
Fast Parallel Algorithms
for

Short-Range Molecular DynamJ-
SAND91 -1 144J

Steve Plimpton
Sandia National Laboratories

Albuquerque, NM 87185

Abstract

Three parallel algorithms for classical molecular dynamics are presented. The first assigns each
processor a subset of atoms; the second assigns each a subset of inter-atomic forces to compute; the
third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models
which can be difficult to parallelize efficient,ly - those with short-range forces where the neighbors of
each atom change rapidly. They can be implemented on any distributed-memory parallel machine which
allows for message-passing of dat,a between independently executing processors. The algorithms are
tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 10,000,000
atoms on three parallel supercomputers, the nCUBE 2 and Intel iPSC/SSO and Delta. Comparing the
r c a u l t a to t h r - f i l k ! r - t rcported vectorized Cray Y-MP algorithm shows the current generation of parallel
machines are competitive with conventional vector supercomput,ers even for small problems. For large
problems, the spatial algorithm achieves parallel efficiencies of about 90%. Trade-offs between the three
algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also
discussed.

1

I 1 Introduction

Classical molecular dynamics (MD) is a commonly used computational tool for simulating the properties

of liquids, solids, and molecules [l, 21. Each of the N atoms (or molecules) in the simulation is treated

as a point mass and Newton’s equations are integrated to compute their motion. From the motion of the

ensemble of atoms a variety of useful microscopic and macroscopic information can be extracted such as

transport coefficients, phase diagrams, and structural or conformational properties. The physics of the

model is contained in a potential energy functional for the system from which individual force equations for

each atom can be derived.

MD simulations are typically not memory intensive since only vectors of atom information are stored.

Computationally, the simulations are [‘large” in two domains - the number of atoms and number of

timesteps. The length scale for atomic coordinates is Angstroms; in three dimensions many thousands

or millions of atoms must usually be simulated to approach even the microscopic scale. In liquids and solids

the timestep size is constrained by the demand that the vibrational motion of the atoms be accurately

tracked. This limits timesteps to the femtosecond scale and so tens or hundreds of thousands of timesteps

are necessary to simulate even picoseconds of “real” time. Because of these computational demands, con-

siderable effort has been expended by researchers to optimize MD calculations for vector supercomputers

[3, 4, 5, G] and even to build special-purpose hardware for performing MD simulations [7, 81. The current

stat,e-of-the-art, is such that simulating ten- to hundred-thousand atom systems for picoseconds takes hours

of CPU time on machines such as the Cray Y-MP.

The fact that MD computations are inherently parallel has been extensively discussed in the literature

[9, lo]. There has been considerable effort in the last few years by researchers to exploit this parallelism

on various machines. The majority of the work that has included implementations of proposed algorit,hms

has been for singleeinstruction/multiple-data (SIMD) parallel machines such as the CM-2 [l l , 121. or for

multiple-instruction/multiple-data (MIMD) parallel machines with at most a few dozens of processors [13,

14. 151. &:e are convinced that the MIXD programming model is the only one that provides enough flexibility

to implement all the data struct,ure and computational enhancements that are commonly exploited in MD

codes on serial and vector machines. Also, we have found that it is only the current generation of massively

parallel MIMD machines with hundreds to thousands of processors that have the computational power to

be competitive with the fastest vector machines for MD calculations.

In this paper we present three parallel algorithms which are appropriate for a general class of MD problem

that has two salient characteristics. The first characteristic is that forces are limited in range, meaning each

atom interacts only with other atoms that are geometrically nearby. Solids, liquids, polymers, and protelns

are often modeled this way due to electronic screening effects or simply to avoid the computational cost of

including long-range Coulombic forces. For short-range MD the computational effort per timestep scales as

N , the number of atoms, but care must be taken to write efficient parallel algorithms that take full advant’age

of the local nature of the forces.

2

The second characteristic is that the atoms undergo large displacements over the duration of the simula-

tion. This could be due to diffusion in a solid or liquid, reptation in a polymer, or conformational changes in

a biological molecule. The important feature from a computational standpoint is that each atom’s neighbors

change as the simulation progresses. While the algorithms we discuss could also he usrd for fixed-neighbor

simulations (e.g. all atoms remain on lattice sites in a solid), it is a harder task to continually t rack the

neighbors of each atom and maintain efficient O (N) scaling for the overall computation on a parallel machine.

Our first goal in this effort was to develop parallel algorithms that would be competitive with the fastest

methods on vector supercomputers such as the Cray. Moreover we wanted the algorithms to work well

on problems with small numbers of atoms, not just for large problems where parallelism is often easier to

exploit. This is because currently the vast majority of MD simulations are performed on “small” systems

of a few hundred to several thousand at,oms where N is chosen as small as possible while still accurately

modeling the desired physical effects [16, 17, 181. The computational goal in these calculations is to perform

each simulation timestep as quickly as possible. This is particularly true in non-equilibrium hfD where

macroscopic changes in t,he system may t,ake significant time t,o evolve, requiring millions of sin~ulat~ion

timesteps to model. Thus, we consider i t to be more useful on a parallel computer to be able to perform

a fast 100,000 timestep simulation of a 1000 atom system rather than 1000 timesteps of a 100,000 atom

system, though the O (N) scaiing means the computational effort is the same for both cases. To this end,

we consider model sizes as small as a few hundred atoms in this paper.

For very large MD problems, our second goal in this work was to develop parallel algorit,hms that, would

he scalahle to faster a n d larger pa.rallel machint.~. 1771~ile the timings we prrsrnt for Iargr !biD models

(lo5 to l o 7 atoms) on the current generation of parallel supercomputers are quite fast compared to vector

supercomputers, they are still too slow to allow long-timescale simulations to be done routinely. However,

our large-system algorithm scales optimally with respect to N and P (the number of processors) so that

as parallel machines become more powerful in the next few years, algorithms similar to it will enable larger

problems to be attacked.

Our earlier efforts in this area [19] produced algorithms which were fast, for systems up to t,ens of thou-

sands of atoms but did not scale optimally with N for larger systems. After improving on these efforts

to create a scalable large-system algorithm [20] we have recently added an idea of Tamayo and Giles [all

that. has improved the algorithm’s performance on medium-sized problems by reducing the inter-processor

communication requirements. We have also recently developed a new parallel algorithm which we present

here in the context of MD simulations for the first time. It offers the advantages of both simplicity and speed

for small to medium-sized problems.

Thus, in this paper we present the culmination of our efforts: several algoritlms we have found, tllrougll

implementing and testing a variety of ideas on different parallel machines, to be the fastest methods for

short-range molecular dynalnics across a wide range of problem sizes. By implementing the algorithms on

machines with hundreds to thousands of processors, we have been able to understand in practical terms

3

what algorithmic features work best and tailor the algorithms accordingly to optimize their performance as

a function of N and P . Due t,o their scalability, we can also predict 11017- these algorithms will perform on

the faster, larger parallel machines of the future.

In the next section, the computational aspects of MD are highlighted and efforts to speed the calcula-

tions on vector and parallel machines are reviewed. In Sections 3, 4, and 5 we describe our three parallel

algorithms in detail. A standard Lennard-Jones benchmark calculation is outlined in Section 6. In Section

7, implementation details and timing results for the parallel algorithms on three massively parallel MIMD

machines are given and comparisons made to the best Cray Y-MP timings for the benchmark calculation.

Discussion of t'he scaling properties of t.he algorithms is also included. Next, in Section 8, issues relevant to

using the parallel algorithms in different kinds of MD simulations are discussed. Finally, in Section 9, we

draw conclusions and give several guidelines for deciding which parallel algorithm is likely to be fastest for

a particular short-range MD simulation.

2 Computational Aspects of Molecular Dynamics

The computational task in a MD simulation is t,o integrate the set of coupled differential equations (Newton's

equations) given by

where mi is the mass of atom i, F'' and Ci are its position and velocity vectors, F2 is a force function describing

pairwise interact,ions between atoms. F3 describes three-body interactions, and many-body interactions can

be added. The force terms are derivatives of energy expressions in which the energy of atom i is typically

written as a function of only the positions of itself and other atoms. In practice, only one or a few terms

in equation (1) are kept and F2, F3, etc. a.re construct>ed so as to include many-body and quantum effects.

To the extent the approsimat,ions are accurat,e these equat,ions give a full description of the time-evolution

of any at.omic system. Thus, the great computational advantage of MD, as compared to a b initio electronic

structure calculations. is that the dynamic behavior of the atomic system is described empirically wit1~011t

having to solve Schrodinger's equation at each timestep.

In a three-dimensional simulation, equation (1) implies 6 equations (3 posit.ion and 3 velocity) for

each of the N atoms. The equations are non-linear since they depend on non-linear force function-

als Fz , F3, etc., which in turn are typically functions of the distance between atoms i and j , namely

T ' . - - J(z, - + (yi - yJ)? + (zi - ~ j) ~ . The equations are coupled since the position of atom i appears

in t,he equations of all the other atoms it int,eracts with.

4

For long-range forces, such as Coulombic interactions in an ionic solid or biological system, each atom

interacts with all others. Directly computing these forces scales as N 2 and is too costly for large N . Various

approximate methods overcome this difficulty. They include particle-mesh algorithms [22] which scale as

f (M) N where M is the number of mesh points, hierarchical methods [23] which scale as N l o g (N) , and

fast-multipole methods [24] which scale as A'. Recent parallel implementations of these algorithms have

improved their range of applicability [25, 261 for various kinds of many-body simulations but long-range

force models are noi used as often as short-range models i n \ ID simulat,ions.

Short-range forces are used extensively in MD. This is either because electronic screening effectively limits

the range of influence of the interatomic forces being modeled or simply because long-range interactions are

truncated to lessen the computational load. In either case, the summations in equation (1) are restricted to

atoms within some small region surrounding atom i. This is typically implemented using a cutoff distance

r,, outside of which all interactions are ignored. The work to compute forces now scales linearly with jV,
with a small coefficient. However, even with this savings, the vast majority of computation time spent in

a short-range force MD simulation is in evaluating the force terms in equation (1). The time integration

typically requires only 2-3% of the total time. To evaluate the sums efficiently requires knowing which atoms

are within the cutoff distance r, at every timestep. The key is to minimize the number of neighboring

atoms that must, be checked for possiiJie iuteractions since calculations perfomled on neighbors at a distance

r > r , are wasted computation. There are two basic techniques used to accomplish this on serial and vector

machines; we discuss them briefly here since our parallel algorithms incorporate similar ideas.

The first idea. that of neighbor lists, was originally proposed by Verlet [27]. For each atom, a list is

maintained of nearby atoms to check for interactions. Typically, when the list is formed, all neighboring

atoms wit'hin an extended cutoff distance r, = T, + 6 are stored. The list is used for a few timest,eps to

calculate all force interactions. Then it, is rebuilt before any atom could have moved from a distance r > r ,

t80 r < rC. Though 6 is always chosen to be small relative to r c , an optimal value depends on the parameters

(e.g. temperature, diffusivity, density) of a particular simulation. The advantage the neighbor list construct

provides is that once the list is built, examining it for possible interactions is much quicker than checking all

other atoms in the simulation domain.

The second technique commonly used for speeding up MD calculations is known as the link-cell method

[28]. At every timestep, all the atoms are hashed into 3-D bins or cells of side length d where d = T, or

is slightly larger. The reduces the task of finding neighbors of a given atom to checking in 2 i bins - the

bin the atom is in and the 26 surrounding bins. Since binning the atoms only requires O (N) work, the

extra overhead associated with it is acceptable for the savings of being able to check only a local region for

neighbors.

The fastest MD algorithms on serial and vector machines use a. combination of neighbor lists and link-

cell binning. In the combined method, bins are only used to hash atoms once every few timesteps for the

purpose of forming neighbor lists. In this case atoms are hashed into bins of size d 2 r,. The neighbor lists

5

*

are then used in the usual way to find actual neighbors at each timestep. This is a significant savings over

a conventional link-cell method since there are far less atoms to check at each step in a sphere of volume

4nrS3/3 than in a cube of volume 27rC3. Additional savings can be gained due to Newton’s 3rd law by only

computing a force once for each pair of atoms (rather than once for each atom in the pair). In the combined

method this is done by only searching half the surrounding link-cell bins of each atom to form its neighbor

list. This has the effect of storing atom j in atom i’s list, but not atom i in atom j’s list, thus halving the

number of force computations that must be done.

Although these ideas are simply described, optimal performance on a vector machine requires careful

attention to data structures and loop constructs to insure complete vectorization. The fastest implementation

reported in the literature is that, of Grest, et al. [3]. They use the combined neighbor list/link-cell method

described above to create long lists (vectors) of pairs of neighboring atoms. At each timestep, they prune

the lists to keep only those pairs within the cutoff distance r,. Finally, they organize the lists into packets

in which no atom appears twice. The force computation for each packet can t,hen be completely vectorized,

resulting in performance on the benchmark problem described in Section 6 that is from 2 to 10 times faster

t h a n other vectorized algorithms [4, 61 over a wide range of simulation sizes.

As mentioned in t.he introduction, there has been considerable recent research in devising parallel AID

algorithms. The natural parallelism in MD is within a timest,ep; force calculations and velocity/position

updates can be done simultaneously for all atoms. To date, researchers have used two basic ideas to exploit

this parallelism. References [29. 30, 311 include good overviews of various techniques. To our knowledge, all

algorithms that, have been proposed or implement,ed (including ours) have been variations on these simple

ideas. The goal in each is to divide the force computations in equation (1) evenly across the processors so

as to extract maximum parallelism.

T h e first class of methods does this by statically assigning a subset of the force computations to each

processor. The assignment remains fixed for the duration of the simulation. The simplest way of doing this is

to give a subgroup of at,oms t,o each processor. We call this method an atom-decomposi tzon of the workload,

since the processor computes forces on its atoms no matter where they move in the simulation domain. More

generally, a subset of the force loops inherent in 1 can be assigned to each processor. We term this a force-

decomposi i ion and describe a new algorithm of this type later in the paper. Both of these decompositions are

analogous to Lagranglan grld,iil,g ill a fluids simulations where the grid cells (computational elements) move

with the fluid (atoms in MD). By contrast, in the second general class of methods, which we call a spatzal-

decomposi t ion of the workload, each processor is assigned a portion of the physical simulation domain. Each

processor comput,es only the forces on atoms in its sub-domain. As the simulation progresses processors

exchange atoms as they move from one sub-domain to another. This is analogous to an Eulerian gridding

for a fluids simulation ~ l ~ r ~ r . ~ ~ t h e grid remaim fixed in s l~acc as fluid moves through it.

As an aside, it is worth noting that both of these methods parallelize the MD computation within a

single timestep. A third possibility for parallelism exists, one that so far as we know, no one has successfully

6

exploited. The idea is to parallelize the timestep loop (lime-decomposition) which is typically the outermost.

loop in a MD program. The goal would be to speed up the overall computation by having different processors

work on different timesteps concurrently. Methods of this type have been proposed for implicit solvers for

partial differential equations [32]. However, the timestepping algorithms typically used in MD are explicit

and depend on the positions and velocities from the previous timestep being known before advancing to the

next step.

M’ithin the two classes of met>hods for parallelization of \ID. a variety of algorithms have been proposed

and implemented by various researchers. The details of the algorithms vary widely from one parallel machine

to another since there are numerous problem-dependent and machine-dependent trade-offs t,o consider. such

as the relative speeds of computat,ion and communication. A brief review of some notable efforts follows.

Atom-decomposition methods, also called replicated-data methods [31] because vectors of atom infor-

mation are replicated across all processors, are often used in RID Gnulations of molwular systems. This is

because, as we shall see. they make for straight-forward computation of additional three-body and four-body

force terms. Parallel implementations of state-of-the-art biological MD programs such as CHARMm and

GR.OMOS using this technique are discussed in [33, 341. Force-decomposition methods which systolic,ally cy-

cle atom data around a ring or grid of processors have been used on MIMD [13: 311 and SIMD machines [35j.
The only force-decomposition method we have found whicli resembles the algorit,llnl we present in Section 4

is tha.t of Boyer and Pawley in [ll]. Their method is designed for long-range force systems requiring all-pairs

calculation (no neighbor lists) on a SIMD machine. Thus the overall scaling of the algorithm is different as

is the way it distributes the atom data among processors and performs inter-processor communication.

Spatial-decomposition methods, also called geometric methods [29, 301, are more commonly discussed in

the lit’erature because they are well-suited to very large MD simulations. Recent parallel implementations

for the Intel iPSC/2 hypercube that have features in common with our spatial-decomposition algorithm are

discussed in [14, 15, 311. The fastest’ published algorithms for SIMD machines are those of [la] and also

employ spatial-decomposition techniques. Recent,ly Tamayo and Giles have also developed a parallel MD

algorithm for the CM-5, programming it as a MIMD machine with explicit inter-processor message passing

[21]. Their AIIhlD algorithm is the most sinlilar of any we have seen to the algorithm we discuss in Section

5. In fact, in this paper we adopt one of their ideas t o improve our algorithm’s performance for problems

with medium-sized N . Differences between Tamayo’s and our algorithms include the method of neighbor list

construction and the patt,ern of inter-processor communication. It is interesting to note that their timings

in [a11 for the benchmark problem of Section 6 showed the CM-5 programmed in MIMD mode without

vector units to be faster than the SIMD CRI-2 [la], indicating the advantage a MIMD capability offers for

exploiting parallelism in short-range MD simulations.

We now present our versions of atom-, force-, and spatial-decomposition algorithms in the next 3 sec-

t1ons.

7

3 Atom-Decomposition Algorithm

In our first parallel algorithm each of the P processors is assigned a group of N I P atoms at the beginning of

the simulation. Atoms in a group need not have any special spatial relationship to each other. A processor

will compute forces on only its N I P atoms and will update their positions and velocities for the duration

of the simulation no matter where they move in the physical domain. As discussed in the previous section,

this is an atom-decomposition of the computational workload.

A useful construct for representing the computational work involved in the algorithm is the 11' x N force

matrix F . The (ij) element of F represents the force on atom i due to atom j . Note that F is sparse due

to short-range forces and skew-symmetric, i.e. Fi, = -Fji, due to Newton's 3rd law. We also define x

and f as vectors of length N which store the position and total force on each atom. For a 3-D simulation,

zi would store the three coordinates of atom i. With these definitions, the atom-decomposition algorithm

assigns each processor a sub-block of F which consists of N I P rows. This is shown in Figure 1 where we let

the z subscript denote the processor number from 0 to P - 1. Thus, processor P, computes matrix elements

in the F, block of rows. It also is assigned the corresponding sub-vectors of length hr/P denoted by z2 and

f i .

xt
x,f

Figure 1: The division of the force matrix among processors in the atom-decomposition algorithm. Processor

z is assigned a group of h r / P rows of the matrix and corresponding pieces of the position and force vectors,

x and f .

Assume the computation of matrix element Fij requires two atom positions zi and xj. (We relax this

assumption in section 8.) To compute all the elements in F,, processor P, will need the positions of many

atoms owned by other processors. In the atom-decomposition algorithm, this is accomplished by having each

8

processor send its updated atom positions to all the other processors once per timestep, an operation called

all-to-all communication. Various algorithms have been developed for performing this operation efficiently

on different parallel machines and architectures [lo, 361. We use an idea due to Fox, et al. [lo] that is simple,

portable, and works well on a variety of machines. We describe it here because it is the chief communication

component of both the atom-decomposition algorithm and the force-decomposition algorithm presented in

the next section.

Following Fox’s nomenclature, we term the all-to-all communication procedure an expand operation.

Each processor allocates memory of length N to store the entire z vector. At the beginning of the expand,

processor P, has 2,) an updated piece of z of length N I P . Each processor needs to acquire all the other

processor’s pieces, storing them in the correct places in its copy of x. Figure 2 illustrates the steps that

accomplish this for an 8 processor example. The processors are mapped consecutively to the sub-pieces of

the vector. In the first communication step, each processor exchanges its piece with an adjacent processor

in the vector. Processor 2 exchanges wit11 procwsor 3 i n the figure. Now, every proc’ssor has a contlguous

piece of z that is of length 2N/P. In the second step, each processor exchanges this piece with a processor

two positions away (2 exchanges with 0). Each processor now has a 4N/P-lengt,h piece of x. In the last

step, each processor exchanges an h7/2-length piece of x with a processor P/2 positions away (2 exchanges

w i t h 6) ; the entire vector now resides on each processor.

N/P
4-b

Step 1:

Step 2:

Step 3:

U

Figure 2: An expand operation among 8 processors. Processor 2 exchanges successively longer suh-vect,ors

with processors 3, 0, and 6.

A pseudo-code version of the expand operation is given in Figure 3. For simplicity we again assume a

power-of-two number of processors; relaxing this assumption is straightforward. The expand proceeds in

9

l o g ~ (P) steps. At each step P, performs a data exchange with a partner processor P’. The new processor

number P’ is obtained by flipping one bit in z ! which itself is a string of logZ(P) bits. The sub-vector y

is sent to P’ and the received sub-vector z is concatenated with y (the “ 1 ” operation) in the proper order.

Thus y doubles in length at every step; at the end of the expand y has become the full N-length vector

x. Costs for a communication algorithm are typically quantified by the number of messages and the total

volume of data sent and received. On both these accounts the expand is optimal; each processor performs

logz(P) sends and receives and exchanges N - N / P data values. This is the reason the expand operation

works well on many machines. A drawback is that it requires O (N) storage on every processor. Alternative

methods for performing all-to-all communication require less storage at the cost of more sends and receives.

This is usually not a good trade-off for MD simulations because, as we shall see, quite large problems can

be run with an atom-decomposition algorithm in the many Mbytes of local memory of current-generation

processors.

y := x,
FOR IC = 0 , . . . , logZ(P) - 1

P‘ := P: with k t h bit of z flipped

SEND y to processor P’

RECEIVE z from processor P’
IF bit k of z is 0 THEN

y := ylz

y := zly

ELSE

x := y

Figure 3: The expand operation for processor P,.

A communication operation that, is essentially the inverse of the expand will also prove useful in the

atom- and force-decomposition algorithms. Assume each processor has stored new force va.lues t’hroughout

its copy of the force vector f . Processor P, needs to know the N I P values in f2, where each of the values is

summed across all P processors. A procedure for doing this is known as a fold operat,ion [lo] and is out,lined

in Figure 4. Again the operation proceeds in logz(P) steps. At each step, y represents a portion of the

force vector f , and is split into two pieces, y’ and y2. One of the pieces is sent to a partner processor P .
The received sub-vector z is summed element by element with the retained piece. This summed sub-vector

becomes y in the next step, so that y is halving in length a t each iteration of the loop. When the fold is

finished, y has become f i , with values summed across all P processors. Like the expand, the fold operation

requires l o g ~ (P) sends and receives and N - N / P data to be exchanged by each processor. Additionally it

requires N - N / P flops to do the summations, typically a small extra cost.

10

y := f
FOR k = log,(P) - 1,. . . , O

y1 := top half of y vector

y2 := bottom half of y vector

P’ := P, with k t h bit of z flipped

IF bit k of z is 0 THEN

SEND y2 to processor P‘

RECEIVE z from processor P’
y := y’ + 2

ELSE

SEND y1 to processor P’

RECEIVE z from processor P’

y := y 2 + z

fi := y

Figure 4: The fold operat.ion for processor Pi

Having defined the expand and fold operations, we now present two versions of the aton-decomposition

algorithm. The first, is simpler and does not take advantage of Newton’s 3rd law. We call this algorit.hm

A l ; it is outlined in Figure 5 with the dominating term(s) in the computational or communication cost of

each step listed on the right. We assume at the beginning of the timestep that each processor knows the

current positions of all N atoms, i.e. each has a copy of the entire I vector. Step (1) of the algorithm is to

construct neighbor lists for all the pairwise interactions that, nlust L C c o l ~ ~ p u t o d in block F,. Typically this

will only be done once every few timesteps. If the ratio of the physical domain diameter D to the ext,ended

force cutoff lengt’h T, is relatively small, it is quicker for P, to construct the lists by checking all N 2 / P pairs

in its F, block. When the simulation is large enough t’hat 4 or more bins can be created in each dimension,

it is quicker for each processor to bin all AT atoms, then check the 27 surrounding bins of each of its N I P

at>oms to form the lists. This checking scales as N / P but has a large coefficient, so the overall scaling of t,he

binned neighbor list construction is recorded as N I P + N .

In step (2) of the algorithm, the neighbor lists are used to compute the non-zero matrix element,^ in F,.

As each pairwise force interaction is computed, the force components are summed into f,, so that F, is never

actually stored as a matrix. At the completion of the step, each processor knows the total force fi on each

of its NIP atoms. This is used to update their posit,ions and velocit,ies in step (4). (A step (3) will be added

to other algorithms in this and the following sections.) Finally, in step (5) the updated atom positions in 2,

are shared among all P processors in preparation for the next timestep via the expand operation of Figure

3. As discussed above, this operation scales as N , the volume of data in the position vector x.

11

(1) Construct neighbor lists of non-zero interactions in F,.

(D < 4 ~ ~) All pairs P N=

(D > 4r,) Binning $ + N

(2) Compute elements of F,, storing results in fi P N

(4) Update atom positions in xz using fz N P
(5) Expand I, among all processors, result is z N

Figure 5: Single timestep of atom-decomposition algorithm A1 for processor P,

As mentioned above, algorithm A1 ignores Newton’s 3rd law. If different processors own atoms i and

j as is usually the case, both processors compute the (ij) interaction and store the resulting force on their

atom. This can be avoided (at the cost of more communication) by using a modified force matrix G which

references each pairwise interaction only once. There are several ways to do this by st.riping the matrix [37];
we choose instead to form G a5 follows. Let Gij = Fij, except that Gij = 0 when i > j and i + j is even,

and likewise Gij = 0 when i < j and i + j is odd. Conceptually, G is colored like a checkerboard with red

squares above the diagonal set to zero and black squares below the diagonal also set to zero. A modified

atom-decomposition algorithm A2 that uses G to take advantage of Newton’s 3rd law is outlined in Figure

6.

(1) Construct neighbor lists of non-zero interactions in G,
(D < 4r,) All pairs

(D > 4r,) Binning p + N N

?‘2
T

(2) Compute elements of G,,
doubly storing results in local copy of f 2p N

(3) Fold f among all processors, result is f, N
(4) Update atom positions in 2, using fi P N

(5) Expand x* among all processors, result is z N

Figure 6: Single timestep of atom-decomposition algorithm A2 for processor P,. This version takes advan-

tage of Newt,on’s 3rd law.

Step (1) is the same as in algorithm A1 except only half as many neighbor list entries are made by each

processor since G, has only half the non-zero entries of F,. This is reflected in the factors-of-two included

in the scaling entries. For neighbor lists formed by binning, each processor must still bin all N atoms, but

12

only need check half the surrounding bins of each of its N I P atoms. In step (2) the neighbor lists are used

to compute elements of G,. Again this requires only half the work of the corresponding step in A l . Note

that for an interaction between atoms i and j , the resulting forces on atom i and j are summed into both the

i and j locations of force vector f. This means each processor must store a copy of the entire force vector,

as opposed to just storing fi as in algorithm A l . When all the matrix elements have been computed, f is

folded across all P processors using the algorithm in Figure 4. Each processor ends up with fi, the total

forces on its atoms. Steps (4) and (5) then proceed the same as in A l .

Note that, implementing Newt,on’s 3rd law essent,ially halved the computational cost in steps (1) and (2).

at the expense of doubling the communicat,ion cost. There are now two communication steps (3) and (5).

each of which scale as N . This will only be a net gain if the communication cost in A1 is less than a third of

t,he overall run time. As we shall see, this will usually not be the case on large numbers of processors: so in

practice we almost always choose A1 instead of A2 in simulations using an atom-decomposition algorithm.

However. for small P or expensive force models, A2 can be the faster choice.

Finally, we discuss the issue of load-balance. The computation in algorithms A1 and A2 is in steps

(l) , (2) , and (4). Each processor will have an equal a amount of work to do if each F, or G, block has

roughly the same number of non-zero elements. This will automatically be the case if the atom density is

uniform across the simulation domain. However ~ x . - - u l ~ i f ~ , r ~ ~ ! 1 1 6 ilylties can a r k - if. for example. t11~:w art.

free surfaces so that some atoms border on vacuum, or phase changes are occurring within a liquid or solid.

This is 0111)- a problem for load-balancing of the atom-decomposition computation across processors if the N

atoms are ordered in a geometric sense as is typically the case. Then a group of .Y/P atoms near a surface.

for example, will have fewer neighbors than other groups. This can be overcome by randomly permuting

the atom ordering at the beginning of the simulation, which is equivalent to permuting rows and columns

of F or G. This insures that every F2 or G, will have roughly the same number of non-zeros even if the

atom density is non-uniform. A random permutation has the advantage that the load-balance will likely

persist as atoms move about during the simulation. Note that this permutation need only be done once, as

a. pre-processing step before beginning the dynamics.

In summary, the atom-decomposition algorithms divide the MD force comput,ation and integration evenly

across the processors (ignoring the Oj.Z-) component of binned neighbor list, construction which is usually

not significant). However, the algorithms require global communication, as ea.ch processor must, acquire

information held by all the other processors. This communication scales as N , independent of P, so it limits

the number of processors that can be used effectively. The chief a.dvantage of the algorithms is that of

simplicity. Steps (l) , (21, and (4) can be implemented by simply modifying the loops and data structures in

a serial or vector code to treat N I P atoms instead of N . Then the communication operations (expand and

fold) can be treated as black-box routines and inserted at the proper locations in steps (3) and (5). Few

other changes are typically necessary to parallelize an existing code.

13

4 Force-Decomposition Algorithm

Our next parallel MD algorithm is based on a block-decomposition of the force matrix F rather than a row-

wise decomposition as used in the previous section. We term this a force-decomposition of the workload. As

we shall see, this improves the O (N) scaling of the communication cost to O(N/@). Block-decompositions

of matrices are common in linea,r algebra algorithms [38, 391 for parallel machines which sparked our interest

in the idea, but to our knowledge we are the first to apply the idea to short-range MD simulations [40, 411.

The assignment of sub-blocks of F to processors is depicted in Figure 7. We assume for ease of expositmion

that P is an even power of 2 and that A' is a multiple of P , although again it is fairly straightforward to

relax these constraints. The block owned by each processor is thus square and of size (N / O) x (N I e) .

We use the Greek subscripts a and ,L? to index the row and column blocks of F running from 0 to 0 - 1.

A sub-block of F is denoted as Faa, and the processor owning it is Pap. We note that, o and 0 also index

sub-vectors of x and f of length N / G . To compute the matrix elements in Fap, processor Pap must know

the I, and xp pieces of I. As these elements are computed they will be stored in local copies of the force

sub-vectors, namely fa and f p .

Figure 7: The division of the force matrix among processors in the force-decomposition algorithm. Processor

Pa@ is assigned a sub-block F,p of size A'/@ by N/@. Likewise it stores the corresponding lengt,h K / f l

pieces of the position and force vwtors.

In addition to comput,ing the matrix elements in Pap, each processor will be rPsponsible for updating

the positions and velocities of N I P atoms, as in the atom-decomposition algorithm. These atoms are a

sub-vector of 2,: that is! the fi processors in row (Y divide 2, among them, so each is responsible for

14

a contiguous piece of length N I P . Numbering these pieces with the column index p of the processor, we

denote each processor’s piece with a superscript as zap. Similarly, the total force acting on these atoms is

the NIP-length vector f:. As in the atom-decomposition case, an element off,” is the sum of all the matrix

elements across the corresponding row of F .
Our first force-decomposition algorithm F1 is outlined in Figure 8. As before, each processor has updated

copies of the needed atlorn positions at the beginning of the timestep. In this case it is the current sub-vectors

z, and zp. In step (1) neighbor lists are constructed. Again, for small problems this is most quickly done

be checking all N 2 / P possible pairs in Fa@. For large problems, the N / O atoms in zp are binned, then

the 27 surrounding bins of each atom in z, is checked. The total number of interactions stored in each

processor’s lists is still O (N / P) . The scaling of the binned neighbor list construction is thus N I P + N / O .

In step (2) the neighbor lists are used to compute the matrix elements in F,$. As before the elements are

summed into a local copy of fa as they are computed, so Fop never need be stored in matrix form. In

step (3) a fold operation is performed within each row of processors so that processor Pap obtains the total

forces on it,s N I P atoms. ft. Although the fold algorithm used is the same as in the preceding sect,ion,

there is a key difference. In this case the vector fa being folded is only of length N/@ and only the 0
processors in one row are participating in the fold. Thus thik operation scales as N / f i instead of N as in

t h e a tonl~decon~~,os i~ io i l iulil1nunication steps.

In step (4), f: is used by Pap to update the N I P atom positions in x{. Steps (5a-5d) share these

updated positions with all the processors who will need them for the next timestep. These are the processors

who share a row or column wit,h Pea. First, in (sa), the processors in row Q do an expand of their x,@
sub-vect’ors so that each acquires the entire za. As with the fold, this operation scales as the length

of 2, instead of as N as it did in algorithms A1 and A2. In step (5b), each processor exchanges its updated

atom positions with processor Ppa which owns the transpose position block of F . The cost of this operation

scales as the K / P length of the data being exchanged. Finally, in st,ep (5c), the processors in each column

p do an expand of the received sub-vector x;. As a result they all acquire x p and are ready to begin the

next timestep.

As with algorithm A l , algorithm F1 does not take advantage of Newton’s 3rd law; each pairwise force

interaction is computed twice. Algorithm F2 avoids this duplicated effort by using the same checkerboarded

matrix G that was defined in the preceding section. Note that now the total force on atom i is the sum of

all non-zero matrix elements in row i minus the sum of all non-zero elements in colunm i . The modified

force-decomposition algorithm F2 is outlined in Figure 9. Step (1) is the same as in F1, except that half

as many interactions are stored in the neighbor lists. Likewise, step (2) requires only half as many matrix

elements be computed. For each (ij) element, the computed force components are now summed into two

force vectors instead of one. The force on atom i is summed into fa in the location corresponding to row

i. The same force (negative of the force on atom j) is also summed into fp in the location corresponding

to column j . Steps (3a-3d) accumulate these forces so that processor Pap ends up with the total force 011

1 5

(1) Construct neighbor lists of non-zero interactions in F,p

(D 5 4rS) All pairs 7- N Z

(D 2 4rs) Binning s.5
(2) Compute elements of F,p, storing results in f, P N

(3) Fold fa within row C Y , result is ft . N J7;
(4) Update atom positions in x! using f! P A;

(5a) Expand xt within row C Y , result is x,

(5b) Exchange atom positions with transpose processor Pp,
5

Send x! to Pocy P N

Receive xp* from Pp, P N

(5c) Expand x; within column 8, result is xcp A' JT;

Figure 8: Single t,imestep of force-decomposition algorithm F1 for processor Pap

its N/P atoms. First, in step (3a), the processors in column ,O fold their local copies of f p . The result

is @ . Each element of this :Y/P-lengt,h sub-vector is the sum of an entire column of G. In step (3b)

this sub-vect,or is exchanged with the transpose-position processor Poa. The values in the sub-vector each

processor receives in this transpose operation are t,he partial forces (column cont,ribution) on its N / P at,oms.

Next, in step (3c), the row contributions to the forces are summed by performing a fold of the fa vector

within each row CY. The result is a second copy of f!, each element of which is the sum across a row of G.

Finally, in step (3d) the two partial contributions (column and row) are subtracted element by element to

yield the total forces on the atoms owned by processor Pap. The processor can now update the positions

and velocities of its atoms: steps 4 and 5 are identical to those of F1.

In the force-decomposition algorithms, implementing Newton's 3rd law again halves the computation

required in steps 1 and 2. However, the communication cost in steps 3 and 5 does not double. Rather there

are 4 expands and folds required in F2 versus 3 in F1. There are also two transpose operations instead

of one. The key point is that the expand and fold operations now scale as N / o rather thar! as .N as

was the case in algorithms A1 and A2. As we shall see, this significantly reduces the communication time

spent in t h e force-decomposition algorithm when run on large numbers of processors as compared t,o t,he

atom-decomposition algorithms. Thus, in practice, it is usually faster to use algorithm F2 with its reduced

computational cost a,nd slightly increased communication cost rather than F1.

Finally, the issue of load-balance is a more serious concern for the force-decomposition algorithms.

Processors will have equal work to do only if all the matrix blocks Fa@ are uniformly sparse. If the atoms are

ordered geometrically this will not be the case even for problems with uniform density. This is because such

an ordering creates a force matrix with diagonal bands of non-zero elements. As in the atom-decomposition

16

(1) Construct neighbor lists of non-zero interactions in Gap

(D 5 4r,) All pairs 2p N 2

(D 2 4r,) Binning Tp+$ N

(2) Compute elements of Gap,

storing results in local copies of fa and fo 2 7 N

(3a) Fold f~ within column p, result is f ,
(3b) Exchange partial forces with transpose processor Ppa

%-
Send f; to Poa P N

Receive partial f a p from PRO P N

(3c) Fold fa within row a , result is partial f a P

(3d) Subtract received ff copy from folded copy, result is total fg $
(4) Update atom positions in x; using ff P N

(Sa) Expand x! within row cy, result is x,

(5bj Exchange atom positions with transpose processor Pp,

5

5%-
Send x! to Ppa P N

Receive x; from Pp, P N

(5c) Expand x$ within column p, result is xp 5
Figure 9: Single t,imest,ep of force-decomposition algorithm F2 for processor Pap. This version takes advan-

tage of Newt,on’s 3rd law.

case, a random permutation of the atom ordering produces the desired effect. Only now the permutation

should be done as a pre-processing step for all problems, even those with uniform atom densities.

In summary, algorithms F1 and F2 divide the MD computations evenly a.cross processors as did the atom-

decomposition algorithms. But the block-decomposition of the force matrix means each processor only needs

O (N / @) information to perform its computations. Thus the communication cost is reduced by a factor

of O(@) versus algorithms A1 and A2. The force-decomposition strategy retains the simplicity of the

aton-decomposition technique; F1 and F2 can IF im1’1emcnt (~ 1 115ing thr same “hlack-box” communicat,ion

routines as A1 and A2. The force-decomposition algorithms also need no geomet,ric information &out, the

physical problem being modeled to perform optimally. In fact, for load-balancing purposes they intentionally

ignore such information by using a random atom ordering.

17

5 Spatial-Decomposition Algorithm

In our final parallel algorithm the physical simulation domain is subdivided into small 3-d boxes, one for

each processor. We call t’his a spatial-decomposition of the workload. Each processor computes forces on

and updates the positions and velocities of all atoms within its box at each timestep. Atoms are reassigned

to new processors as they move through the physical domain. In order to compute forces on its atoms, a

processor need only know positions of atoms in nearby boxes. The communication required in the spatial-

decomposition algorithm is thus local in nature as compared to global in the atom- and force-decomposition

cases.

The size and shape of the box assigned to each processor will depend on N , P , and the shape of

the physical domain, which we assume to be a 3-d rectangular parallelepiped. Within these constraints

the number of processors in each dimension is chosen so as to make each processor’s box as “cubic” as

possible. This is to minimize communication since in the large N limit the communication cost of the

spatial-decomposition algorithm will turn out to be proportional to the surface area of the boxes. An

important point to note is that, in contrast to the link-cell method for conventional MD described in Section

2, the box lengths may now be smaller or larpcr than the force cutoff lengths r, and r,.

Each processor in our spatial-decomposit’ion algorithm maintains two data structures, one for the Ar/P

atoms in its box and one for atoms in nearby boxes. In the first data structure, each processor stores complete

information - positions, velocities, neighbor lists, etc. This data is stored in a linked list to allow insertions

and deletions as atoms move to new boxes. In the second data structure only atom positions are stored.

Interprocessor communication at each timest,ep keeps this information current.

The communication scheme we use to acquire this information from processors owning the nearby boxes

is shown in Figure 10. The first step (a) is for each processor to pair up with an adjacent processor in the

east/west dimension, 2 pairs with 1 for example. Processor 2 fills a message buffer with atom positions it

owns that are within a force cutoff length r, of processor 1’s box. (The reason for using r, instead of r ,

will be made clear below.) If d < r , , where d is the box length in the east/west direction, this will be all of

processor 2’s atoms; otherwise it will be those nearest to box 1. Now processors 2 and 1 exchange messages.

Processor 2 puts the information it receives into its second data structure. Now the processors pair up

i n the opposite east-west direction. 2 with 3 in this case, and perform the same operation. If d > r , , all

needed at,om positions in the east-west dimension have now been acquired by each processor. If d < r,. this

procedure is repeated with each processor sending more needed atom positions to its adjacent processors. For

example, processor 2 sends processor 1 atom positions from box 3 (which processor 2 now has in its second

data struct.ure). This can he repeated until each processor knows all atom positions within a distance r, of

its box, as indicated by the dotted boxes in the figure. The same process is now repeated in the north/south

dimension; see step (b) of the figure. The only difference is that messages sent to the adjacent processor now

contain not only atoms t,he processor owns (in its first data structure), but also any atom positions in its

second data structure that are needed by the adjacent processor. For d = r, this has the effect of sending 3

18

boxes worth of atom positions in one message as shown in (b). Finally, in step (c) the process is repeated in

the up/down dimension. Now atom positions from an entire plane of boxes (9 in the figure) are effectively

being exchanged in each message.

(a) east/west exchanges

(b) northhouth exchanges .
U

b up/down exchanges

Figure 10: Method by which a processor acquires nearby atom positions in the spat'ial-decomposition algo-

rithm. In 6 data exchanges all atom positions in adjacent boxes in the (a) east/west, (b) north/south, and

(c) up/down directions can be communicated

There are severa.1 key advantages t30 t,his scheme, all of which reduce the overa.11 cost of communication in

our algorithm. First, for d 2 r , , needed atom positions from all 26 surrounding boxes are obtained in just 6

data exchanges. Moreover,, as will be discussed in the results section, if the parallel machine is a hypercube,

the processors can be mapped to the boxes in such a way that all 6 of these processors will be directly

connected to the center processor. Thus message passing will be fast and contention-free. Even if d > r, so

t'hat atom information is needed from more distant boxes, this occurs with only a few extra data exchanges.

all of which are still with the 6 immediate neighbor processors. Second, the amount of data communicated is

minimized. Each processor acquires only the atom positions t1~a.t are within a dist,ance r, of its box. Third,

all of the received at30m positions can be pla.ced as contiguous data directly into the processor's second data

structure. No time need be spent rearranging data, except to create the buffered messages that need to

be sent. Finally,, as will be discussed in more detail below, this message creation can be done very quickly.

A full scan of the two data structures is only done once every few timesteps, when the neighbor lists are

created, to decide which atom positions to send in each message. The scan procedure creates a list of atoms

that make up each message. During all the other timesteps, the lists can be used, in lieu of scanning the full

19

atom list, to buffer up the messages quickly. This is the equivalent of a gather operation.

We now outline our spatial-decomposit,ion algorithm S1 in Figure 11. Box t is assigned to processor P,,

where z runs from 0 to P - 1 as before. Processor P, stores the atom positions of its N I P atoms in

(first data structure) and the forces on those atoms in ft. Steps (la-lc) are the neighbor list construct~ion,

performed once every few timesteps. This is somewhat more complex than in the other algorithms because,

as discussed above, it includes the making of lists of atmoms that will be communicated at every timestep.

First, in st,ep (la) the positions, velocities, and any other identifying information of atoms that are no longer

inside box z are deleted from x, and stored in a message buffer. These atoms are exchanged with the 6

adjacent processors via the communication pattern of Figure 10. As the information routes through each

dimension, processor P, checks for new atoms that are now inside its box boundaries, adding them to x,.
Next, in step (lb), all atom positions within a distance T , of box z are acquired by the communication scheme

described above. As the different messages are buffered by scanning through the two data structures. list's

of included atoms are made. The lists will be used in step (5). The scaling factor A for steps (la) and (lb)

will be explained below.

' la) Move necessary atoms to new boxes

l b) Make lists of all atoms t.hat will need to be exchanged

:IC) Construct neighbor lists of interaction pairs in box z

(d 5 2rs) All pairs

(d 2 2 ~ ,) Binning

'2) Compute forces on atoms in box z , doubly storing results in fz

4) Update atom posit,ions x, ill box 2 using f2

' 5) Exchange atom positions across box boundaries

with neighboring processors

((1 < r s j Send S I P posit'ions to many neighbors

(d X T,) Send N I P positions to nearest neighbors

(d > T,) Send positions near box surface to nearest neighbors

A

A

Figure 11: Single timestep of spatial-decomposition algorithm S1 for processor P, .

When steps (la) and (111) are complete, both of the processor's data structures are current,. Keighbor

lish for its N I P atoms can now be constructed in st,ep (IC). If atoms i and j are b0t.h in box 2 , the (i j) pair

is only stored once in the neighbor list. If i and j are in different boxes, both processors store the interaction

in their respective neighbor lists. If this were not done, processors would compute forces on atoms they do

not own and communication of the forces back to the processors owning the atoms would be required. A

modified algorithm which performs this communication to avoid the duplicated force computation of two-

box interact'ions is discussed below. When d, the length of box t, is less than two cutoff distances, it is

20

quicker to find neighbor interactions by checking each atom inside box z against all the atoms in both of the

processor’s data structures. This scales as the square of h’/P. If d > 2rs. t,hen with the shell of atoms around

box z , there are 4 or more bins in each dimension. In this case: as with the other algorithms, it is quicker

to perform the neighbor list construction by binning. All the atoms in both data structures are hashed into

bins of size r,. The surrounding bins of each atom in box z are then checked for possible neighbors.

Processor P, can now compute all the forces on its atoms in step (2) using the neighbor lists. When

the interaction is between two atoms inside box z , the resulting force is stored twice in & , once for atom

i and once for atom j. For two-box interactions, only the force on the processor’s own atom is stored.

After computing f i , the atom positions are updated in step (4). Finally, these updat’ed positions must be

communicated to the surrounding processors in preparation for the next timestep. This occurs in step (5)

using the previously made lists to create each message and the communication pattern of Figure 10. The

amount of data exchanged in this operation is a function of the relative values of the force cutoff distance

and bos length and is discussed in the next paragraph. Also, we note that on the timesteps that neighbor

lists are constructed, step (5) does not have to be performed since step (l b) has the same effect.

The communication operations in algorithm S1 occur in steps (la), (lb), and (5). The communication

in the latter two steps is identical. The cost of these steps scales as the volume of data exchanged. For step

(5). if we assume uniform atom density, this is proportional to the physical volume of the shell of thickness

r , around box z , namely (d + 2r,)3 - d3. Note there are roughly N / P atoms in a volume of d 3 , since d3 is

the size of box z . There are 3 cases to consider. First, if d < r, data from many neighboring boxes must

be exchanged and the operation scales as 8rS3. Second, if d X r, , the data in all 26 surrounding boxes is

exchanged and the operation scales as 27N/P. Finally, if d is much larger than r , , only atom positions near

the G faces of box z will be exchanged. The communication then scales as the surface area. of box z , namely

Gr,(N/P)”’. These 3 cases are explicitly listed in the scaling of step (5). Elsewhere in Figure 11, we use

the term A to represent, whichever of the three is applicable for a given A:, P , and r,. We note tl1a.t step

(l a) involves less communication since not all the atoms within a cutoff distance of a box face will move out

of t,he hox. But this operation still scales as the surface area of box z , so we list its scaling as A .

The computational portion of algorithm S1 is in steps (lc), (2) , and (4). All of these scale as N I P with

additional work in st,eps (IC) and (2) for atoms that are neighboring box 2 and stored in the s rcond d a t a

structure. The number of these atoms is proportional to A so it is included in the scaling of those steps.

The leading term in the scaling of steps (IC) and (2) is listed as N / 2 P as in algorithms A2 and F2, sinw

Newton’s third law is implemented in algorithm SI. Note that as d grows large relat,ive to T , as it will for

very large simulations, the A contribution to the overall computation time decreases and the overall scaling

of algorithm S1 approaches the optimal N/2P . In essence, each processor spends nearly all its time working

in its own box and only communicates with neighbors to update its boundary conditions.

An important feature of algorithm S1 is that the lists and structure of the data are only changed once

every few timesteps when neighbor lists are constructed. In particular, even if an atom moves outside box 2’s

21

boundaries it is not reassigned to a new processor until step (l a) is executed. Processor P, can still compute

correct forces for the atom so long as two criteria are met. First, the atom cannot move farther than d

between two neighbor list constructions, which would cause problems for step (la). Second, all nearby atom

positions within a distance r J , instead of r , , must be updated at every timestep. We learned this idea from

Tamayo and Giles [2l]. The alternative [20] is to move atoms to their new processors at. every timestep.

This has the advantage that only atom positions within a distance r , of box z need be exchanged at all the

timesteps when neighbor lists are not constructed. This is a reduced volume of communication since r, < T,.

However, the neighbor list of a reassigned atom must now be sent along with it. Also, the information stored

in the neighbor list is atom indices. If atoms are continuously moving to new processors, these local indices

become meaningless. Our implementation in [20] assigned a global index (1 to N) t o each atom which moves

with the atom. A mapping of global index to local memory must then be stored in a vector of size N by each

processor or the global indices must be sorted and searched to find the correct atoms. The former solution

limits the size of problems that can be run; the latter solution incurs a considerable cost for the sort and

search operations. We found that, implementing Tamayo’s idea in our algorithm S1 made the resulting code

less complex and reduced the computational and communication overhead. This did not affect the timings

for simulations with large IT, but improved the algorithm’s performance for medium-sized problems.

A modified version of S1 t.hat takes more advantage of Newton’s 3rd law can be devised, call it algorithm

S2. If processor P, acquires atoms only from its west, south, and down directions (and sends its own atoms

only in the east, north, and up directions), then each pairwise interaction need only be computed once.

even when the two atoms reside in different, boxes. This requires sending computed force results back in the

opposite directions to the processors who own the atoms, as a st,ep (3) in the algorithm. This scheme does

not reduce communicat,ion costs, since half as much information is communicated twice as often, but does

eliminate the duplicated force computations for twebox interactions. We have delayed implementing such a

scheme for t,wo reasons. First. the savings of S2 over S1 is small, particularly in t’he large N limit. Only the

A t,erm is saved in steps (IC) and (2). More importantly, as we mention in our conclusions, the real speed

to be gained in spatial-decomposition algorithms for large systems is by improving the single-processor

performance of force computation in step (2). As floating point processors in parallel machines become more

sophisticat,ed this will require more attention be paid to data structures and loop orderings in the force and

neighbor-list const,ruction routines. Implementing S2 requires special-case coding for atoms near box edges

and corners t,o insure all interactions are counted exactly once and thus affects this optimization process.

Finally, the issue of load-balance is an important concern in any spatial-decomposition algorithm. Al-

gorit>hm S 1 will be load-balanced only if all boxes have a roughly equal number of atoms (and surrounding

atoms). This will not be the case if the physical atom density is non-uniform. Additionally, if the physical

domain is not a rectangular parallelepiped, it can be difficult to split into P equal-sized pieces. Sophis-

ticated load-balancing algorithms have been developed [42] to partition an irregular physical domain or

non-uniformly dense clusters of atoms, but in general they create sub-domains which are irregular in shape

22

or are connected in an irregular fashion to their neighboring sub-domains. In either case, the task of assign-

ing atoms to boxes and communicating with neighbors becomes more costly. If the physical atom densit,y

changes over time during the MD simulation, the load-balance problem is compounded. Any dynamic

load-balancing scheme requires additional comput,at.ional overhead and data movement.

In summary, the spatial-decomposition algorithm, like the atom- and force-decomposition algorithms,

evenly divides the MD computations across all the processors. It,s chief benefit is that it takes full adva.nt,age

of the local nature of the interatomic forces by performing only local communication. Thus, in the large Ai
limit, it achieves optimal O (N / P) scaling and is clearly the fastest algorithm. However, this is only if good

load-balance is also achievable. Since its performance is sensitive to the problem geometry, algorithm S1

is more restrictive than A2 and F2 whose performance is geometry-independent. A second drawback of

algorithm S1 is its complexity; it is more difficult to implement efficient,ly than the simpler atom- and force-

decomposition algorit.hms. In particular the communication scheme requires extra coding and bookkeeping

to create messages and access data received from neighboring boxes. In practice, integrating algorithm S1

into an existing serial MD code can require a substantial reworking of data structures and code.

6 Benchmark Problem

The test case used to benchmark our three parallel algorithms is a MD problem that has been used extensively

by various researchers [3, 4, 20, 6 , 12, 211. It models Lennard-Jonesium with energy between pairs of atoms

separated by a distance r given by the standard G - 12 potential

where c and are constants. The derivative of this energy expression with respect to r is the fi term i n

equation (1); F3 and higher-order terms are ignored.

The AI &oms are simulat.ed in a 3-D parallelepiped with periodic boundary conditions at the Lennard

Jones state point defined by the reduced density p’ = 0.8442 and reduced temperature T* = 0.72. This is a

liquid state near the Lennard-Jones triple point. The simulation is begun with the atoms on a fcc lattice witjh

randomized velocities chosen from a Boltzmann distribution. The solid quickly melts as the system evolves

to its natural liquid state. A roughly uniform spatial density persists for the duration of the simulation. T h e

simulat,ion is run at constant N , volume V , and energy E , a statistical sampling from the microcanonical

ensemble. Force computations using the potential in equation (2) are truncated at a distance r, = 2 . 5 ~ .

The integrat,ion timest,ep is 0.00462 in reduced units. For simplicity we use a leapfrog scheme to integrate

equation (?? as in [a]. Other implementations of the benchmark [3] have used predictor-corrector schemes;

this only slows their performance by 2-3%.

For timing purposes, the critical features of the benchmark for a given problem

These determine how many force interactions must be computed at every timestep.

size N are p* and r,.

The number of atmoms

in a sphere of radius T* = ~ / g is given by 47 rp*(~*)~ /3 . For this benchmark, using T , = 2.5a, there are

about 55 neighbors interacting with each atom at, every timest.ep. If neighbor lists are used, the benchmark

also defines an extended cutoff length r, = 2 . 8 ~ (encompassing about 78 atoms) for forming the neighbor

lists and specifies that the lists be created (or updated) every 20 timesteps. Timings for the benchmark are

usually reported in CPU seconds/timestep. If neighbor lists are used then the cost of creating them every

20 steps is amortized over the per timestep timing.

It is worth noting that without running a standard benchmark problem it can be difficult to accura.tely

assess the performance of a parallel algorithm. In particular, it can be misleading to only compare perfor-

mance of a parallel version of a code to the original vectorized or serial code because, as we have learned from

our codes as well as other's results, the vector code performance may well be far from optimal. Even when

problem specifications are reported, it can be difficult to compare two algorit.hm's relative performance when

two different benchmark problems are used. This is because of the wide variability in the cost of calculating

force equations, the number of neighbors included in cutoff distances, and the frequency of neighbor list

building as a function of temperature, atom density, cutoff distances, etc.

7 Results

The parallel algorithms of Sections 3, 4, and 5 were tested on three parallel MIMD supercomputers, a nCUBE

2 . a11 111trl iPSC'/W. and the Intel Df>l ta . Thr, first two machines are at Sandia; the Delta is at Cal Tech.

The nCUBE 2 is a 1024-processor hypercube. Each processor is capable of about 2 Mflops and has 4 Gbyt.es

of memory. Sandia's iPSC/860 has 64 i860 processors connected in a hypercube topology. Its processors

have 8 Mbytes of memory and are capable of about 60 Mflops, but in practice 5-10 Mflops is the typical

compiled Fortran performance. The Intel Delta has 512 processors configured as a 2-D mesh. The individual

processors have 16 Mbytes of memory and are identical to those in the iPSC/860, though the communication

network is somewhat faster.

Because the algorithn~s were implemented in standard Fortran with message-passing subroutine calls,

only minor changes were required to implement the benchmark codes on the different machines. The al-

gorithms as described do not specify a mapping of processors to the computational elements (force matrix

sub-blocks, 3-D boxes. etc.). The mapping could potentially be tailored for a particular machine architecture

to minimize message contention (multiple messages using the same communication wire) and the dist'ance

messages have to travel (between pairs of processors that are not directly connected by a conlnlun~cat~on

wire). We chose mappings that are simple and good choices for hypercubes. For code portability we used

the same mappings on the mesh-architecture Delta.

For the atom-decomposit,ion algorithm we simply assign t,he processors in ascending order to the ron-

blocks of the force matrix in Figure 1. The expands and folds then take place exactly as in Figure 2. For the

force-decomposition algorithm we use a natural calendar ordering of the processors to the force matrix in

Figure 7 . This means each row and column of t,he matrix is a sub-cube of processors so that expands and folds

24

within rows and columns can be done optimally. However, the transpose operations in algorithms F1 and F2

now require communication between pairs of processors that are architecturally distant. With this mapping

there will be some message contention during the transposes as multiple messages route to their distant

destinations simultaneously. Since the transpose operations scale as the volume of data exchanged or N I P ,

even with some slow-down due to message congestion, the overall N/o scaling of the communication

portion of the force-decomposition algorithms is not affected. Though we did not implement it for t,his

work, a mapping of processors to the force matrix that produces contention-free transposes for a hypercube

is possible and is described in [43].

For the spatial-decomposition algorithm. we use a processor mapping that essentially configures a hy-

percube as a 3-D mesh. Such a mapping is done using a Gray-coded ordering [lo] of the processors. This

insures each processor’s box in Figure 10 has 6 spatial neighbors (boxes in the east, west,, north, south.

up, down directions) that are assigned to processors which are nearest neighbors in the hypercube topol-

ogy. Communication with these neighbors is thus contention-free and as fast as possible. Gray-coding also

provides nat’urally for periodic boundary conditions in the hlD simulation since processors at the edge of

the 3-D mesh are nearest neighbors to those on the opposit,e edge. The only restriction the Gray-coding

imposes is that. the number of processors assigned to each dimension of the 3-D mesh be a power-of-two.

For the Intel Delta there is no obvious best way to map a 3-D problem to it8s 2-D mesh of processors. We

use the same 3-D Gray-coding assignment scheme for code portability.

Timing results for the benchmark problem on the different, parallel machines are shown in Tables I ,
11, and 111 for the atom-, force-, and spatial-decomposition algorithms. A wide range of problem sizes are

considered from N = 500 atoms to N = 10,000,000 atoms. The lattice size for each problem is also specified;

there are 4 atoms per unit cell for the fcc lattices. Entries with a dashed line are for problems that would

not fit in available memory. The last entries in each table are roughly the largest problem sizes that can be

run due to memory restrictions on the three parallel machines.

For comparison, we also implemented the vectorized algorithm of Grest, et al. [3] on Sandia’s Cray Y-

hlP. Our version is slightly different from t,he original Grest. code, using a simpler integra.t,or and allowing

for non-cubic physical domains. The timings in reference [3] were for a Cray X-MP. Ours are for the faster

Y-MP; thus we believe they are the fast,est timings that have been reported for this benchmark problem

on a single processor of a. conventional vector supercomputer. It, is worth noting that the same ideas used

i n the parallel algorithms could be used to create a parallel Cray code that would use all 8 processors of a

1’-MP, potentially speeding its performance by nearly a factor of 8. The starred Cray timings are estimates

for problems too large to fit in memory on our Y-MP. They are extrapolations of the N = 100,000 atom

timing based on the observed linear scaling of the Cray algorit,hm.

The parallel timings in the three tables are all for single-precision (32-bit) implement,at,iolls of t,he bench-

mark. The Cray timings are, of course, for 64-bit arithmetic since that is the only option. MD simulations

do not typically require double precision accuracy since there is a much coarser approximation inherent in

25

Problem Size Y-MP nCUBE 2 Intel iPSC/860

N Lattice P=l P=5 12 P=1024 P=32 P=64

500 5 x 5 ~ 5 .00930 .00724 --- .0111 .00880

2048 8 x 8 ~ 8 .0369 .0252 .0217 .0446 .0336

4000 lOxlOxl0 .0610 .0458 .0394 .0807 .0616

6912 I 12x12~12 11 .lo6 I .0780 I .0669 I .138 I .lo3

10976 I 14x14~14 11 .167 I .124 I .lo6 I .220 I .164

16384 16x16~16 .250 .182 .155 .337 .249

32000 20x20~20 .470 .351 .301 .635 .474

50000 20x25~25 .733 .546 .469 .993 .740

100,000 25x25~40 1.47 1.09 .935 1.98 1.48

Intel
Delta

P=256

.005 18

.O 172

.03 14

.0532

.0863

.130

.256

.399

320

Table I: CPU seconds/timestep for the atom-decomposition algorithm A1 on several parallel machines for

the benchmark sin~ulation. Single processor Cray Y-MP timings using a fully vectorized algorithm are also

given for comparison.

the potsential model and the integrator. This is particularly true of Lennard-Jonesium since the 6 and u co-

efficients are only specified to a frn. digits of accuracy as an approximate model of the interatomic energies 111

a real material. With this said, double precision timings can be easily estimated for the parallel algorithms.

The processors in all three of the machines compute about 20-30% slower in double-precision arithmetic

than single, so the time spent computing would be increased by that amount. Communication costs in each

of the algorithms would essentially double, since the volume of information being exchanged in messages

would increase by a factor of two. Thus depending on the fraction of time being spent in communication for

a particular A' and P (see the scaling discussion below), the overall timings typically increase by 20-50%' for

double-precision runs.

The tables show that all three algorithms are competitive with a single-processor Y-MP across the entire

range of problem sizes. The force-decomposition algorithm is fastest for the smallest problem sizes; spatial-

decomposition is fastest for large N . The Intel Delta is the fastest of the three machines, up to 30 times

faster than a single Y-MP processor on the largest problem sizes using the spatial-decomposition algorit,hm.

26

Problem Size

.00592 ! .00930 5 ~ 5 x 5 500

P=512 P=256 P=64 P=32 P=1024 P=512 P=l Lattice N

Intel Delta Intel iPSC/860 nCUBE 2 Y-MP

.00480 1 .00455 .00695 .00980 ---

~~ ~~~~~~~

2048

.0244 .0399 .122 .180 .0277 .167 I .0394 14x14~14 10976

.0160 .0250 .0759 .112 .0179 .0245 .lo6 12x12~12 6912

.00677 BO894 .0250 .0359 ,00864 .0110 .0369 8x8~8

32000 I 20x20~20 1 1 .470 I .Of390 I .0603 I .521 I .349 I . I15 I .0667
50000 1 20x25~25 1 1 .733 I .162 I .112 I 328 I .544 I .I79 I .lo3

100,000

2.41 4.04 --- --- 3.29 --- 14.7* 50x50~100 1,000,000

1.17 1.96 6.04 --- 1.66 2.47 7.33* 50x50~50 500,000

.210 .369 1.10 1.75 .171 .251 1.47 25x25~40

Table 11: CPU seconds/timestep for the force-decomposition algorithm F2 on several parallel machines and

t.he Cray Y-MP.

The nCUBE 2 and Intel Delta can perform million atom simulat,ions of the benchmark problem at, 1.17

and ,498 secondsjtimest~ep respectively. A surprising result is tha.t the parallel machines are as fast as the

Cray even for the smallest problem sizes. One typically does not think of there being enough parallelism to

exploit when there are only a few atoms per processor. The best timing for this benchmark on other parallel

machines is that of Tamayo and Giles, reported in [21]. They achieve a time of 0.4 seconds/timestep on a

A' = 51,200 at,om simulation on 256 processors of a CM-5 using a spatial-decomposition algorithm similar

in several respects to the algorithm of Section 5. This was for a CM-5 without vector units programmed in

MIhlD mode with explicit message passing; the timings should improve dramatically witch the vector units.

The timings in Table I show that communication costs have begun to dominate in the atom-decomposition

algoritlm b y the t,ime hundreds of processors are used. There is little speed u p gained by doubling the number

of processors used. By contrast timings in Table I1 show the force-decomposition algorithm is speeding up

by roughly 30% when the number of processors is doubled. The timings for the largest' problem sizes in Table

I11 evidence excellent scaling properties. Doubling P nearly halves the run times for a given N . Similarly,

as N increases for fixed P , the run times per atom become faster as the overhead of the O(N/@'3) terms

is lessened. We note, however, that this scaling depends on uniform atom density within a simple domain

such as the rectangular parallelepiped of the benchmark problem.

A comparison of the different algorithms performance using data from all 3 tables can be better displayed

27

I Problem Size 1 1 Y-MP I nCUBE 2 I Intel iPSC/860 I Intel Delta

N P=1024 P=512 P=l Lattice

500

.0250 .0374 .lo6 12X12X12 6912

.0148 .0173 .0369 8 x 8 ~ 8 2048

.0119 .0130 .00930 5X5X5

P=32 P=64 P=256 P=512

.0129 .0106 ' .00706 .00592

.0321 .0189 .00837 .00650

.0768 .0436 .0159 .0111

16384

.798 .418 .119 .0678 .165 ,298 1.47 2sx25x40 100,000

.420 .224 .0664 .0380 .0967 .160 .733 20x25~25 50000

.161 .0874 .0275 .0167 .0407 ,0650 ,250 16x16~16

I 500,000 I 50x50~50 1 1 7.33* I 1.17 1 .650 I 3.66 I 1.88 I SO1 I .261

1,000,000

100x100~125 5,000,000

_ _ _ 3.68 ,951 .498 1.17 2.23 14.7* 50~50x100

--- --- 4.45 2.31 5.28 10.2 73.3*

10,000,000 _ _ _ _ _ _ --- 4.60 10.2 --- 147.* 1 0 0 ~ 1 2 5 ~ 2 0 0

Table 111: CPI- secondsjtimestep for t,he spat,ial-decomposition algorithm S1

in graphical form. Figure 12 shows the nCUBE 2's performance on the benchmark simulation on 1024

processors as a function of problem size. Single processor Y-MP timings are also included. The linear

scaling of all the algorithms n-hen S is large is evident. Note t8hat force-decomposition is faster than atolll-

decomposition across all problem sizes due t,o its reduced communication costs. On this many processors.

the spatial-decomposition algorit,hm has significant overhead costs for small :V. This is hecaust t h e d l ? ,
ratio is so large that each processor has to communicate with a large number of neighboring boxes to acquire

all its needed information. As .N increases, t'his overhead is reduced relative to the cornputmation performed

inside the processor's box, and the algorithm's performance asymptot,ically approaches its optimal O(iY/F')

performance. Thus there is a cross-over size N at which the spatial-decomposition algorithm becomes faster

than force-decomposition. We return to this point in the conclusion.

In Figure 13 we plot the Intel Delta's performance on the A' = 10976 atom benchmark as a function

of number of processors. The single-processor Y-MP timing is also shown; it is about 13.3 times fast,er

than a single iPG0 processor on t,his problem. The dotted line is the maximum achievable speed of the

Delta if any of the algorithms were 100% efficient. Parallel efficiency is defined as the run time on 1

processor divided by t h e q ~ a n t i t ~ y (P x run time on P processors). Thus if the 512-processor timing is 256

times as fast as t,he l-processor timing, the algorithm is 50% efficient. On small numbers of processors

28

O' ! Cray Y-MPI1
: H Atom-Decomposition
- M Force-Decomposition /@

)--i Spatial-Decomposition

t I h I 1 I I I I I I I I

1 o3 1 o4 1 o5 1 o6
N (atoms)

Figure 12: CPU timings (seconds/timestep) for the three parallel algorithms on 1024 processors of the

nCUBE 2 for different problem sizes. Single-processor Cray Y-MP timings are also given for comparison.

communication is not a significant, factor and all the algorithms perform similarly. But as P increases, the

algorithms become less efficient. The atom-decomposition falls off most rapidly due to the O (N) scaling

of its communication. On the Delta's large 2-D mesh the all-to-all communication this algorithm requires

is particulary inefficient (because of message contention), causing a slow-down when going from 256 to 512

processors. Force-decomposition is next most efficient due to its O (N / O) communication scaling. But it

remains competitive with the spatial-decomposition algorithm across a wide range of numbers of processors.

When hundreds or thousands of processors are used, even the spatial-decomposition algorithm becomes less

efficient. since now the box size is small relative to the force cutoff distance for this N . It is worth noting

that the trends in the plots of Figures 12 and 13 are the same for the other machines and problem sizes

tested in this study. Though the absolute data values are functions of N , P , and the benchmark attributes,

the relative trade-offs between the various algorithlns are cousistent,ly the same.

Using olle-node timings on the nCUBE and Intel machines as reference points, parallel efficiencies can be

computed for all the algorithms. The nCUBE 2 one-processor timing is 9.15 x seconds/timestep/atom.

29

Both Intel machines give a one-processor timing of 2.03 x seconds/timestep/atom. These values can

be used to predict optimal timings for problems larger than will fit on a single processor because the codes

scale so linearly. For the million-atom simulation, the spatial-decomposition algorithm thus has a parallel

efficiency of 76% on 1024 processors of the nCUBE and 80% on 512 processors of the Intel Delta. The larger

simulations achieve roughly a 90% parallel efficiency. To put these numbers in context, consider that on

the nCUBE, the million-atom simulation means each processor has about 1000 atoms in its box. But the

range of the cutoff distance in the benchmark is such that about 2600 atoms from surrounding boxes are

still needed at every timestep to compute forces. Thus the spatial-decomposition algorithm is 76% efficient

even though tweand-a-half times as many atom positions are communicated as are updated locally by each

processor.

lo1 I
E---+ Atom-Decomposition

Force-Decomposition

- u * Spatial-Decomposition

. .
'.

I I I I I I I I I

1 2 4 8 16 32 64 128 256 512

P (processors)

Figure 13: CPI' timings (seconds/timestep) for the three parallel algorithms on the Intel Delta for different

numbers of processors on a benchmark simulation with N = 10976 atoms. Single-processor i860 and Cray

Y-MP timings are shown for comparison.

Finally, we discuss the scalability of the different parallel algorithms in the large N limit. Table IV shows

the overall scaling of the computation and communication portions of the 5 algorithms. This is constructrd

30

from the entries for the various steps of the algorithms in Figures 5, 6 , 8 , 9, and 11, using large N values when

there is an option. Some coefficients are included to show contrasts between the various algorithms. The

amount of memory required per processor to implement the algorithm is also listed in the table. Note that

in all of the algorithms processors store additional O (N / P) information such as neighbor lists and velocities

for the hr/P atoms they own. In practice, for the force- and spatial-decomposition algorithms, storage of

neighbor lists is a dominant factor in limiting the size of problem that can be run.

Computation in the at,om-decomposition algorithm A1 scales as N / P + N where the second term is

for binned neighbor list construction. The coefficient on this term is small so it, is usually not, a significant

factor. The communication scales as N , as does the memory to store all atom positions. By contns t ,

atom-decomposition algorithm A2 implements Newton’s 3rd law so its leading computational term is cut

i n half. Now the communicat,ion cost is doubled and the entire force vector must he stored as well.

Force-decomposition algorithms F1 and F2 have the same computational complexity as A1 and A2

except t,he binning for neighbor list construction now scales as N/*, again not. t.ypically a significant

factor. In F1 there are 3 expands/folds and one transpose operation for a total communication cost of

3>4‘,/@+ N / P . Similarly F2 requires 4 expands/folds and 2 transposes. Implrmenting F1 requires storing

two atom position sub-vectors and one force sub-vector, all of length N/o. F2 requires an extra force

sub-vector.

Computation in the spatial-decomposition algorithm S1 scales as N / 2 P since it implements Newton’s

3rd law. In the large N limit there is an extra factor for comput,a.tions prrfoormed on nearby at.oms within a

distance r, of the box faces. The number of atoms in this shell volume is the surface area of the box face

(Ar/P2’3) times r , for each of the 6 faces. The communication in algorithm S1 scales as the same fact,or as

do the memory requirements for storing the nearby atoms. Additionally O(,V/P) memory must be allocated

for storing information on atmoms in a processor’s box.

8 Application of the Algorithms

While the benchmark problem discussed in Sections 6 and 7 is relatively simple, the parallel algorithms

described in this paper can be used in a variety of more complex MD simulations with little modification.

We discuss the parallel implications of some conmon MD issues in the next several paragraphs.

(A) Force models more comput,ationally expensive than Lennard-Jones potentials are often used in MD

simulations of various materials. Pairwise forces, even if they are very expensive, can often be pre-computed

once and then stored in table form or as a set of interpolating coefficients. Then t>hey turn out to be lit,tle

more expensive to compute with than 6-12 potentials. Modern parallel computers have ample memory for

storing quite large tables of force values and/or coefficient,s in duplicate on every processor.

(B) Force models that are functions of atom velocities, or other quantities besides just atom positions,

are sometimes used. An example is the embedded atom method (EAM) potentials commonly used in

modeling metals and metal alloys where an atom’s energy is a function of elect,ron density contributions from

31

Table IV: Scaling properties of all 5 parallel algorithms as a function of problem size N and number of

processors P Run time scaling for the communicat,ion and computation portions of the algorithms as \ w l l

as their per-processor memory requirements are listed.

neighboring atoms as well as conventional pair-potential interactions. A more general N-body simulation

example is vortex methods in fluid dynamics where “particles” of fluid interact via their vorticities. All of

the parallel algorithms described here can be augmented in steps (3) and (5) to communicate addlrlonai

atom-based quantities as needed [40] without affecting their overall parallel scaling.

(C) More sophist,icated multi--atom force models are often used in h lD simulations of covalentl!, bol~dt~tl

materials. Examples include angular (three-body) forces for silicon and torsional (four-body) forces for

organic polymers or proteins. These forces can be most easily computed in parallel if a single processor kno~vs

the positions of all the atoms in a particular bond group. The atom-decomposition algorithm guara.nt,ees

t’his since each processor knows all the atom positions. Since the bond groups are still short-range in

nature, the spatial-decomposition algorit,hm can also be modified to insure each processor acquires enough

illformation from surrou1lding blocks to compute all the many-body terms its atoms are a party t,o. The

force-decomposition algorithm requires special care in this respect. This is because a processor only knows

the positions of 221‘/@ atoms t,hat have no special spatial relationship to each other. One solution is to

32

perform the pre-processing step of reordering the atoms for the force-decomposition algorithm in such a

way that one or more processors will know the positions of all the atoms in each bond group. We discuss

methods for doing this in organic MD simulations where the connectivity of the bond groups is static in

reference [4l]. However, we know of no simple way to use the force-decomposition idea for the more general

case of dynamically changing connectivities, such as for silicon three-body potentials.

(D) Though force calculation is the key computational kernel in MD simulations, the quantities of interest

are often global parameters like pressure, structure factors, and diffusion coefficients. These thermodynamic

and transport properties are often calculated once every 50 or 100 timesteps and add little to the overall

computational cost of a serial program. The same is true for the parallel case. In short-range MD each

processor can compute its partial contribution to one of these quantities from the atom information it already

knows. Then the local values can be accumulated quickly as a global sum across all the processors.

(E) In many MD codes, neighbor list construction is triggered by atom movement. For example. lists will

only be recreated when an atom has moved half the distance rs - T, . Again, this can easily be implement,ed

in the parallel algorithms by having each processor check if any of its NIP atoms have met the criterion,

thcn exchanging a global flag t,o decide if the neighbor list routines should be called. If the list of interacting

neighbors is stat,ic in a particular MD simulation (e.g. atoms on a lattice), then step (1) in all of the parallel

algorit,hms becomes unnecessary The remaining steps of the algorithms are still a fast way to parallelize the

necessary computation and communication for this special case.

(F) The benchmark problem implements a constant N , volume V , and energy E microca.nonica1 ensemble.

Another common choice is to hold N , pressure P , and temperature T constant, sampling from the canonical

ensemble. This involves rescaling the simulation domain dimensions and velocities at each timestep (or every

few timesteps) to hold the pressure and temperature constant. In parallel this requires a small amount of

additional communication, a global exchange of the rescaling parameters, similar to the effort involved in

(D) and (E) above.

(G) A simple leapfrog integrator was used in our implementation of the benchmark problem. More

complex ODE integrators such as Runge-Kutta or predictor-corrector methods can easily be used in the

context of any of the parallel algorithms in step (4). These methods will also be perfectly parallel since they

only require information about the N I P atoms already owned by each processor. Extra storage of O(AAi/P)
can also be allocated to store past timestep values or work vectors.

(H) Multiple-timescale MD methods have been proposed [44], where work is done at staggered times on

different length scales to allow longer timesteps to be taken on average. Only very short-range information

is used to compute forces in the smallest (most rapid) timesteps. These schemes are an effort to include

longer-range effects while avoiding true long-range force computation. They are typically implemented by

a hierarchy of neighbor lists which store information for the different length scales. Since they are st,ill

inherently short-range force models, they can be implemented within the general framework of any of the

parallel algorithms we have presented. In the limit that the force computation becomes truly long-range in

33

nature, pairwise forces are usually not the computational method of choice as discussed in Section 2. However,

if they are used: the framework of the atom- and force-decomposition algorithms can compute them directly

[43]. By contrast the spatial-decomposition algorithm would now require long-range communication and

become an inefficient solution.

9 Conclusion

We have detailed the construction and implementation of three kinds of parallel algorithms for MD simu-

lations with short-range forces. Each of them has advantages and disadvantages. The atom-decomposition

algorithm is simplest to implement and load-balances automatically, but because it performs all-to-all com-

munication, its communication costs begin to dominate its run time on large numbers of processors. The

force-decomposition algorithm is also relatively simple, though it often requires some pre-processing to as-

sure load-balance. It also works well independent of the physical problem’s geometry. Its O (N / O) scaling

is better than that of the atom-decomposition algorithm, but is not optimal for large simulations. The

spatial-decomposition algorit’hm does exhibit optimal O (N / P) scaling for large problems. However it suffers

more easily from load-imbalance and is more difficult t o implement efficiently.

In practical terms, how does one choose the “best” parallel algorithm for a particular MD simulation?

Assuming one knows the ranges of N and P the simulation will be run with, we find the following 4 guidelines

helpful.

(A) Choose an atom-decomposition algorithm only if its communication cost is negligible. In this case

simplicity outweighs the inefficient com~nunications. Typically this will only be true for small P (sa!. P < 16

processors) or very expensive forces where computation time dominates communication time.

(B) A force-decomposition approach will be faster than atom-decomposition in all other cases. Both

the atom- and force-decomposition algorithms scale linearly with N for fixed P . This means for a given

P , the parallel efficiency of either algorithm is independent of A’. Moreover, as P doubles, the efficiency

of the communication portion of t,he at,om-decomposition algorithm goes down by a factor of 2, while t,he

force-decomposition algorithm’s efficiency decreases by a factor of only 4. Thus, once P is large enough

that force-decomposit,ion is faster than atom-decomposition, it will be faster for all P , independent of N .

For the benchmark problem this was the case for P 2 16 processors.

(C) For a given P, the scaling of the spatial-decomposition algorithm is not linear with N . For small

N communication and overhead costs are significant and the efficiency is poor; in the large N limit the

efficiency is asymptotically optimal (100%). Thus when compared to a force-decomposition approach, there

will be some cross-over point as N increases for a given P where a spatial-decomposition algorithm becomes

faster. In the benchmark the cross-over size was several thousands of atoms on hundreds of processors. In

general, the cross-over size is a function of the complexity of the force model, force cutoff distances, and the

computational and communication capabilities of a particular parallel machine. It will also be a function of

P. A rough estimate of the spatial-decomposition algorithm’s efficiency for a given N and P can he made

34

by noting each processor’s box has volume d3 = N / P , but it computes and communicates information in an

extended volume of (d + 2 ~ ~) ~ . Comparing the extended volume to the box volume gives a rough measure

of the extra (inefficient) work the algorithm is performing.

(D) The preceding paragraph assumes the computation in the spatial-decomposition algorithm is per-

fectly load-balanced. Load-imbalance imposes an upper bound on the efficiency a spatial-decomposition

algorithm can achieve. For example, biological simulations of proteins solvated by water often are performed

in a vacuum so that the atmoms in the simulation fill a roughly spherical volunx. If this domain is treated

as a cube and split into P pieces then the sphere fills only a ~ / 6 fraction of the cube and a 50% parallel

inefficiency results. The net effect of load-imbalance is to increase the cross-over size at which a spatial-

decomposition algorithm becomes faster than a force-decomposition approach. In practice, we have found

the force decomposition algorithm can be faster or a t least quite competitive with spatial-decomposition

algorithms for simulations of up to many tens of thousands of atoms [41].

In Section 7 we discussed t,he performance of the algorithms 011 three different parallel computers, the

nCUBE 2 and Intel iPSC/860 and Delta. We believe these are the fastest timings reported on any machine

for this MD benchmark and show that, current-generation parallel machines are competitive with Craywlass

vector supercomputers for shoyt-range MD simulations. More generally, the algorithms can be implemented

011 any parallel computer that allows its processors to execute code independently of each other and exchanges

data between processors by standard message-passing techniques. This is the definition of a multiple in-

struction/mult,iple data (MIMD) parallel architecture. Most of the current- and next,-generation parallel

supercomputers support this mode of programming, including the Intel Paragon, CM-5, and Cray MPP ma-

chines. Several features of the algorithms take advantage of the flexibility of the MIMD paradigm, including

the code to build and access variable-length neighbor lists via indirect addressing, t’o select/pack/unpack

data for messages, and to efficiently exchange variable-length data structures between sub-groups of pro-

cessors as in Figures 2 and 10. Considerable inefficiency would be incurred were the algorithms written

in a SIMD form where ea.ch statement would require all processors to operate on a global data structure

simultaneously.

Finally, we are confident these algorithms or versions based on similar ideas will continue to be fast choices

for AID simulations on parallel machines of the future. Optimizing their performance for next-generation

machines will require improving their single-processor computational performance. As the individual pro-

cessors used in parallel machines become faster and more complex, high computational rates can only be

achieved by writing pipelined or vectorized code. Thus, many of the data reorganization and other optimiza-

tion techniques that have been developed for MD on vector machines [3] will become important for parallel

implementations as well.

35

10 Acknowledgments

I thank Bruce Hendrickson of Sandia for many useful discussions regarding MD algorithms, particularly

with respect to the force-decomposition techniques described here. Early runs of the algorithms on the Intel

iPSC/860 were performed a t Oak Ridge National Labs; A1 Geist was particularly helpful to me in this effort.

I also thank Gary Grest at E.xxon Research for sending me a copy of his vectorized Cray algorithm and

have benefited from discussions with Pablo Tamayo at Los Alamos National Labs concerning parallel MD
techniques. Work on t,he Intel Delta was support,ed hy the Concurrent Supercomputing Consortium at Cal

Tech; I thank Sharon Brunet of the CSC staff for timely assistance in this regard.

References
[l] F. F. Abraham. Computational statistical mechanics: methodology, applications and supercomputing.

Advances in Physics, 35:l-111, 1986.

[2] M. P. Allen and D. J . Tildesley. Computer Simulation of Lipids . Clarendon Press, Oxford, 198i

[3] G. S. Grest, B. Dunweg. and K. Kremer. Vectorized link cell Fortran code for molecular dynamics
simulations for a large number of particles. Comp. Phys. Comm., 55:269-285, 1989.

[4] D. M . Heyes and W. Smith. Inf . Q. Computer Simulafion Condensed Phases (Dareshury Lnbornfory) .
28:63, 1988.

[5] J . J i Morales and M. J . Y11e\-o. Comparison of link-cell and neighbourhood tables on a range of
computers. Comp. Phys. Comm., 69:223-228, 1992.

[6] M. Schoen. Structure of a simple molecular dynamics Fortran program optimized for Cray vector
processing comput,ers. Comp. Phys. Comnz.. 52:175-185, 1989.

[7] D. J . Auerbach, VC'. Paul, A . F. Bakker, C. Lutz, W . E. Rudge, and F. F. Abraham. A special purpose
parallel computer for molecular dynamics: Motivation, design, implementation. and application. J .
Phys. Chem., 91:4881-4890, 1987.

[SI A. F. Bakker, G. H. Gilmer. M . H. Grabow, and E<. Thompson. A special purpose computer for molecular
dynamics calculat,ions. J . Comp. Phys., 90:313-335, 1990.

[9] B. M. Boghosian. Comput,ational physics on the Connection Machine. Comp. in Phys., Jan/Feb, 1990

[lo] G. C. Fox, h4. A. Johnson, G. A. Lyzenga, S. W. Ot to , J . K. Salmon, and D. W. Walker. Solvzng
Prohlclns o n C O ~ C U T T E ~ ~ Processors: Volume 1. Prentice Hall, Englewood Cliffs, NJ, 1988.

[ll] L. L. Boyer and G. S. Pawley. Molecular dynamics of clusters of particles interacting with pairwise
forces using a massively parallel comput'er. J. Comp. Phys., 78:405-423, 1988.

[12] P. Tamayo: J . P. Mesirov, and B. M. Boghosian. Parallel approaches to short-range molecular dynamics
simulations. In Proc. Supercomputing '91> pages 462-470. IEEE Computer Society Press, 1991.

[13] H. Heller, H. Grubmuller, and K . Schult'en. h4olecular dynanlics simulat,ion on a parallel computer .
Molec. Sam., 5:133-165, 1990.

[14] M . R. S. Pinches, D. J . Tildesley, and W. Smith. Large-scale molecular dynamics on parallel computers
using the link-cell algorithm. M o l e c . Szm., 6:51-87, 1991.

36

,

[15] D. C. Rapaport. Multi-million particle molecular dynamics. 11. Design considerations for distributed
processing. Comp. Phys. Comm., 62:217-228, 1991.

[16] S. J . Plimpton and E. D. Wolf. Effect of interatomic potential on simulated grain-boundary and bulk
diffusion: A molecular dplamics study. Phys. Rev. B, 41:2712-2721, 1990.

[l'i] P. A. Taylor, J . S. Nelson, and B. W. Dodson. Adhesion between atomically flat metallic surfaces. Phys.
Rev. B, 44:5834-5841, 1991.

[18] M. Baskes, M. Daw, B. Dodson. and S. Foiles. Atomic-scale simulation in materials science. Materials
Research Society Bulletin, pages 28-34, Feb 1988.

[19] S. J . Plimpton. Molecular dynamics simulations of short,-range forcr system on 1024-node hypercubes.
In Proc. 5th Dzstributed Memory Computing Conference, pages 478-483. IEEE Computer Society Press,
1990.

[20] S. J . Plimpton. Scalable parallel molecular dynamics on MIMD supercomputers. In Proc. Scalable Hzgh
Performance Computing Conference-92, pages 246-251. IEEE Computer Society Press, 1992.

[21] P. Tamayo and R. Giles. A parallel scalable approach to short-range molecular dynamics on the CM-5.
In Proc. Scalable High Performance Computing Conference-92, pages 240-245. IEEE Computer Society
Press, 1992.

1221 R. W. Hockney and J . W . Eastwood. Computer Simulation Using Particles. Adam Hilger, New Yolk,
NY, 1988.

[23] J . Barnes and P. Hut. A hierarchical O (N log A') force-calculation algorithm. Nature, 324:446-449,
1986.

[24] L . Greengard and V Rokhlin. A fast algorithm for particle simulations. J . Comp. Phys., 73:325-348,
1987.

[25] H . Q. Ding, N . Karasawa, and W. A. Goddard 111. Atomic level simulations on a million particles: The
cell multipole method for Coulomb and London interactions. J. Chem. Phys., 97:4309, 1992.

[26] M . S. Warren and J . K. Salmon. A parallel treecode for gravitational N-body simulations with up to
20 million particles. Bulletin o f the American Astronomical Society, 23:1345, 1991.

[27] L. Verlet. Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones
molecules. Phys. Rev., 159:98-103, 1967.

[28] R. W. Hockney, S. P. Goel, and J. W. Eastwood. Quiet high-resolution computer models of a plasma.
J. Comp. Phys., 14:148-158, 1974.

[29] D. Fincham. Parallel computers and molecular simulation. Molec. Sim., 1:l-45, 1987.

[30] S. Gupta. Computing aspects of molecular dynamics simulations. Comp. Phys. Comm., 70:243-270,
1992.

[31] W. Smith. Molecular dynamics on hypercube parallel computers. Comp. Phys. Comm., 62:229-248,
1991.

[32] D. LYomble. A time-stepping algorithm for parallel computers. SIAA1 J . Scz. Stat. Comput., 7:824-837,
1990.

[33] T. W. Clark, J . A . McCammon, and L. R. Scott. Parallel molecular dynamics. In Proc. 5th SIAM
Corlference o n Parallel Processing for Scientific Computing, pages 338-344. SIAM, 1992.

37

[34] S. L. Lin, J . Mellor-Crummey, B. M. Pettit, and G. N. Phillips Jr . Molecular dynamics on a distributed-
memory multiprocessor. J. Comp. Chem., 13:1022-1035, 1992.

[35] A. Windemuth and K . Schulten. Molecular dynamics simulation on the Connection Machine. Molec
Sim., 5:353-361, 1991.

[3G] R. van de Geijn. Efficient, global combine operations. In Proc. 6th Distributed Memory Compufing
Conference, pages 291-294. IEEE Computer Society Press, 1991.

[37] H. Schreiber, 0. Steinhauser, and P. Schuster. Parallel molecular dynamics of biomolecules. Parallel
Computing, 18:557-573, 1992.

[38] R. H. Bisseling and J . G. G. van de Vorst. Parallel LU decomposition on a transputer network. In G. A.
van Zee and J . G . G. van de Vorst, editors, Lecture Notes in Computer Science, Number 384, pages
61-77. Springer-Verlag, 1989.

[39] B. Hendrickson and D. Womble. The torus-wrap mapping for dense matrix calculations on massively
parallel computers. Technical Report SAND92-0792, Sa.ndia National Laboratories, Albuquerque, NM,
1992.

[40] S. J . Plimpton and B. A . Hendrickson. Parallel molecular dynamics with the embedded at'om method. In
Proc. o f Materials Theory and Modeling Symposium. Materials Research Society, Fall 1992. to appear.

[41] S. J . Plimpton, B. A. Hendrickson, and G. S. Heffelfinger. A new dccomposition strategy for paral-
lel bonded molecular dynamics. In Proc. 6th SIAM Conference on Parallel Processing for Scientific
Computing. SIAM, 1993. to appear.

[42] B. Hendrickson and R. Leland. An improved spectral graph partitioning algorithm for mapping parallel
computations. Technical Report SAND90-1460, Sandia National Laboratories. Albuquerque. YV. 1992.

[43] B. A. Hendrickson and S. J . Plimpton. Parallel many-body simulations without all-to-all communica-
tion. Technical Report SAND92-27BG, Sandia National Laboratories, Albuquerque, N M . 1993.

[44] 14'. B. St,reet,, D. J . Tildesley, and G. Saville. Multiple t,imestep methods in molecular dynamics. ,lfol
Phys., 35539-48. 1978.

38

