
MPI Applications:
How We Use MPI in ALEGRA

Allen C. Robinson
Richard R. Drake

Sandia CSRI Workshop on
Next-generation scalable applications: When MPI-only is not enough

June 3-5, 2008

Bishop’s Lodge Resort
Santa Fe, New Mexico

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States
Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL84000.

May 29, 2008 Sept 2007 Prague 2

ALEGRA is an arbitrary Lagrangian Eulerian (ALE)
multi-material and multi-physics code

Complicated geometries

Multiple materials

Material interfaces

Implicit multilevel solvers

Complicated material models

R-T unstable
Z-pinch

Density perturbation
from slot

r

z

θ

Diagnostic
slots

May 29, 2008 Sept 2007 Prague 3

Multi-material, Multi-physics Data Layout

Code memory is laid out with respect to topological entities.

Multi-material dynamic memory management and per-
element adaptivity infrastructure issues drove this.

Most of the cost of multi-physics is in solvers so memory
layout is less of an issue. Solver performance is most
critical in this case.

However, the current layout has performance implications for
simple Lagrangian hydrodynamics.

May 29, 2008 Sept 2007 Prague 4

How we use MPI

We have wrapper functions for all MPI calls in the NEVADA mesh infrastructure.
Most developers don’t really program directly in MPI. The Mesh API handles it.
Linear solver MPI coding is also not visible to most developers.

An easy description for which variables to pack and communicate is available.

We don’t use MPI-2

Single layer of “ghost” elements on unstructured mesh are updated using a IRECV
and blocking SEND methodology. Easy to control processor entity or ghost
entity updates.

We are migrating toward using TRILINOS/EPETRA for matrix assembly to remove
dependencies on ghost elements and relieve the mesh infrastructure of ghost
element support requirements for solvers.

Trilinos/ML performance can be a big cost. Load balancing in multilevel solves is
crucial to maintain performance.

Global operations with an entity length equal to the number of processors are
frequently used in parallel algorithms.

Some particle information is communicated between processors.

May 29, 2008 Sept 2007 Prague 5

What about the future?

Currently, developers are relatively happy with our
programming paradigms.

I understand that our future platforms will likely have many
more cores than memory bandwidth to feed them.

Our current algorithms and software depends heavily on
decent bandwidth to memory. Algorithms and code base
will not easily be modified but could be modified if a clear
long term win is visible.

We will need to find ways to reliably and predictably get more
out of the available memory bandwidth.

Minor software/algorithmic/process flaws today may be near
fatal weaknesses tomorrow from scalability, performance
and robustness points of view.

May 29, 2008 Sept 2007 Prague 6

Final thoughts

MPI works because developers are given full control over an explicit
communications mechanism associated with a distinct memory spaces.

There can be unexplained and difficult to analyze contention/performance
issues on multi-core architectures. This general situation has been true
for some time with cache based systems.

The “typical” application developer may understand performance issues in
a general sense but does not have a concrete, affordable process to
ensure excellence. How can performance issues be made transparent?

Compiler writers by themselves will not be able to add much automatic
portable parallel processing value. Explicit software/hardware
mechanisms with immediate feedback to application developers will be
much better.

To be successful the application developer needs a portable, obvious and
testable way to manage their parallel streams and associated
communication and memory accesses.

