Mesh Quality Optimization via the Target-matrix Paradigm

Enabling automatic mesh generation, along with mesh updating for more accurate & efficient simulations.

Motivation
- Automatic Initial-Mesh Post-Processing:
 - Quality Improvement: Shape, Size, Orientation
 - Removal of Inverted Elements
 - Triangle, Tetrahedral, Quadrilateral, Hexahedral Meshes
- Application-embedded Mesh Updating:
 - Adaptive Mesh R-Refinement and Local Swapping
 - Updating Meshes on Deforming Domains
 - Mesh Rezone in Arbitrary Lagrange-Eulerian Simulations
- Target-matrix Paradigm: do all of the above as special cases of a unified theory of mesh optimization
 - Each canonical smoothing algorithm is encapsulated within a wrapper for non-expert users
 - Rapid deployment of custom-build smoothers
 - Allows use of maintainable software
 - Mesh quality optimization is a cross-cutting technology

Target-matrix Paradigm Implemented in Mesquite Library
- Low-level API implements key objects in Target-matrix Paradigm:
 - Finite Element Mappings
 - Active Jacobian Matrices
 - Target Calculators
 - Local TMP Quality Metrics, along with Analytic Gradients & Hessians
 - Power-mean and Hierarchical Objective Functions
 - TMP-based Local Relaxation Solvers
- Special Cases Implemented as Wrappers
 - Mesquite doubles as both an application service and a research platform (so need to balance flexibility vs. efficiency)
 - Mesquite is limited to node-movement, but compliments other interoperable ITAPS tools: (e.g., swap, refine, geometry, visualization)

Target-matrix Paradigm Enables Rapid Delivery of Custom-Built Smoothers
- The Application: Computational Mechanics Simulation Code with Explicit-Time Stepping
 - The Mesh Quality Issue: Generated mesh contains needlessly small edge-lengths that overly constrained the time-step size. Calculation therefore ran too slowly
 - The Customers' Question: Can Mesquite re-locate the mesh vertices so that the small-edge-lengths are eliminated?
- The Research Question: Can we devise a suitable Target-construction algorithm within TMP to solve this problem?
- Observations:
 1. All the mesh edge-lengths were the same, then none of them would be needlessly small.
 2. Element shapes should ideally be squares since that is the goal of the Paving Algorithm
- Conclusions:
 1. A Shape=Size metric is needed (equal-area squares have equal edge-lengths)
 2. The Target-matrix should be W = L^1, where L = average edge length in initial mesh, and W is the identity matrix (represents the shape of a square element)
- Results:
 1. A new, concrete Target-construction algorithm was implemented in Mesquite, based on the above.
 2. The Proposed Algorithm Met the Customers' Needs (see figure)

Mathematical Description of the Target-matrix Paradigm
- 1. Objective Function
 \[
 F(x) = \frac{1}{N_x} \sum_{n=1}^{N_x} \left[\sum_{k=1}^{N_t} \mu(t_k) \right]^{1/p}
 \]
 Measure of Global Mesh Quality

- 2. Element Mappings & Sample Points
 Master Element
 \[X = X(\xi, \eta) \]
 Physical Element
 \[X = X(\xi, \eta) \]

- 3. Active Jacobian Matrix
 \[
 \begin{align*}
 \mathbf{E} &= \frac{\partial X}{\partial \mathbf{u}} \\
 \mathbf{J} &= \begin{bmatrix} \frac{\partial X}{\partial \xi} & \frac{\partial X}{\partial \eta} \end{bmatrix} \\
 \end{align*}
 \]
 Active Jacobian Matrix

- 4. Target Matrix
 For each Sample Point there exists a pair of active & target geometries \((X, X') \). Target matrices represent the mapped locations in the optimal mesh.

- 5. Scaled Active Matrix
 \[
 T = A W^{-1}
 \]
 Control Shape Point/Orientation: Active Jacobian matrices order target-matrix size, when \(A \) is \(W \) of an arbitrary rotation matrix.
 Control Shape Size: Active Jacobian matrices order target-matrix size, when \(A \) is \(W \) of an arbitrary translation matrix.
 Active Shape: Active Jacobian matrices order target-mesh size, when \(A \) is \(W \) of an arbitrary translation matrix.

- 6. Local TMP Quality Metrics
 \[
 \mu = |X - X'|
 \]

- 7. Tensor Tradeoff Coefficients
 Tradeoff coefficients allow to weigh in qualitative and quantitative components in the mesh generation process.

- 8. Prior Direct Optimization Methods
 - Compliance-Target-matrix Formulation
 - \(T = A W^{-1} \)
 - Methods do not mix geometric and elastic metrics; therefore, they cannot satisfactorily avoid mesh distortions.

- 9. TRP Reports
 8. "Relaxation Solvers for TMP Quality metrics," in progress

Digging Deeper: A result from Quality Metrics Paper (Ref. 3)
- Propagation 1: Let \(T \) be any valid \(2 \times 2 \) matrix and define \(\mu = \sum_{T} | T - 1 | \mu_1 \). Then \(T \) is a scaled \(T \) matrix.
- Propagation 2: \(\mu(T) = |T| \mu_1 \) is a rigid-body matrix.
- Propagation 3: \(\mu(T) \) is generally non-unique if \(T \) is an affine transformation.
- Propagation 4: \(\mu(T) \) is differential on the set of \(2 \times 2 \) matrices that are not scaled \(T \) matrices.
- Propagation 5: The stationary points of \(\mu(T) \) are rotation matrices.
- Propagation 6: \(\mu(T) \) can be expressed as \(\mu(T) = \sum_{i=1}^{4} \mu_{ii} \).

On-Going Research & Development of Target-Matrix Paradigm

Optimizing Quality of High-Order-Node Meshes
- The Issue: To create finite element meshes with higher-order nodes, most mesh generators first create linear elements and then add the high-order nodes later. After the high-order nodes are created, they must be "strained" to the geometry to achieve high accuracy. Snapshots often create poor quality or even inverted elements.

Sliver-removal for a viscous CFD Mesh
- The Problem: Given a high-fidelity CFD mesh, use mesh optimization to remove the sliver elements without distorting the boundary layer of the flow.

Local Relaxation Solvers for TMP Quality Metrics
- Minimize \(|| f(x) ||^2 \)
- Using block coordinate descent (i.e., Gauss-Seidel)

Mesh Rezoning for Arbitrary Lagrange-Eulerian Methods
- \(\text{K-rm, A-rm, L-rm} \) are all contain mesh rezoning algorithms to prevent mesh tearing and improve quality.

Challenges
- Derive the update rules for each TMP metric.
- Ensure the rules converge in convergent iteration.
- Rules depend on the selected metric.
- Operations count & timing tests.