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1. Introduction
ALEGRA is a multipurpose computational tool for modeling a variety of mechani-
cal and electromagnetic phenomena and their interplay. This multiphysics capabil-
ity is a key feature of ALEGRA and the result of many years of multidisciplinary ef-
fort. However, it carries with it a necessarily high cost for validation and verification
(V&V). Fortunately, V&V efforts can take advantage of the compartmentalization
ingrained in the architecture of ALEGRA. In other words, various modules of ALE-
GRA can be used without others when necessary. Therefore, the V&V procedures
can be compartmentalized as well.

In this report, we study the reliability of ALEGRA’s transient magnetics module for
the static limit, and we explore the quasi-static evolution through which a steady
state solution is reached for a particular problem of interest. We begin in Section 2
by reviewing the system of equations used to describe quasi-static magnetization.
For the reader’s convenience, an analytic solution is presented here in summary
form for the problem of interest in the project. In Section 3, the full derivation of
this solution is presented in detail. This section may be skipped in the first reading
of the report. Section 4 provides some important information on the system of units
to be used. Section 5 describes the ALEGRA code. Section 6 describes the config-
uration of the ALEGRA simulations. In Section 7, the qualitative behavior of the
computed solution over time is described and illustrated graphically. The quantita-
tive verification analysis appears in Section 8, followed by conclusions in Section
9.
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2. The Quasi-Static Theory of Polarization of Metals
In the theoretical part of this project we follow the classical textbook of theoretical
physics.1

2.1 Master System
The analysis of quasi-statics is based on the following master system

zijk∇jEk = −1

c

∂Bi

∂t
(1)

zijk∇jHk =
4π

c
J i (2)

J i = σijEj (3)

Bi = Bi
(
H i
)

(4)

These bulk partial differential equations (PDEs) should be augmented with the
boundary conditions

[
Bi
]+
− ni = 0, [Hi]

+
− τ

i = 0 (5)

and appropriate conditions at infinity as well as with the corresponding initial con-
ditions.

In the system 1-5, zi and t are the spatial (Eulerian) coordinates and time; Ei, Hi

and Bi are the electric and magnetic field and magnetic induction, respectively; J i

is the electric current density of free charges, c is the speed of light in vacuum, σij

is electrical conductivity.

Subsystem 1, 2 comprises a correspondingly reduced classical Maxwell system for
electromagnetic field. Equation 1 is Faraday’s law. Equation 2 is Ampère’s law,
where displacement currents have been neglected. Equation 3 represents Ohm’s law
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in its the simplest linear version. The function Bi (H i) is the so-called constitutive
equation for the magnetic field. The constitutive relations 3 and 4 should be derived
from experiments. In order to avoid major physical errors these equations should be
taken in such a way that the total master system 1-4 satisfies the First and Second
laws of thermodynamics. These demands entail quite strong a priori constraints on
the constitutive equations.

In the boundary conditions 5, ni and τ i are the normal and the tangent vectors to
the discontinuity boundaries.

2.2 Notation
The metrics co- and contra-variant tensors zij , zij of the Eulerian coordinate sys-
tem are used for lowering and raising (“juggling”) the indexes, and for defining
the covariant differentiation ∇i with respect to the coordinates zi; zijk is the so-
called covariant Levi-Civita skew-symmetric tensor. Using tensorial notation per-
mits one to present all the equations in the universal covariant (i.e., coordinate-
independent) form. The same goal can be reached with the help of the so-called
direct or coordinate-independent form, which in the pre-Einsteinian era was the
most widespread in the electromagnetic literature. Further details on tensorial alge-
bra and calculus can be found in a plethora of textbooks, including the most popular
and practical.2,3

We assume the coordinate system zi to be Cartesian. In the Cartesian coordinate
system, the metrics tensors numerically coincide with the corresponding values of
the Kronnekker symbol δij, δij, δij. The Levi-Civita tensor zijk has the main com-
ponent z123 equal to 1. Juggling of the indexes does not change the numerical values
of tensor components. Nonetheless, we will place all of the indexes in the covariant
manner, thus following the demand of mathematical aesthetics and simplifying the
passage between different coordinate systems when necessary.

2.3 Vector Potential
The ALEGRA code uses the vector potential Ai. The vectors Ai and Hi are inter-
connected by the covariant differential relation

H i = zijk∇jAk (6)
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With a known spatial distribution of the vector potential potential Ak (z, t) one can
immediately and explicitly recover the magnetic field H i using the formula 6. The
opposite is not true. First of all, to recover the potentialAk with the help of a known
field H i one has to solve the boundary value problem, based on the PDE 6. Equa-
tion 6 alone is insufficient for solving this inversion problem. In order to make the
inversion unique one has to add to 6 one of the calibration conditions:

(a) the Coulomb gauge
∇iAi = 0 (7)

or

(b) the (relativistically invariant) Lorentz gauge

1

c

∂ϕ

∂t
+∇iAi = 0 (8)

where ϕ (z, t) is the scalar potential of the electric field Ek.

2.4 System to be Solved
We proceed with the analysis of linear isotropic materials that are free of bulk elec-
tric charge or material magnetization, for which

σij = σzij (9)

and

Bi = µH i, (10)

where µ is the magnetic permeability.

Eliminating J i between 2 and 3, we get

zijk∇jHk =
4πσ

c
Ei (11)

Eliminating Ei between 1 and 11, we get

4



∂Bi

∂t
=

c2

4πσ
∇j∇j

.H
i
. (12)

or

4πσµ

c2

∂H i

∂t
= ∇j∇j

.H
i
. (13)

The “parabolic” equation 13 should be combined with the boundary conditions.

In the equilibrium, time-independent, configuration we get the following system:

∇j∇j
.H

i
. = 0 (14)

whereas the boundary conditions can be rewritten as follows:

[µHi]
+
− n

i = 0, [Hi]
+
− τ

i = 0 (15)

If the magnetic field H◦i at infinity is given, the system 15 has to be analyzed under
the additional boundary condition at infinity

H i = Bi

|z|→∞
→ H i◦ = Bi◦ (16)

2.5 Elliptic Inclusion
There are few exact 2-dimensional (2-D) and 3-dimensional (3-D) solutions of the
system 14-16. One of them is a solution for an elliptic inclusion in an infinite
isotropic matrix, in particular, in vacuum. This solution is described below.

Consider an ellipse with the semi-axes a and b coinciding with the Cartesian axes
z1 and z2, as shown in Fig. 1. We assume that the elliptical domain is filled with a
linear isotropic substance with magnetic permeability µ. We then assume that the
ellipse is immersed in the unbounded space in which there is a uniform magnetic
field H i◦.
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Fig. 1: Schematic diagram (not to scale) showing problem to be considered.

If there is an elliptical inclusion, the otherwise uniform field H i = H i◦ will change.
The changes are particularly strong inside the ellipse and in its vicinity. At infinity,
the newly generated field H i approaches its original value, H i◦.

2.6 Summary of Solution
Lengthy calculations show that the field H i inside the ellipse is uniform, and it is
given by the relationship

∥∥∥∥∥ H1
inside

H2
inside

∥∥∥∥∥ =

∥∥∥∥∥ a+b
a+µb

H◦1
b+a
µa+b

H◦2

∥∥∥∥∥ (17)

It should be noticed that this is a simple, elegant, closed-form expression that is
very easily evaluated. Because it implies that the field inside the ellipse is uniform,
it can even be used for quick visual, qualitative inspection of computed solutions.

The field H i outside of the ellipse is given by the more complicated relationship

6



∥∥∥∥∥ H1
outside

H2
outside

∥∥∥∥∥ = (18)∥∥∥∥∥ 1
2π

∂2Θ
∂z1∂z1

(a+b)(µ−1)
a+µb

H◦1 + 1
2π

∂2Θ
∂z1∂z2

(a+b)(µ−1)
µa+b

H◦2 +H◦1
1

2π
∂2Θ
∂z2∂z1

(a+b)(µ−1)
a+µb

H◦1 + 1
2π

∂2Θ
∂z2∂z2

(a+b)(µ−1)
µa+b

H◦2 +H◦2

∥∥∥∥∥
where Θ is the logarithmic potential of the ellipse, given by the relationship:

Θ (z) = −
∫
ω∗
ell

dω ln |z− z∗| (19)

The full derivation of this solution is described in detail in the following section,
which is included only for completeness. This section may be passed over in the
first reading.

3. Full Derivation: Magnetization of Isotropic Elliptical Inclusion
This problem was analyzed by many outstanding mathematicians and physicists
working on it since Newton’s times. First, it was focused on various problems of
gravitation and cosmology. Later on, in addition to mathematicians, the beauty of
this problem hypnotized researchers exploring electromagnetism, theory of elastic-
ity among others. Monographs1,4,5and papers6,7 give a picture of various applica-
tions of this problem. In the presentation below we use the approach of Grinfeld,8

which combines some techniques of Sretensky4 and Eshelby.6,7

We will be seeking a solution Hi = ηi− (z) inside the ellipse in the following form:

ηi− (z) = Ki (20)

The solution in the form 20 automatically satisfies the PDE 14.

For the solution outside of the elliptic inclusion, the solution has the following form:

ηi+(z) = −W j∇j∇iΘ+ +H◦i (21)
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where Θ is the logarithmic potential of an ellipse.

The potential Θ (z) is defined in Equation 19 and satisfies the PDEs

∇i∇iΘ = −2π, z ∈ ωell, (22)

∇i∇iΘ = 0, z ∈ R2/ωell

The solution in the form 21 automatically satisfies the PDE and the condition at
infinity 16.

The potential inside the ellipse Θ− (z) is described by the quadratic form

Θ−(z) = C − 1

2
Yijz

izj (23)

where C is a constant, and Yij is a symmetric tensor depending on the shape of the
ellipse and described below.

We turn now to the boundary conditions 15. First of all, we get

∇i∇jΘ+ = ∇i∇jΘ− + [∇i∇jΘ]+− (24)

Using the so-called compatibility condition

[∇i∇jΘ]+− = 2πninj (25)

and the relationship 23, we can rewrite 24 as follows:

∇i∇jΘ+0 = −Yij + 2πninj (26)

Using 21 and 26, we can rewrite the boundary values ηi+0(z) as follows:

ηi+0(z) = −W j∇j∇iΘ+0 +H◦i = W j (Yij − 2πninj) +H◦i (27)
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The solution Θ+(z) outside of the ellipse is much more complex. Fortunately, hav-
ing known the solution inside the inclusion, that is, the constants C and Yij , we can
uniquely recover the potential outside of the inclusion. Using the boundary condi-
tions 18, 19, we can find all of these constants.

Again by luck, permitting one to find the exact solution is the fact that the boundary
conditions 18, 19 require one to know the field Θ±(z) not everywhere but only at
the ellipse’s interface Θ+0.

We can rewrite the boundary conditions 14, 15 as follows:

(
W jYij +H◦i −Ki

)
τ i = 0 (28)

and

{
µ−Ki − µ+

(
W j (Yij − 2πδij) +H◦i

)}
ni = 0 (29)

Since conditions 28, 29 should be satisfied for arbitrary orientations of the vectors
τi and ni, the system 28, 29 implies

Ki −W jYij = H◦i (30)

and

µ−Ki − µ+ (Yij − 2πδij)W
j = µ+H

◦
i (31)

Using 30, we can rewrite 31 as follows:

(µ− − µ+)Ki + 2πWi = 0 (32)

as implied by the chain

9



µ−Ki − µ+

(
YijW

j − 2πδijA
j
)

= µ+H
◦
i →

µ−Ki − µ+

(
Ki −H◦i − 2πδijW

j
)

= µ+H
◦
i →

Ki (µ− − µ+) + 2πWi = 0 (33)

In the case of a body immersed in vacuum (µ+ = 1 for Gaussian units) the relation-
ship 32 reads

(µ− − 1)Ki + 2πWi = 0 (34)

Summarizing, we have arrived at 2 linear vectorial Equations 30, 34 with 2 un-
knowns Ki and Wi. Excluding Wi between these 2 equations, we get a single vec-
torial equation:

(
δki + Yki

µ− − 1

2π

)
Kk = H◦i (35)

After solving Equation 35 with respect to Kk we can find Wi from the equation

Wi = − 1

2π
(µ− − 1)Ki, (36)

thus finishing the determination of the exact solution.

In the coordinate system whose axes coincide with the axes of ellipse, the geometric
tensor Yki has the following components

‖Yki‖ =

∥∥∥∥∥ Y11 Y12

Y21 Y22

∥∥∥∥∥ =
2π

a+ b

∥∥∥∥∥ b 0

0 a

∥∥∥∥∥ (37)

Thus, we can rewrite the system 37 as follows

10



∥∥∥∥∥ 1 + b
a+b

(µ− 1) 0

0 1 + a
a+b

(µ− 1)

∥∥∥∥∥×∥∥∥∥∥ K1

K2

∥∥∥∥∥ =

∥∥∥∥∥ H◦1H◦2
∥∥∥∥∥

or ∥∥∥∥∥ a+µb
a+b

0

0 b+µa
a+b

∥∥∥∥∥
∥∥∥∥∥ K1

K2

∥∥∥∥∥ =

∥∥∥∥∥ H◦1H◦2
∥∥∥∥∥ (38)

The system 38 has the following solution:

∥∥∥∥∥ K1

K2

∥∥∥∥∥ =

∥∥∥∥∥ a+b
a+µb

H◦1
b+a
µa+b

H◦2

∥∥∥∥∥ (39)

and

∥∥∥∥∥ W1

W2

∥∥∥∥∥ =

∥∥∥∥∥ − 1
2π

(a+b)(µ−1)
a+µb

H◦1

− 1
2π

(a+b)(µ−1)
µa+b

H◦2

∥∥∥∥∥ (40)

thus reproducing Equation 17. Then, inserting the relationships 40 of W1 and W2

in Equation 21, we arrive at Equation 18.

4. The Master System in the SI
So far our analysis relied on the usage of the Gauss system of electromagnetic units.
On the other hand, the “magnetohydrodynamics” (MHD) module of the ALEGRA
code uses only Système International (SI) units. Each of the systems has its own
pros and contras. Before discussing the ALEGRA results, let us first rewrite the
master system 1-5 using SI units. We get

zijk∇jEk = −∂B
i

∂t
(41)

zijk∇jHk = J i (42)
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In the case of a linear isotropic medium that is free of bulk electric charge or mate-
rial magnetization, we still have the relationships

Bi = µH i (43)

and

J i = σEi (44)

Boundary conditions are given by

[
Bi
]+
− ni = 0, [Hi]

+
− τ

i = 0 (45)

We note that in SI units, the vacuum permeability is given by the fundamental con-
stant µ0 = 4π × 10−7 N/A2. For regions exterior to the ellipse, µ = µ0.

5. ALEGRA Formulation
The system 41-43 is a form of the equations solved by the “transient magnetics”
module of the ALEGRA code.9,10 In this module, the time evolution of electro-
magnetic fields in a stationary conducting medium is computed in quasi-static fash-
ion. The system can be obtained from Maxwell’s equations by use of the so-called
“magneto-quasi-static” approximation.11

Electromagnetic radiation and separation of charges are not possible in the medium
under this approximation. This can be understood by the absence of Maxwell’s
displacement current from Equation 42, and the absence of Gauss’s law (relating
the electric displacement to the charge density) from the system completely. The
divergence-free character of the magnetic field is implied in Equation 45.

The medium is assumed to be both stationary and electrically neutral in the “tran-
sient magnetics” module. Mechanical and electromagnetic forces are not applied,
and the thermodynamic state (internal energy) of the material is not updated. An
implicit linear solver (see Section 6) is used to solve the system with an unstruc-
tured 2-D or 3-D finite-element discretization, and evolve the solution forward in
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time. (Only quadrilaterals are considered here, although triangles are possible for
the “transient magnetics” module.) Specialized “algebraic multigrid” methods are
used to ensure sufficient scalability of the solve operation for large meshes (more
than 105 elements) and parallel processing.

ALEGRA is equipped to handle – and has been used successfully for – a much
broader class of problems.10,12–14 These include deforming solid and hydrodynamic
media, mechanical and electromagnetic forces, and adiabatic and Ohmic sources
of heating, via its “magnetohydrodynamics” (MHD) module. The MHD physics
module couples the transient magnetics capabilities with the continuum mechanics
capabilities that form ALEGRA’s basis, enhanced to incorporate electromagnetic
induction and conservation of magnetic flux. Thus, the insights gained from this
study should apply to those problems, since the transient magnetics capabilities are
used in coupled fashion in those types of calculations.

To obtain a simple transient magnetics simulation in ALEGRA, with the limitations
described above, it is only necessary to use the “transient magnetics” keyword in
the input as the name of the physics module to be employed. ALEGRA solves either
the system 41-43, or the system recast in terms of the vector potentialAi, depending
on the configuration of the problem. For the problem considered here, the geometry
is such that ALEGRA solves the system in terms of the out-of-plane component of
the vector potential, which we refer to as A. The magnetic flux density Bi is then a
derived variable.

6. Simulation Development
Two-dimensional ALEGRA transient magnetics simulations were run for the prob-
lem described in Section 2 and Fig. 1. In particular, we considered the situation
where a = 1.8 cm, b = 0.56 cm, and H◦ = (0, 1/µ0) Ampere/m. This is an ellipse
with an eccentricity of 0.831 and an aspect ratio of 3.24. We used a rectangular
simulation domain with horizontal dimension w = 30 cm and vertical dimension
h = 15 cm. For the ellipse, a contrived material was used, with a relative perme-
ability µ = 3.0 and a constant isotropic electrical conductivity of σ = 107 S/m. Since
all forces and heating are neglected in transient magnetics, the density and tempera-
ture of the material are fixed at their arbitrary initial values. For these conditions, the
exact solution given in Equation 17 is predicts an equilibrium magnetic induction
B1 = 0 and B2 = 1.18657 T in the ellipse interior.
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Fig. 2: Zoomed-in view of meshes used for ALEGRA simulations: body-fitted (left)
and regular (right).

6.1 Spatial Discretization
Two mesh configurations were used: (1) a body-fitted irregular mesh representing
an ideal best-case simulation with no multimaterial elements, and (2) a regular rect-
angular mesh with multimaterial elements representing a more typical production
use case for ALEGRA. In the latter configuration, the elliptical shape is captured
only in volume fraction information. The 2 mesh configurations are shown in Fig.
2, with the view zoomed in to show detail in the region of the ellipse. Mesh biasing
was used in the regular case to coarsen the mesh at large distances exterior to the
ellipse and concentrate computational effort within it and nearby; the regular mesh
bias aspect ratio was limited to a maximum of 4.

The meshes shown in Fig. 2 were chosen to provide roughly the same number of el-
ements inside the ellipse. This was achieved by assigning N = 32 elements around
the perimeter of the ellipse in the body-fitted case, and N = 40 elements across the
major (horizontal) axis in the regular case. However, for the regular mesh, roughly
10 times more elements were required to discretize the remainder of the domain
than for the body-fitted mesh, even with mesh biasing. This made the regular-mesh
calculations much more costly than the body-fitted mesh calculations.

6.2 Time Discretization
The “transient magnetics” capability in ALEGRA uses an implicit solver, and there-
fore does not place stringent restrictions on the choice of timestep size. For this
study, the time evolution of the system during relaxation to equilibrium is of inter-
est, so a very short, fixed timestep dt = 2 µs was still used.

The time required for the system to reach equilibrium can be approximated using
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a scaling relationship that arises from the 1-dimensional (1D) magnetic diffusion
equation,5 giving a magnetic diffusion time τd ≈ µσ`2, where ` is a characteristic
length scale. Using the shortest dimension of the ellipse (b = 0.56 cm), we obtain
τd ≈ 1.2 ms as the time for one e-fold increase of the field soaking into the ellipse.
Therefore, the simulations were run out to a termination time of 0.01 seconds (s),
to capture the full relaxation to equilibrium by observing 8 e-foldings.

6.3 Solver
The implicit iterative solver used for transient magnetics in ALEGRA is the AztecOO
solver15 from the Trilinos package.16 The algebraic multigrid (“multilevel”) capabil-
ities included in the solver were enabled here, so that maximum throughput could
be obtained on the larger calculations, and the actual conditions used in typical
production MHD calculations with ALEGRA could be reproduced. Through the
AztecOO interface, a conjugate gradient solver type was specified, with an iteration
stopping tolerance of 10−16.

6.4 Initial and Boundary Conditions
The ALEGRA simulations were initialized to the configuration shown in Fig. 1,
with zero magnetic field (and thus zero current) everywhere in the domain. The
system becomes magnetized because of a uniform y-oriented source magnetic field
imposed on the left and right boundaries, which is assumed to be switched on in-
stantaneously at time zero. The component of the magnetic field H i tangent to the
mesh is fixed on the left and right boundaries, so that over the course of the simu-
lation, the solution relaxes to an equilibrium state, which is equivalent to the equi-
librium condition described in Section 2. On the top and bottom boundaries, the
tangent component of H i is constrained to be zero, so that field lines are normal to
the boundary there.

Explicit boundary conditions on the material interfaces are not needed. The mate-
rial discontinuity is represented in the calculation as a discontinuity in σ and µ. In
multimaterial elements, mean values of these properties are used.
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(a)

(b)

Fig. 3: Configuration of Bi field lines before a) and after b) after the equilibrium
state is reached, for the body-fitted (left) and regular (right) mesh types. Simulation
times: a) 0.2 ms, b) 3.0 ms.

7. Time Evolution of the System
In the ALEGRA simulations, the evolving variables are the in-plane magnetic in-
duction vector Bi, the in-plane magnetic field H i, the out-of-plane magnetic vector
potential A, and the out-of-plane electric current density J . The latter 2 vectors
are constrained to have only a z component, so are treated by the code as scalar
quantities.

The code also computes a total electric current I , which is a positive quantity ob-
tained from surface integrals of J . The total surface integral is zero by construction;
this can be seen by taking the divergence of Equation 42. The magnitude of opposed
currents running transiently in the conductor normal to the plane is obtained by iso-
lating the positive and negative contributions to the total surface integral, which
should be equal.

Over the course of the simulation, the current I and time derivatives of H i, Bi,
and A all relax toward zero as magnetic diffusion proceeds toward a “saturated”
or equilibrium field configuration. Magnetic field lines computed by ALEGRA be-
fore and after equilibrium is reached are shown for both mesh types in Fig. 3. The
lines are obtained conveniently in practice by plotting contours of A. In the system
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considered here, with µ 6= µ0, the equilibrium field configuration is nonuniform.
As predicted in Section 2, it is only uniform in the interior of the inclusion late in
time. The uniform interior field configuration has visibly not been reached yet by
t = 0.6 µs, as seen in Fig. 3a.

The evolution of the magnitude of Bi and J in the ALEGRA simulations is de-
picted in Figs. 4 and 5. We observe that the field “soaks” into the ellipse nonuni-
formly. Before the equilibrium value is reached, the local magnitude of the field
first transiently rises to much larger values on the extreme horizontal limbs of the
ellipse. The field magnitude near the center of the ellipse remains small until these
transients decay, leading to a uniform vertically oriented interior field.

Fig. 4 shows results for the body-fit mesh, and Fig. 5 shows results for the regular
mesh. Mesh lines are superimposed in both cases in the region of the ellipse. In
the regular-mesh case, mesh lines are plotted for material volume fraction f ≥ 0.5,
with the estimated contour of f = 0.5 appearing as well. It should be noted that this
contour does not represent a mesh line, but a post-processing contour estimate.

Comparing the body-fitted and regular-mesh results, we see that there are advan-
tages and disadvantages to both approaches. A much stronger discontinuity in the
solution variables is possible at the material interface in the body-fitted case, allow-
ing greater accuracy. This greater accuracy is enormous for this coarse mesh size.
However, the elements are much more distorted, allowing other errors to enter.

The primary advantage of the body-fit approach is that a much smaller total num-
ber of elements is required for this simulation domain: only about 900, compared
to over 11,000 for the regular case. This allows computational effort to be concen-
trated in the region of interest (the ellipse). The smaller element count results in
a much shorter simulation turnaround time: the body-fitted case runs to comple-
tion (in serial, for this coarse mesh size) in about 15% of the time required for the
regular-mesh case (see table in Section 8).

The accuracy per-unit-compute-time is enormously greater with a body-fitted mesh.
However, in most production calculations, a body-fitted mesh is not a viable option.
Therefore, we have retained both mesh types in this study.
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(a) 0.2 ms

(b) 0.6 ms

(c) 1.4 ms

(d) 3 ms

Fig. 4: Simulation evolution for body-fitted mesh: Bi magnitude (left) and J mag-
nitude (right), with mesh lines in the ellipse superimposed. Simulation times: a) 0.2
ms, b) 0.6 ms, c) 1.4 ms, d) 3 ms. Blue-red colorbar for Bi spans 0 ≤ |Bi| ≤ 2 T.
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(a) 0.2 ms

(b) 0.6 ms

(c) 1.4 ms

(d) 3 ms

Fig. 5: Simulation evolution for regular mesh: Bi magnitude (left) and J magnitude
(right), with mesh lines in the ellipse superimposed. Simulation times: a) 0.2 ms, b)
0.6 ms, c) 1.4 ms, d) 3 ms. Blue-red colorbar for Bi spans 0 ≤ |Bi| ≤ 2 T.
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Fig. 6: Spatial distribution of deviation from exact solution for B2 at equilibrium
for body-fitted mesh with N = 40.

8. Solution Verification
The interior solution at t = 0.01 s was compared to the equilibrium solution given
by Equation 17, which predicts B2 = 1.18657 T. In the case of the regular mesh,
only elements with f ≥ 0.5 were considered in the comparison. Since B2 is a de-
rived variable in ALEGRA, and numerical differentiation is involved in computing
its value, some additional inaccuracy is involved in the comparison. The fundamen-
tal variable in these calculations is A, but comparison was not done for A here,
because in production calculations, the vector Bi is typically of principal interest.
Nevertheless, even for B2, we expect a reasonable qualitative match to the exact
solution, and at least first-order convergence toward the solution under spatial mesh
refinement, based on the methods implemented in ALEGRA, and the mesh types
used here.17

8.1 Coarse-Mesh Comparison
Comparison of the equilibrium distribution of B2 in the ellipse for the 2 mesh types
shows that for theN = 40 case, which is a very coarse mesh requiring only minutes
of serial compute time, ALEGRA matches the exact solution from Equation 17 to
within fractions of a percent. The distributions computed on the N = 40 regular
and body-fitted mesh types are shown with the exact solution in Figs. 6 and 7. The
field is not perfectly uniform, but deviates from the uniform exact solution by only
0.02% for the body-fitted case and by only 0.1% for the regular case.
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Fig. 7: Spatial distribution of deviation from exact solution for B2 at equilibrium
for regular mesh with N = 40.

The largest deviations appear on the horizontal limbs of the ellipse, particularly in
the regular-mesh case. This suggests that greater inaccuracies are likely for elliptical
inclusions with greater aspect ratios than 3.24 (see Section 8 below). The deviations
are also much larger for the regular mesh than the body-fitted mesh at this mesh size
because of the effect of mixed elements near the ellipse surface. At the center of
the ellipse, the field magnitude exceeds the analytic value. Further analysis shows
that the mean value of the computed field in the ellipse does slightly exceed the
analytical value, as suggested by Figs. 6 and 7.

The global deviation from the exact solution was computed by summing the square
of the local deviation over all locations inside the ellipse (f ≥ 0.5), and normalizing
by the tally of elements inside the ellipse. Taking the root then yields a root-mean-
square (RMS) measure of the error in the computedB−2 distribution. Normalizing
again by the value of the exact solution yields a fractional error.

This fractional error metric is plotted against time in Fig. 8 for the N = 40 case.
We observe again that the body-fitted result is significantly more accurate at this
mesh size. Further, we see that the error trend in both cases goes through a min-
imum during the transient phase, marking the moment when the average value of
the field in the initially ellipse first surpasses the analytic value. The error reaches a
plateau after about t = 5 ms. Also at about t = 5 ms, the current ceases to change
significantly in time, reaching its final small but nonzero value.
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Fig. 8: Time evolution of RMS deviation of ALEGRA solution relative to exact
solution for equilibrium condition at N = 40.

8.2 Convergence Under Spatial Refinement
Spatial-refinement convergence studies were also performed for both mesh types,
starting from the coarse mesh shown in the foregoing discussion. Previous veri-
fication work for transient magnetics in ALEGRA has shown good convergence
behavior in 3-D.14,17 Here, the 2-D mesh interval was halved 5 times, yielding 6
resolution levels at N = 40, 80, 160, 320, 640, and 1, 280 elements per perimeter
(body-fitted case) or elements per major axis (regular case) for comparison to the
exact solution, using the fractional RMS error metric just described.

The error computed in this way from the series of simulations was observed to
decay monotonically at approximately first order relative to the mesh interval. The
error convergence trends are shown in Fig. 9. The trends are plotted against the
total number of elements in the ellipse for each simulation, but convergence rates
are computed against the value of N . We find average convergence rates of 0.9 for
the body-fitted meshes and 1.3 for the regular meshes.

We see that the transient magnetics module in ALEGRA computes solutions that
converge smoothly toward the analytic solution at the expected rate. ALEGRA
computes magnetic diffusion into an ellipse with linear magnetic permeability with
demonstrated accuracy, and the expected convergence behavior.
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Fig. 9: Results of spatial mesh refinement convergence study for an elliptical inclu-
sion, showing fractional error relative to exact solution.

Under spatial refinement, it becomes clear that the regular mesh approach with
mixed elements is not as disadvantaged relative to body-fitted meshes as theN = 40

results indicate. Although the error magnitudes are larger for the regular mesh with
mixed elements, the solution computed on these meshes converges at a much higher
rate. Its convergence rate also improves as the mesh is refined. At the very largest
meshes, the error magnitudes are comparable. Thus, there is a tradeoff between
regular and body-fitted meshes, exchanging accuracy for convergence.

8.3 Aspect Ratio Effect
Since the performance of ALEGRA for a range of aspect ratios is also of interest,
the spatial mesh refinement study was repeated for 2 more geometries: a circular
inclusion, and an elliptical inclusion with an aspect ratio of 10. In the case of a cir-
cular inclusion, the dimensions a = b = 1 cm were used, with domain dimensions
w = h = 20 cm. Otherwise the parameterization and analysis were the same. The
exact solution for this case predicts an equilibrium vertical magnetic induction of
B2 = 1.5 T in the interior of the circle. Body-fitted and regular meshes were used,
with the same series of mesh refinements.
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Fig. 10: Results of spatial mesh refinement convergence study for a circular inclu-
sion, showing fractional error relative to exact solution.

Results for the circular case are shown in Fig. 10. Not surprisingly, the error mag-
nitudes are for the most part lower for this simpler case, at each value of N . We
also again observe larger error magnitudes but greater convergence rates for the
regular mesh than for the body-fitted mesh. Further, the disparity in convergence
rates also remains. The regular-mesh case converges at a mean rate of 1.5, while the
body-fitted case at only 0.7.

To simulate an ellipse with aspect ratio AR = 10, dimensions a = 3.16 cm and
b = 0.316 cm were used, with domain dimensions w = 50 cm and h = 20 cm. This
corresponds to an eccentricity of 0.949. The exact solution for this case predicts
an equilibrium vertical magnetic induction of B2 = 1.06452 T in the interior of
the ellipse. For this large aspect ratio, the meshing technique used to produce the
elliptical body-fitted meshes was not operable due to the large mesh deformations
required. Hence, no body-fit-mesh cases were studied. Further, in the regular-mesh
case, a lower-accuracy geometry insertion method (“diatom, insert UDS” rather
than “insert UDS+”) had to be used, because of the high curvature of the shape.

Convergence results for the AR = 10 case are shown in Fig. 11, along with the re-
sults from the AR = 3.24 and AR = 1 cases discussed above with regular meshes.
Here the fractional error is plotted as a function of N , not the number of elements
in the ellipse.
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Fig. 11: Results of spatial mesh refinement convergence study for elliptical inclu-
sions with various aspect ratios, showing fractional error relative to the respective
exact solution as a function of N , for regular-mesh simulations.

For AR = 10, the computed solution converges less smoothly, and the error mag-
nitudes are larger than for smaller aspect ratios. However, the solution converges at
a mean rate of 1.2, which still compares favorably with the convergence rates for
the circular inclusion (1.5) and the original elliptical inclusion (1.3). This suggests
that with the regular-mesh setup, ALEGRA’s accuracy for this problem should be
preserved even for ellipses with very great eccentricity.

8.4 Compute Times
As a final note, some diagnostic data from the simulations for aspect ratio 3.24
are provided in the table, to illustrate the disparity in computational cost for the
body-fitted and regular mesh scenarios. This includes the number of elements in the
mesh, the number of compute cores used for each simulation, and the “wall-clock”
time required for the ALEGRA calculation to run. The regular-mesh simulations
required 10× more elements at each value of N , resulting in a much lower rate of
throughput, due to higher AztecOO solve times.

Despite the apparent lower rate of throughput for the regular-mesh cases, there are 2
mitigating factors. The body-fitted cases all carried fewer mesh elements per com-
pute core, by about a factor of 2. Also, the body-fitted cases all required additional
compute time to generate the mesh. The mesh-generation process does not lend
itself to parallelization, and for the larger meshes required more time than the ac-
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N Nelem Nelem ncores ncores Wall time (s) Wall time (s)
Body-fit Regular Body-fit Regular Body-fit Regular

40 1.30×103 1.12×104 2 1 9.20×101 8.30×102

80 4.80×103 4.58×104 2 4 2.26×102 1.29×103

160 1.84×104 1.85×105 4 8 5.53×102 3.76×103

320 7.20×104 7.42×105 8 16 1.27×103 9.32×103

640 2.85×105 2.98×106 16 32 3.61×103 2.22×104

1280 1.13×106 1.19×107 32 64 9.31×103 6.62×104

Table: Diagnostic data from simulations run in spatial-refinement convergence
study.

tual ALEGRA calculation. The expense of this operation mainly has to do with the
Laplacian smoothing operation that had to be used to improve the symmetry of the
quadrilateral mesh; this operation might not be required for triangular meshes. This
is a significant drawback to using the body-fitted mesh approach.

9. Conclusions
This study has yielded several outcomes that should be useful for those interested in
understanding the quasi-static behavior of magnetic fields in a medium that includes
conducting, permeable materials.

First, a flexible and convenient analytic solution has been derived that describes the
equilibrium field in the interior of an inclusion in such a medium that has a generic
shape: an ellipse. Although the solution is rather complex outside the ellipse, inside
the ellipse, it has a simple, closed form which lends itself well to verification of
computed solutions by both visual inspection and convergence analysis. A similar
static solution is valid in the electrostatic context.

Second, it has been shown that the equilibrium state can be reached by transient
means via computation with ALEGRA, which allows the magnetic field to evolve
by solving an initial-boundary-value problem that includes linear magnetic perme-
ability in the inclusion. The time to reach the equilibrium state matches the mag-
netic diffusion time expected for the system based on its geometry and the material
properties. This approach opens a novel venue for solving classical problems of
magnetostatics and electrostatics of dielectrics.

Third, it has been demonstrated that the equilibrium state computed by ALEGRA
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for this system reliably reproduces the analytic solution quite well, with errors on
the order of 10−3 to 10−5 for reasonable compute times. Further, the solution con-
verges under spatial refinement, and the convergence properties are preserved even
for ellipse aspect ratios up to 10.

Finally, the results show that it is not necessarily more advantageous to use body-
fitted meshes when simulating this system in ALEGRA on a quadrilateral mesh.
For coarse meshes, the body-fitted approach does provide much greater accuracy
and faster throughput. But as the mesh is refined, the advantage in accuracy slowly
vanishes, and the cost of generating the body-fitted mesh becomes excessive, and
even prohibitive for large ellipse aspect ratios. At all mesh sizes, the convergence
rate on regular meshes surpasses that of body-fitted meshes.

This work lays the foundation for future extension into other areas of interest. An
analytic solution in three dimensions for an ellipsoidal inclusion is also possible,
which can be compared to computed solutions from ALEGRA to test its 3-D tran-
sient magnetics capabilities. Electromagnetic forces, motion, and thermodynamic
effects could also be incorporated, without introducing significant difficulties in
ALEGRA. All of these are areas that could be explored in future analysis with
fruitful results.
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List of Symbols
a – Horizontal ellipse semi-major axis

AR – Ellipse aspect ratio

Bi – Magnetic induction vector

b – Vertical ellipse semi-minor axis

c – Speed of light

Ei – Electric field vector

Hi – Magnetic field vector

H i◦ – Magnetic field at infinity

h – Vertical dimension of simulation domain

J i – Current density vector

µ – Material magnetic permeability

µ0 – Magnetic permeability of free space

ni – Unit normal vector

N – Number of elements spanning ellipse major axis or perimeter

σ – Isotropic material electrical conductivity scalar

σij – Electrical conductivity tensor

t – time

τd – Magnetic diffusion time

τi – Unit tangent vector

Θ – Logarithmic potential

w – Horizontal dimension of simulation domain

zijk – Levi-Civita tensor
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