateral extent of the simulation mesh also affects the accuracy of the result and must 
be a factor of 3 to 4 larger than the extent of the ellipsoid in any direction—only a 
subregion of the domain is shown in Fig. 1. Of course, the mesh resolution affects 
the accuracy as well, and this is explored in the following section. 

The 3-D simulations shown in Fig. 1 are analogous to the 2-D ALEGRA 
simulations described in Refs. 5 and 6, in that the aspect ratio of the 2-D ellipse has 
been used here for a 3-D ellipsoid, and the orientation of the magnetic field, 
dimensions, and material properties are all the same. However, the physical time 
required to reach a steady-state condition is much smaller in this 3-D ellipsoid case 
than in the 2-D ellipse case. For the ellipse or elliptical cylinder case, roughly 2 ms 
is required for the rate of electromagnetic energy deposition in the mesh by the 
imposed magnetic field to drop by 3 orders of magnitude from its initial rate. In the 
3-D ellipsoid case, only about 0.5 ms is required for the same drop. Magnetic 
diffusion proceeds to a steady state much more quickly for ellipsoid than for the 
elliptical cylinder of the same cross section. 

2.4 Verification Analysis 

To provide a rigorous verification test for ALEGRA in 3-D, a more challenging 
geometry than that shown in Fig. 1 is used here. The ellipsoid is elongated to an 
aspect ratio 𝑒𝑒 = 10, and an oblique imposed magnetic field is used, given by 𝐻𝐻𝑖𝑖° =
�𝜇𝜇0√3�

−1
(𝑥𝑥� + 𝑦𝑦� + 𝑧̂𝑧) A/m. This geometry is shown schematically in Fig. 2. 

 

Fig. 2 Geometry for verification test in ALEGRA (not to scale) 

The ellipsoid dimensions (semi-axes) for the verification problem are a = 3.16 cm 
in the x-direction and b = 0.316 cm in the y- and z-directions. Computational mesh 
dimensions are w = 24 cm in the axial (x) direction and h = 15 cm in the transverse 
(y and z) directions. Based on the outcome of the verification study in Refs. 5 and 

 

𝑎𝑎 
𝑏𝑏 

Interior: 
𝜎𝜎 = 107 S/m 
𝜇𝜇 = 3𝜇𝜇0 

Exterior: 
𝜎𝜎 = 10−3 S/m 
𝜇𝜇 = 𝜇𝜇0 
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6, only a regular rectangular mesh is used here, with no body-fitting. The mesh is 
composed of unit–aspect–ratio (cubic) hexahedral elements in the region of the 
ellipsoid, with gradually larger rectangular elements stretching out to the 
boundaries.  

Convergence of the steady-state solution at t = 1.2 ms under spatial refinement is 
studied by simulating this geometry in ALEGRA with meshes ranging from N = 20 
to N = 640 elements spanning the axial length of the ellipsoid. The exact solution 
predicted by Eq. 34 for the ellipsoid-interior magnetic induction in this system is 
𝐵𝐵𝑥𝑥 = 1.6645184 T and 𝐵𝐵𝑦𝑦 = 𝐵𝐵𝑧𝑧 = 0.8748995 T. Error estimates for these 
simulations are obtained by taking an L2 norm over all values of 𝐵𝐵𝑥𝑥, 𝐵𝐵𝑦𝑦, and 𝐵𝐵𝑧𝑧 
interior to the ellipsoid with respect to this uniform exact solution. A fractional error 
norm is then the ratio of this L2 error norm to the analytical value of the magnetic 
induction. This norm can be measured either with or without the transitional layer 
of mixed-material elements that span the void-material interface at the ellipsoid 
surface.  

Measurements of the fractional L2 error in the solution for 𝐵𝐵𝑥𝑥 with and without the 
mixed elements are shown in Fig. 3. We see that the error is dominated by the 
interfacial region where mixed-material elements are present. When the interfacial 
region is included (all nonexterior elements, or elements where ellipsoid material 
is present in any amount), the error magnitudes are larger by more than an order of 
magnitude, and the convergence rate drops from roughly 1 to roughly 0.5. Data for 
N = 20 without mixed-material elements are not included, because the N = 20 mesh 
is so coarse that all elements interior to the ellipsoid are mixed elements. 

 
Fig. 3 Convergence behavior with and without the layer of mixed elements on the ellipsoid 
surface 
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Since this initial measurement demonstrates that the mixed-material elements in the 
simulation carry large errors, the analysis is repeated using successively smaller 
interior subregions of the ellipsoid, with lateral and axial dimensions 75% and 15% 
of the actual inclusion. The convergence trends for 𝐵𝐵𝑥𝑥 and 𝐵𝐵𝑦𝑦 in these subregions 
are shown in Fig. 4. The convergence trend for 𝐵𝐵𝑧𝑧 is nearly identical to that for 𝐵𝐵𝑦𝑦, 
so it is not shown here. 

 

Fig. 4 Convergence trends for (a) the x-component and (b) the y-component of magnetic 
induction, for various subregions of the spheroid inclusion 

The solution computed by ALEGRA converges monotonically at approximately first 
order to the predicted analytic solution. The convergence rate and error magnitudes 
improve as the ellipsoid sampling subregion shrinks, and fewer elements near the 
interface are included in the error sum. The error magnitudes are significantly smaller 
for 𝐵𝐵𝑥𝑥 than for 𝐵𝐵𝑦𝑦 and 𝐵𝐵𝑧𝑧, because of the major/minor axis asymmetry that has been 
built into this test. The convergence rates are shown in Table 1. 

Table 1 Convergence rates for spheroid verification study for various subregions. 

Case Rate for 𝑩𝑩𝒙𝒙 Rate for 𝑩𝑩𝒚𝒚 Rate for 𝑩𝑩𝒛𝒛 

All nonexterior elements 0.525 0.365 0.365 
No mixed elements 0.755 0.675 0.675 

Central 75% 0.864 0.759 0.759 
Central 15% 1.013 0.961 0.961 

2.5 Origin of Diminished Convergence Rates 

Since verification is done here using magnetic induction B (of most interest to 
ALEGRA users), rather than the native vector potential A, we expect only  
first-order convergence of the solutions. This is because the magnetic induction is 
not the native finite-element solution variable, and ALEGRA must use certain 
approximations to obtain B. Thus, first-order convergence with respect to spatial 

 

(a) (b) 
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mesh refinement is what we expect, and that is what we observe in the tests, so long 
as the region near the material interface is excluded. 

Further investigation into the origins of the larger error magnitudes and diminished 
convergence rates near the interface shows that anomalous spatial oscillations 
persist in the solution even at steady state. These are shown in Fig. 5 for the 3 finest 
mesh resolutions, where spatial distributions of the fractional difference between 
the computed and analytic values of 𝐵𝐵𝑥𝑥 are plotted on a slice through the ellipsoid 
centroid normal to the z-direction. These oscillations also appear in the 2-D 
solutions discussed in Ref. 5 for the regular-mesh cases. 

The oscillations are unphysical and arise because in the mixed-material elements, 
the natural interface conditions on B and H (see Eq. 3) are not enforced explicitly, 
since the interface is actually treated as a volumetrically mixed zone at the level of 
the Eulerian spatial discretization. Further, when an ALEGRA simulation includes 
materials with distinct magnetic permeabilities, the element-level homogenization 
scheme actually averages the reluctivity, not the permeability. Such prominent 
oscillations have not been observed in magnetic diffusion simulations where the 
magnetic permeability is 𝜇𝜇0 everywhere. Therefore, these results suggest that the 
option to form an average element permeability might be useful. 

 

Fig. 5 Spatial distribution of error in ellipsoid-interior magnetic induction at steady state, 
arranged by increasing number of N elements spanning the axial length of the ellipsoid 

 

 

 

N = 160 

N = 320 

N = 640 
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2.6 Computational Cost  

The ALEGRA simulations conducted here vary enormously in computational cost.  
At N = 40, the mesh has 16,800 elements, and the simulation runs to completion in 
a few minutes on 8 processors. At N = 640, the mesh has 56 million elements (1.7 
billion edges) and runs to completion in about 3 days on 4,096 processors. This is 
very near the upper limit of the computational domain size that can be used in 
ALEGRA. 

3. Conclusions 

This work shows how the equilibrium/steady-state condition of the magnetic field 
in an ellipsoidal inclusion can be obtained analytically. The analysis results in a 
simple, elegant closed-form expression that describes a uniform magnetic field in 
the ellipsoid interior exactly. The expression is easily evaluated within verification 
testing techniques, making it well suited for use in verification of electromagnetics 
modeling tools like ALEGRA. 

Convergence testing using this analytic solution shows that the equilibrium 
magnetized state can be reached by transient means via computation with 
ALEGRA. The solution in the interior core of the ellipsoid converges to the exact 
solution at first order, as expected, for a very large range of spatial mesh sizes 
spanning the very coarsest to the very finest meshes that are possible using 
ALEGRA.  

The verification work reveals 2 significant issues in the computation of magnetic 
diffusion for magnetically permeable materials on Eulerian (nonbody-fitted) 
meshes. Those issues are 1) that the natural boundary conditions on B and H are 
not enforced explicitly and 2) that element-level homogenization of the elements 
on the ellipsoid interface using reluctivity can be inaccurate. These issues result in 
noticeable local perturbations from the exact uniform solution, which corrupt the 
ellipsoid interior field slightly and cause deterioration of the convergence rate when 
these elements are included in the error metric. 

Verification testing is applied here by developing an analytic solution and using 
convergence analysis. The test results can be used to advance the algorithms in 
ALEGRA and codes like it. It is anticipated that future work extending those 
algorithms can make use of the analytic solution and results. 
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List of Symbols, Abbreviations, and Acronyms 

2-D  2-dimensional 

3-D  3-dimensional 

MHD  magnetohydrodynamics 

PDE  partial differential equation 

V&V  verification and validation 
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