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Abstract 

Three parallel algorithms for  classical  molecular dynamics are presented. The first assigns each 
processor a subset of atoms; the second  assigns  each a subset of inter-atomic  forces to compute;  the 
third assigns  each a fixed spatial region. The algorithms are suitable for  molecular dynamics models 
which can be  difficult to  parallelize efficient,ly - those with short-range forces  where the neighbors of 
each atom change rapidly. They can be implemented on any distributed-memory parallel machine which 
allows  for  message-passing of dat,a between independently  executing processors. The algorithms  are 
tested on a standard Lennard-Jones benchmark problem  for system sizes  ranging  from 500 to 10,000,000 
atoms on three parallel supercomputers,  the  nCUBE 2 and  Intel iPSC/SSO and Delta. Comparing the 
r c a u l t a  to t h r -  f i l k ! r - t  rcported vectorized Cray Y-MP algorithm shows the current generation of parallel 
machines are competitive with  conventional vector supercomput,ers even  for small problems.  For large 
problems, the spatial  algorithm achieves parallel efficiencies of about 90%. Trade-offs  between the  three 
algorithms  and guidelines for adapting  them to more complex  molecular dynamics simulations  are also 
discussed. 
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I 1 Introduction 

Classical  molecular dynamics  (MD) is a commonly  used computational  tool for simulating  the  properties 

of liquids,  solids,  and molecules [l, 21. Each of the N atoms (or molecules)  in the  simulation is treated 

as  a  point  mass  and Newton’s equations  are  integrated  to  compute  their  motion. From the motion of the 

ensemble of atoms  a  variety of useful  microscopic and  macroscopic  information  can  be  extracted  such as 

transport coefficients,  phase diagrams,  and  structural or conformational  properties.  The physics of the 

model is contained in a  potential  energy  functional for the  system  from which individual force equations for 

each atom can be  derived. 

MD simulations  are  typically  not  memory  intensive since  only  vectors of atom  information  are  stored. 

Computationally,  the  simulations  are [‘large”  in two  domains - the  number of atoms  and  number of 

timesteps.  The  length  scale for atomic  coordinates is Angstroms;  in  three  dimensions  many  thousands 

or millions of atoms  must  usually  be  simulated  to  approach  even  the microscopic  scale. In  liquids  and  solids 

the  timestep size  is constrained by the  demand  that  the  vibrational  motion of the  atoms  be  accurately 

tracked.  This  limits  timesteps  to  the  femtosecond  scale  and so tens or hundreds of thousands of timesteps 

are  necessary to  simulate even  picoseconds of “real”  time.  Because of these  computational  demands, con- 

siderable effort  has  been expended by researchers to optimize  MD  calculations for  vector  supercomputers 

[3, 4,  5, G] and even to build  special-purpose  hardware for  performing  MD  simulations [7, 81. The  current 

stat,e-of-the-art,  is  such that  simulating  ten- to hundred-thousand  atom  systems for  picoseconds takes  hours 

of CPU time  on  machines  such  as the  Cray Y-MP. 

The  fact  that MD computations  are  inherently  parallel  has  been  extensively discussed  in the  literature 

[9, lo]. There  has been  considerable  effort in the  last few years  by  researchers  to  exploit  this  parallelism 

on various  machines.  The  majority of the work that  has included  implementations of proposed  algorit,hms 

has been  for singleeinstruction/multiple-data (SIMD)  parallel  machines  such  as  the CM-2 [ l l ,  121. or for 

multiple-instruction/multiple-data (MIMD)  parallel  machines  with at  most a few dozens of processors [13, 

14. 151. &:e are  convinced that  the MIXD programming model  is the only  one that provides  enough  flexibility 

to  implement all the  data  struct,ure  and  computational  enhancements  that  are  commonly  exploited in  MD 

codes  on serial  and  vector  machines. Also, we have  found  that  it is  only the  current  generation of massively 

parallel  MIMD  machines  with  hundreds  to  thousands of processors that  have  the  computational power to  

be  competitive  with  the  fastest  vector  machines for MD  calculations. 

In this  paper we present  three  parallel  algorithms which are  appropriate for a general  class of MD  problem 

that  has  two salient  characteristics. The first  characteristic is that  forces are  limited  in  range,  meaning each 

atom  interacts only  with other  atoms  that  are  geometrically  nearby.  Solids,  liquids,  polymers,  and  protelns 

are  often  modeled  this way due  to electronic  screening  effects or simply  to avoid the  computational cost of 

including  long-range  Coulombic  forces.  For short-range MD the  computational effort per  timestep  scales as 

N ,  the  number of atoms,  but care  must  be  taken  to  write efficient  parallel algorithms  that  take full advant’age 

of the local nature of the forces. 
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The second  characteristic is that  the  atoms  undergo large  displacements  over  the  duration of the simula- 

tion.  This could  be due  to diffusion  in a solid  or liquid,  reptation in a polymer,  or  conformational  changes  in 

a biological  molecule. The  important  feature from a computational  standpoint is that each  atom’s  neighbors 

change  as  the  simulation  progresses.  While  the  algorithms we discuss  could  also  he usrd for fixed-neighbor 

simulations  (e.g.  all  atoms  remain  on  lattice  sites in a  solid),  it is a  harder  task  to  continually t rack the 

neighbors of each atom  and  maintain efficient O ( N )  scaling  for the overall  computation  on  a  parallel  machine. 

Our  first goal  in this effort  was to develop  parallel  algorithms that would  be competitive  with  the  fastest 

methods on  vector  supercomputers  such  as  the  Cray. Moreover we wanted  the  algorithms  to work well 

on  problems  with  small  numbers of atoms,  not  just for  large  problems  where  parallelism  is  often  easier to 

exploit.  This is  because  currently  the  vast  majority of MD simulations  are  performed  on  “small”  systems 

of a few hundred  to  several  thousand  at,oms  where N is  chosen as  small  as possible  while still  accurately 

modeling the desired  physical  effects  [16,  17, 181. The  computational goal  in these  calculations is to perform 

each  simulation  timestep as quickly as possible. This is particularly  true in  non-equilibrium hfD where 

macroscopic  changes in t,he  system  may t,ake significant  time t,o evolve,  requiring  millions of sin~ulat~ion 

timesteps  to  model.  Thus, we consider i t   to be  more useful on  a  parallel  computer  to  be  able  to  perform 

a  fast 100,000 timestep  simulation of a 1000 atom  system  rather  than 1000 timesteps of a 100,000 atom 

system,  though  the O ( N )  scaiing  means  the  computational effort is the  same for both cases. To  this  end, 

we consider model sizes as small as a few hundred  atoms in this  paper. 

For very  large  MD  problems, our second  goal  in  this  work  was to develop  parallel  algorit,hms that, would 

he  scalahle to faster a n d  larger  pa.rallel machint.~. 1771~ile the  timings we prrsrnt for  Iargr !biD models 

( lo5  to l o 7  atoms) on the  current  generation of parallel  supercomputers  are  quite  fast  compared  to  vector 

supercomputers,  they  are  still  too slow to allow  long-timescale simulations  to  be  done  routinely.  However, 

our  large-system  algorithm  scales  optimally with respect  to N and P (the  number of processors) so that 

as  parallel  machines  become more  powerful  in the  next few years,  algorithms  similar  to  it will enable  larger 

problems  to be attacked. 

Our  earlier efforts in this  area [19] produced  algorithms which  were  fast,  for systems  up  to t,ens of thou- 

sands of atoms  but did not scale optimally  with N for  larger  systems.  After  improving  on  these efforts 

to  create a scalable  large-system  algorithm [20] we have  recently  added  an idea of Tamayo  and Giles [all 

that.  has  improved  the  algorithm’s  performance  on medium-sized  problems  by  reducing the inter-processor 

communication  requirements. We have also  recently  developed  a new parallel  algorithm which we present 

here in the  context of MD  simulations for the first  time. It offers the  advantages of both  simplicity  and  speed 

for small  to medium-sized problems. 

Thus, in  this  paper we present  the  culmination of our  efforts:  several  algoritlms we have found, tllrougll 

implementing  and  testing  a  variety of ideas on different  parallel  machines,  to  be  the  fastest  methods for 

short-range  molecular  dynalnics  across a wide range of problem  sizes. By implementing  the  algorithms  on 

machines  with  hundreds  to  thousands of processors, we have  been  able to  understand in  practical  terms 
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what  algorithmic  features work best  and  tailor  the  algorithms  accordingly to  optimize  their  performance as 

a function of N and P .  Due  t,o  their  scalability, we can  also  predict 11017- these  algorithms will perform  on 

the  faster, larger  parallel  machines of the  future. 

In  the  next  section,  the  computational  aspects of MD  are highlighted and efforts to speed  the  calcula- 

tions  on  vector  and  parallel  machines  are  reviewed.  In  Sections 3, 4, and 5 we describe our three  parallel 

algorithms  in  detail. A standard  Lennard-Jones  benchmark  calculation is outlined  in  Section 6. In Section 

7, implementation  details  and  timing  results  for  the  parallel  algorithms  on  three  massively  parallel  MIMD 

machines  are  given  and  comparisons  made  to  the  best  Cray Y-MP timings for the  benchmark  calculation. 

Discussion of t'he  scaling  properties of t.he algorithms is  also included.  Next,  in  Section 8, issues  relevant to  

using  the  parallel  algorithms  in different kinds of MD  simulations  are  discussed.  Finally,  in  Section 9, we 

draw  conclusions  and  give  several  guidelines for  deciding  which  parallel  algorithm is likely to  be  fastest for 

a particular  short-range  MD  simulation. 

2 Computational Aspects of Molecular Dynamics 

The  computational  task in a MD  simulation is t,o integrate  the  set of coupled  differential  equations  (Newton's 

equations) given  by 

where mi is the  mass of atom i, F'' and Ci are  its  position  and  velocity  vectors, F2 is a force  function  describing 

pairwise  interact,ions  between  atoms. F3 describes  three-body  interactions,  and  many-body  interactions  can 

be added.  The force terms  are derivatives of energy  expressions  in  which the  energy of atom i is typically 

written  as a function of only the  positions of itself and  other  atoms.  In  practice,  only  one or a few terms 

in equation (1) are  kept  and F2,  F3, etc. a.re construct>ed so as to  include  many-body  and  quantum effects. 

To  the  extent  the  approsimat,ions are accurat,e  these  equat,ions give a full description of the time-evolution 

of any at.omic system.  Thus,  the  great  computational  advantage of MD, as compared to a b  initio electronic 

structure  calculations. is that  the  dynamic  behavior of the  atomic  system is described  empirically wit1~011t 

having  to solve Schrodinger's  equation  at  each  timestep. 

In a three-dimensional  simulation,  equation (1) implies 6 equations (3  posit.ion and 3 velocity)  for 

each of the N atoms.  The  equations  are non-linear  since they  depend  on  non-linear  force  function- 

als Fz ,  F3, etc., which  in turn  are typically  functions of the  distance  between  atoms i and j ,  namely 

T ' .  - - J(z, - + (yi - yJ)? + (zi - ~ j ) ~ .  The  equations  are coupled  since the position of atom i appears 

in t,he equations of  all the  other  atoms it int,eracts  with. 
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For long-range  forces, such as Coulombic  interactions  in  an  ionic solid or biological system,  each  atom 

interacts  with all others.  Directly  computing  these  forces  scales  as N 2  and is too costly  for  large N .  Various 

approximate  methods  overcome  this difficulty. They  include  particle-mesh  algorithms [22] which  scale as 

f ( M ) N  where M is the  number of mesh  points,  hierarchical  methods [23] which  scale as N l o g ( N ) ,  and 

fast-multipole  methods [24] which  scale as A'. Recent  parallel  implementations of these  algorithms  have 

improved  their  range of applicability  [25, 261 for  various  kinds of many-body  simulations  but long-range 

force models  are noi used as often as short-range  models i n  \ ID simulat,ions. 

Short-range  forces  are  used  extensively  in  MD.  This  is  either  because  electronic  screening effectively limits 

the  range of influence of the  interatomic  forces  being  modeled or simply  because long-range interactions  are 

truncated to lessen the  computational  load.  In  either  case,  the  summations in  equation (1) are  restricted  to 

atoms  within  some  small  region  surrounding  atom i. This is typically  implemented  using a cutoff  distance 

r,, outside of which  all  interactions  are  ignored.  The work to  compute forces now scales  linearly  with jV, 
with a small coefficient.  However, even  with  this  savings,  the  vast  majority of computation  time  spent  in 

a short-range  force MD simulation is  in evaluating  the force terms in  equation (1). The  time  integration 

typically  requires  only 2-3%  of the  total  time. To evaluate  the  sums efficiently requires  knowing  which  atoms 

are  within  the cutoff distance r, at every  timestep.  The key  is to  minimize the  number of neighboring 

atoms  that must, be checked  for  possiiJie  iuteractions  since  calculations  perfomled on neighbors at a distance 

r > r ,  are  wasted  computation.  There  are  two  basic  techniques  used  to  accomplish  this  on  serial  and  vector 

machines; we discuss them briefly here  since our parallel  algorithms  incorporate  similar  ideas. 

The first idea.  that of neighbor  lists,  was  originally  proposed  by  Verlet [27]. For each  atom, a list is 

maintained of nearby  atoms to check  for interactions.  Typically,  when  the  list is formed, all neighboring 

atoms wit'hin  an  extended cutoff distance r, = T, + 6 are  stored.  The list is used  for a few timest,eps  to 

calculate all force interactions.  Then it, is rebuilt  before  any  atom could have moved from a distance r > r ,  

t80 r < rC. Though 6 is  always  chosen to be  small  relative  to r c ,  an  optimal value  depends on the  parameters 

(e.g.  temperature,  diffusivity,  density) of a particular  simulation.  The  advantage  the  neighbor  list  construct 

provides is that  once the list is built,  examining  it for  possible  interactions is much  quicker than checking all 

other  atoms  in  the  simulation  domain. 

The  second  technique  commonly  used  for  speeding  up  MD  calculations is known as the link-cell method 

[28]. At  every  timestep,  all  the  atoms  are  hashed  into 3-D bins or cells of side  length d where d = T,  or 

is slightly  larger. The reduces  the  task of finding  neighbors of a given atom to checking  in 2 i  bins - the 

bin the  atom is in and  the 26 surrounding  bins.  Since  binning  the  atoms  only  requires O ( N )  work, the 

extra  overhead  associated  with  it is acceptable for the  savings of being  able to  check  only a local  region  for 

neighbors. 

The  fastest MD algorithms  on  serial  and  vector  machines  use a. combination of neighbor  lists  and link- 

cell binning.  In  the  combined  method,  bins  are  only  used to hash atoms once  every few timesteps for the 

purpose of forming  neighbor  lists.  In  this  case  atoms  are  hashed  into  bins of size d 2 r,. The neighbor  lists 
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are  then used  in the usual  way to find  actual  neighbors  at  each  timestep.  This is a significant  savings over 

a  conventional  link-cell  method  since  there  are  far  less  atoms to check at each  step in a sphere of volume 

4nrS3/3 than in a cube of volume 27rC3. Additional  savings  can  be  gained  due to  Newton’s 3rd law by  only 

computing  a force  once  for  each  pair of atoms  (rather  than  once for  each atom in the  pair).  In  the combined 

method  this is  done by only searching half the  surrounding link-cell  bins of each atom  to  form  its neighbor 

list.  This  has  the effect of storing  atom j in atom i’s list,  but  not  atom i in atom j’s list,  thus halving  the 

number of force computations  that  must be  done. 

Although  these  ideas  are  simply  described,  optimal  performance on a vector  machine  requires  careful 

attention  to  data  structures  and loop constructs  to  insure  complete  vectorization.  The  fastest  implementation 

reported in the  literature is that, of Grest,  et  al. [3]. They use the combined  neighbor  list/link-cell method 

described  above to  create long  lists  (vectors) of pairs of neighboring  atoms.  At  each  timestep,  they  prune 

the  lists  to keep  only those  pairs  within  the cutoff distance r,. Finally,  they  organize  the  lists  into  packets 

in  which  no atom  appears twice. The force computation for each  packet  can  t,hen  be  completely  vectorized, 

resulting in performance  on the  benchmark  problem  described in  Section 6 that is from 2 to 10 times  faster 

t h a n  other  vectorized  algorithms [4, 61 over a wide range of simulation  sizes. 

As mentioned in t.he introduction,  there  has  been  considerable  recent  research  in  devising  parallel AID 

algorithms.  The  natural  parallelism in MD is within a timest,ep; force  calculations  and  velocity/position 

updates can  be  done simultaneously for  all atoms.  To  date, researchers  have  used  two  basic  ideas to exploit 

this  parallelism. References [29. 30, 311 include  good  overviews of various  techniques. To our knowledge,  all 

algorithms  that, have  been  proposed or implement,ed  (including  ours)  have  been  variations  on  these  simple 

ideas. The goal  in  each  is to divide the force computations  in  equation (1) evenly  across the processors so 

as to  extract  maximum  parallelism. 

T h e  first  class of methods does this by statically  assigning  a  subset of the force computations  to each 

processor. The assignment  remains fixed  for the  duration of the  simulation.  The  simplest way of doing this is 

to give a subgroup of at,oms t,o each  processor. We call this  method  an atom-decomposi tzon of the workload, 

since  the processor computes forces on its atoms no matter where  they move  in the  simulation  domain. More 

generally,  a  subset of the force  loops inherent in 1 can  be assigned to each  processor. We term  this  a force- 

decomposi i ion and  describe a new algorithm of this  type  later in the  paper.  Both of these  decompositions  are 

analogous to Lagranglan grld,iil,g ill a fluids  simulations where the grid cells (computational  elements) move 

with the fluid (atoms in MD). By contrast, in the second  general  class of methods, which we call a spatzal- 

decomposi t ion of the  workload,  each processor  is  assigned a  portion of the physical  simulation  domain.  Each 

processor  comput,es  only the forces on atoms in its sub-domain. As the  simulation  progresses  processors 

exchange  atoms  as  they move  from one  sub-domain  to  another.  This is analogous to  an  Eulerian  gridding 

for a fluids simulation ~ l ~ r ~ r . ~ ~  t h e  grid remaim fixed in s l~acc  as fluid moves through  it. 

As an  aside,  it is worth  noting  that  both of these  methods  parallelize  the  MD  computation  within a 

single timestep.  A  third  possibility for parallelism  exists, one that so far  as we know,  no  one  has successfully 
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exploited.  The  idea is to  parallelize the  timestep loop (lime-decomposition) which  is  typically the  outermost. 

loop  in a MD  program.  The goal  would be to speed  up  the  overall  computation by having different  processors 

work  on  different  timesteps  concurrently.  Methods of this  type  have  been  proposed for  implicit  solvers  for 

partial  differential  equations [32]. However, the  timestepping  algorithms  typically used  in  MD are explicit 

and  depend  on  the  positions  and velocities  from the previous  timestep being  known  before advancing  to  the 

next  step. 

M’ithin the two classes of met>hods for  parallelization of \ID. a variety of algorithms  have  been  proposed 

and  implemented by various  researchers.  The  details of the  algorithms  vary widely from one  parallel  machine 

to  another since  there  are  numerous  problem-dependent  and  machine-dependent trade-offs t,o consider.  such 

as the  relative  speeds of computat,ion  and  communication.  A brief  review of some  notable  efforts follows. 

Atom-decomposition  methods, also  called replicated-data  methods [31] because  vectors of atom infor- 

mation  are  replicated  across all processors,  are  often  used in RID Gnulations of molwular systems. This is 

because,  as we shall  see.  they  make for straight-forward  computation of additional  three-body  and  four-body 

force terms.  Parallel  implementations of state-of-the-art  biological  MD  programs such as CHARMm  and 

GR.OMOS using this  technique  are discussed  in [33, 341. Force-decomposition methods which  systolic,ally cy- 

cle atom  data  around a ring or grid of processors  have  been  used  on  MIMD  [13: 311 and  SIMD  machines [35j. 
The  only force-decomposition  method we have  found whicli resembles  the  algorit,llnl we present in Section 4 

is tha.t of Boyer and  Pawley in [ll]. Their  method is  designed  for  long-range  force systems  requiring  all-pairs 

calculation (no neighbor  lists)  on  a  SIMD  machine. Thus  the overall  scaling of the  algorithm is  different as 

is the way it distributes the atom data  among  processors  and  performs  inter-processor  communication. 

Spatial-decomposition  methods, also  called geometric  methods [29, 301, are  more  commonly discussed  in 

the  lit’erature  because  they  are well-suited to very  large  MD  simulations.  Recent  parallel  implementations 

for the  Intel  iPSC/2  hypercube  that  have  features in common  with  our  spatial-decomposition  algorithm  are 

discussed  in  [14, 15, 311. The fastest’  published  algorithms for SIMD  machines  are  those of [la] and also 

employ  spatial-decomposition  techniques. Recent,ly Tamayo  and Giles  have  also  developed a parallel  MD 

algorithm for the CM-5, programming  it as a MIMD  machine  with  explicit  inter-processor message  passing 

[21].  Their AIIhlD algorithm is the most  sinlilar of any we have seen to the  algorithm we discuss in Section 

5.  In  fact,  in  this  paper we adopt  one of their  ideas t o  improve  our  algorithm’s  performance for problems 

with  medium-sized N .  Differences between  Tamayo’s  and  our  algorithms  include  the  method of neighbor  list 

construction  and  the  patt,ern of inter-processor  communication.  It is interesting  to  note  that  their  timings 

in [a11 for the  benchmark  problem of Section 6 showed  the CM-5 programmed in MIMD  mode  without 

vector  units to be  faster  than  the  SIMD CRI-2 [la], indicating  the  advantage a MIMD  capability offers for 

exploiting  parallelism in short-range MD simulations. 

We now present  our  versions of atom-, force-,  and  spatial-decomposition  algorithms in the next 3 sec- 

t1ons. 
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3 Atom-Decomposition  Algorithm 

In  our  first  parallel  algorithm  each of the P processors  is  assigned  a  group of N I P  atoms  at  the beginning of 

the  simulation.  Atoms in a  group need not  have  any  special  spatial  relationship  to  each  other. A processor 

will compute forces  on  only its N I P  atoms  and will update  their positions  and velocities  for the  duration 

of the simulation no matter where they move in the physical  domain. As discussed  in the previous  section, 

this is an atom-decomposition of the  computational  workload. 

A useful construct for representing  the  computational work  involved  in the  algorithm is the 11' x N force 

matrix F .  The (ij) element of F represents  the force  on atom i due  to  atom j .  Note that F is sparse  due 

to  short-range forces and  skew-symmetric,  i.e. Fi, = -Fji, due  to Newton's  3rd  law. We also  define x 

and f as  vectors of length N which store  the  position  and  total force  on  each atom. For a 3-D simulation, 

zi would store  the  three  coordinates of atom i. With  these  definitions, the atom-decomposition  algorithm 

assigns  each  processor  a  sub-block of F which  consists of N I P  rows. This is shown in Figure 1 where we let 

the z subscript  denote  the processor number  from 0 to P - 1. Thus, processor P, computes  matrix  elements 

in the F, block of rows. It also is assigned  the  corresponding  sub-vectors of length hr/P denoted by z2 and 

f i .  

xt 
x,f 

Figure 1: The division of the force matrix  among  processors  in  the  atom-decomposition  algorithm. Processor 

z is  assigned  a  group of h r / P  rows of the  matrix  and  corresponding pieces of the position  and force vectors, 

x and f .  

Assume  the  computation of matrix element Fij requires  two  atom  positions zi and xj. (We  relax  this 

assumption in  section 8.) To compute all the  elements  in F,, processor P, will need the positions of many 

atoms owned by other  processors. In the atom-decomposition  algorithm,  this is  accomplished by having  each 
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processor  send  its  updated  atom  positions  to  all  the  other  processors once per  timestep,  an  operation called 

all-to-all communication.  Various  algorithms  have  been  developed  for  performing  this  operation efficiently 

on  different  parallel  machines  and  architectures [lo,  361. We use an  idea  due  to Fox, et  al. [lo] that is simple, 

portable,  and works well  on a variety of machines. We describe  it  here  because  it  is  the chief communication 

component of both  the atom-decomposition  algorithm and the force-decomposition algorithm  presented in 

the  next  section. 

Following  Fox’s nomenclature, we term  the all-to-all communication  procedure  an expand operation. 

Each  processor  allocates  memory of length N to  store  the  entire z vector.  At  the  beginning of the  expand, 

processor P, has 2,) an  updated piece of z of length N I P .  Each processor  needs to  acquire all the  other 

processor’s  pieces,  storing  them  in  the  correct  places in its copy of x. Figure 2 illustrates  the  steps  that 

accomplish this for an 8 processor  example.  The  processors  are  mapped  consecutively  to  the sub-pieces of 

the  vector.  In  the first communication  step,  each  processor  exchanges  its piece with  an  adjacent processor 

in the  vector.  Processor 2 exchanges wit11 procwsor 3 i n  the figure. Now, every proc’ssor has a contlguous 

piece of z that is of length  2N/P.  In  the second step, each  processor  exchanges  this  piece  with a processor 

two  positions away  (2  exchanges  with 0). Each processor now has a 4N/P-lengt,h piece of x. In  the last 

step, each  processor exchanges  an  h7/2-length piece of x with a processor P/2 positions away ( 2  exchanges 

w i t h  6) ;  the  entire  vector now  resides on each  processor. 

N/P 
4-b 

Step 1: 

Step 2: 

Step 3: 

U 

Figure 2: An expand  operation  among 8 processors.  Processor 2 exchanges  successively  longer  suh-vect,ors 

with  processors 3,  0, and 6. 

A pseudo-code  version of the  expand  operation is  given  in Figure 3.  For  simplicity we again  assume a 

power-of-two number of processors;  relaxing this  assumption is straightforward.  The  expand proceeds in 
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l o g ~ ( P )  steps.  At  each  step P, performs  a  data  exchange  with a partner processor P’. The new processor 

number P’ is obtained by flipping  one  bit in z !  which  itself is a  string of logZ(P) bits.  The sub-vector y 

is sent  to P’ and  the received  sub-vector z is concatenated  with y (the “ 1 ”  operation) in the  proper  order. 

Thus y doubles in length at  every step;  at  the  end of the  expand y has  become  the  full  N-length  vector 

x. Costs  for a communication  algorithm  are  typically  quantified  by  the  number of messages  and  the total 

volume of data  sent  and received.  On  both  these  accounts  the  expand is optimal;  each  processor  performs 

logz(P) sends  and receives and  exchanges N - N / P  data  values.  This is the  reason  the  expand  operation 

works well on many  machines.  A  drawback is that it requires O ( N )  storage  on  every  processor.  Alternative 

methods  for  performing all-to-all communication  require less storage  at  the cost of more  sends  and  receives. 

This is usually  not  a  good trade-off for MD simulations  because,  as we shall  see,  quite  large  problems  can 

be  run  with  an  atom-decomposition  algorithm in the  many  Mbytes of local  memory of current-generation 

processors. 

y := x, 
FOR IC = 0 , .  . . , logZ(P) - 1 

P‘ := P: with k t h  bit of z flipped 

SEND y to  processor P’ 

RECEIVE z from  processor P’ 
IF bit k of z is 0 THEN 

y := ylz 

y := zly 

ELSE 

x := y 

Figure 3: The expand operation for  processor P,. 

A communication  operation  that, is  essentially the inverse of the  expand will also  prove useful  in the 

atom- and  force-decomposition  algorithms.  Assume  each  processor  has  stored new  force va.lues t’hroughout 

its copy of the force  vector f .  Processor P, needs to know the N I P  values  in f2, where  each of the values is 

summed  across all P processors. A procedure for doing  this is known  as  a fold operat,ion [lo] and is out,lined 

in Figure 4. Again the  operation proceeds  in logz(P) steps.  At  each  step, y represents a portion of the 

force  vector f ,  and is split  into  two  pieces, y’ and y2. One of the pieces is sent  to  a  partner processor P .  
The received  sub-vector z is summed  element  by  element  with  the  retained  piece.  This  summed  sub-vector 

becomes y in the  next  step, so that y is halving  in  length a t  each  iteration of the  loop.  When  the fold is 

finished, y has become f i ,  with values summed  across all P processors.  Like the  expand,  the fold operation 

requires l o g ~ ( P )  sends  and receives and N - N / P  data   to  be  exchanged  by  each  processor.  Additionally  it 

requires N - N / P  flops to  do  the  summations,  typically  a  small  extra  cost. 
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y := f 
FOR k = log,(P) - 1,.  . . , O  

y1 := top half of y vector 

y2 := bottom half of y vector 

P’ := P, with k t h  bit of z flipped 

IF bit k of z is 0 THEN 

SEND y2 to processor P‘ 

RECEIVE z from  processor P’ 
y := y’ + 2 

ELSE 

SEND y1 to processor P’ 

RECEIVE z from  processor P’ 

y := y 2 +  z 

fi := y 

Figure 4: The fold operat.ion for processor Pi 

Having  defined the  expand and fold operations, we  now present  two  versions of the  aton-decomposition 

algorithm.  The first, is simpler  and  does  not  take  advantage of Newton’s  3rd  law.  We call this  algorit.hm 

A l ;  it is outlined  in  Figure 5 with  the  dominating  term(s) in the  computational or communication  cost of 

each  step  listed  on  the  right.  We  assume at the beginning of the  timestep  that  each processor  knows the 

current  positions of all N atoms,  i.e.  each  has a copy of the  entire I vector.  Step (1) of the  algorithm is to  

construct  neighbor lists for all the pairwise  interactions  that, nlust L C  c o l ~ ~ p u t o d  in block F,. Typically  this 

will only  be  done  once  every few timesteps. If the  ratio of the physical  domain  diameter D to the ext,ended 

force  cutoff  lengt’h T,  is  relatively  small,  it is quicker  for P, to construct  the  lists  by  checking all N 2 / P  pairs 

in its F, block.  When  the  simulation is large  enough  t’hat 4 or more  bins  can  be  created  in  each  dimension, 

it is quicker  for  each  processor to bin all AT atoms,  then check the 27 surrounding  bins of each of its N I P  

at>oms to form  the  lists.  This  checking  scales as N / P  but  has a large coefficient, so the overall  scaling of t,he 

binned  neighbor  list  construction is recorded as N I P  + N .  

In step (2) of the  algorithm,  the  neighbor  lists  are  used to compute  the non-zero matrix  element,^ in F,. 

As each  pairwise  force  interaction is computed,  the force components  are  summed  into f,, so that  F, is never 

actually  stored  as a matrix.  At  the  completion of the  step,  each  processor  knows  the  total force fi on each 

of its NIP atoms.  This is  used to  update  their posit,ions and velocit,ies in step (4). (A step (3) will be  added 

to other  algorithms  in  this  and  the following sections.)  Finally,  in  step (5) the  updated  atom  positions in 2, 

are  shared  among all P processors  in  preparation  for the next  timestep  via  the  expand  operation of Figure 

3.  As discussed  above,  this  operation  scales as N ,  the  volume of data  in the  position  vector x. 
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(1) Construct neighbor  lists of non-zero interactions in F,. 

( D  < 4 ~ ~ )  All pairs P N= 

( D  > 4r,) Binning $ + N  

(2) Compute elements of F,, storing  results in fi P N 

(4) Update atom  positions in xz using fz N P 
(5) Expand I, among all  processors,  result  is z N 

Figure 5: Single  timestep of atom-decomposition  algorithm A1 for  processor P, 

As mentioned  above,  algorithm A1 ignores  Newton’s  3rd  law. If different  processors  own atoms i and 

j as is usually the  case,  both  processors  compute  the (ij) interaction  and  store  the  resulting force  on their 

atom.  This  can  be  avoided  (at  the  cost of more  communication)  by  using  a modified  force matrix G which 

references  each  pairwise  interaction  only  once. There  are several  ways to  do  this by  st.riping the  matrix [37]; 
we choose instead to form G a5 follows.  Let Gij = Fij,  except  that Gij = 0 when i > j and i + j is even, 

and likewise Gij = 0 when i < j and i + j is odd.  Conceptually, G is  colored  like a  checkerboard  with  red 

squares  above  the  diagonal  set  to  zero  and black squares below the  diagonal  also  set  to  zero.  A modified 

atom-decomposition  algorithm A2 that uses G to  take  advantage of Newton’s  3rd  law is outlined in Figure 

6. 

(1) Construct neighbor  lists of non-zero interactions in G, 
(D < 4r,) All pairs 

( D  > 4r,) Binning p + N  N 

?‘2 
T 

(2) Compute elements of G,, 
doubly  storing  results in  local  copy of f 2p N 

(3) Fold f among  all  processors,  result is f, N 
(4) Update atom  positions in 2, using fi P N 

(5) Expand x* among all processors,  result is z N 

Figure 6: Single  timestep of atom-decomposition  algorithm A2 for processor P,. This version takes  advan- 

tage of Newt,on’s  3rd law. 

Step (1) is the  same as in algorithm A1 except  only half as many  neighbor list entries  are  made by each 

processor  since G, has only  half the non-zero entries of F,. This is  reflected  in the factors-of-two included 

in the scaling  entries.  For  neighbor  lists  formed by binning,  each  processor  must  still  bin all N atoms,  but 
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only  need  check  half the  surrounding  bins of each of its N I P  atoms.  In  step (2)  the neighbor  lists  are used 

to compute  elements of G,. Again  this  requires  only half the work of the  corresponding  step  in A l .  Note 

that  for an  interaction  between  atoms i and j ,  the  resulting forces on  atom i and j are  summed  into  both  the 

i and j locations of force vector f. This  means  each  processor  must  store a copy of the  entire force vector, 

as opposed to just  storing fi as in algorithm A l .  When all the  matrix  elements  have  been  computed, f is 

folded  across all P processors  using the  algorithm in  Figure 4. Each processor  ends up  with fi, the  total 

forces on its atoms.  Steps (4) and (5) then proceed the  same as in A l .  

Note  that,  implementing Newt,on’s 3rd  law  essent,ially halved  the  computational  cost  in  steps (1) and (2). 

at   the expense of doubling the communicat,ion  cost.  There  are now two communication  steps (3) and (5).  

each of which  scale as N .  This will only  be  a  net  gain if the  communication  cost  in A1 is less than a third of 

t,he  overall run  time. As we shall  see,  this will usually  not  be  the  case  on  large  numbers of processors: so in 

practice we almost  always  choose A1 instead of A2 in  simulations  using an atom-decomposition  algorithm. 

However. for small P or expensive force models, A2 can  be  the  faster  choice. 

Finally, we discuss the issue of load-balance. The  computation in  algorithms A1 and A2 is  in steps 

( l ) ,  (2) ,  and (4).  Each  processor will have an equal a amount of work to  do if each F,  or G, block has 

roughly the  same  number of non-zero elements.  This will automatically  be  the case if the  atom  density is 

uniform  across  the  simulation  domain. However ~ x . - - u l ~ i f ~ , r ~ ~ !  1 1 6  ilylties can a r k -  if. for example. t11~:w art. 

free  surfaces so that  some  atoms  border  on  vacuum, or phase  changes  are  occurring  within a liquid or solid. 

This is 0111)- a  problem for  load-balancing of the atom-decomposition  computation  across  processors if the N 

atoms  are  ordered in a geometric  sense as is typically the case. Then a group of .Y/P atoms near a  surface. 

for example, will have fewer neighbors  than  other  groups.  This  can  be  overcome by randomly  permuting 

the  atom  ordering  at  the  beginning of the  simulation,  which is equivalent to permuting rows and  columns 

of F or G. This  insures  that  every F2 or G, will have  roughly the  same  number of non-zeros  even if the 

atom  density is  non-uniform. A random  permutation  has  the  advantage  that  the load-balance will likely 

persist  as  atoms  move  about  during  the  simulation.  Note  that  this  permutation  need  only  be  done  once,  as 

a. pre-processing step before  beginning  the  dynamics. 

In  summary,  the  atom-decomposition  algorithms  divide  the MD force comput,ation  and  integration  evenly 

across the processors  (ignoring  the Oj.Z-) component of binned  neighbor list, construction  which is usually 

not  significant).  However, the  algorithms require  global  communication,  as ea.ch processor  must,  acquire 

information  held  by all the  other processors. This  communication  scales  as N ,  independent of P, so it  limits 

the  number of processors that  can be used  effectively. The chief a.dvantage of the  algorithms is that of 

simplicity. Steps ( l ) ,  (21, and (4) can  be  implemented  by  simply  modifying  the  loops  and  data  structures  in 

a serial or vector  code to treat N I P  atoms  instead of N .  Then  the  communication  operations  (expand  and 

fold)  can  be  treated  as black-box routines  and  inserted at the  proper  locations  in  steps (3) and (5). Few 

other  changes  are  typically  necessary to parallelize an  existing  code. 
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4 Force-Decomposition Algorithm 

Our next  parallel MD algorithm is  based  on  a  block-decomposition of the force matrix F rather  than a row- 

wise decomposition as used  in the previous  section. We term  this  a force-decomposition of the workload. As 

we shall  see,  this  improves  the O ( N )  scaling of the  communication cost to O(N/@).  Block-decompositions 

of matrices  are common  in  linea,r algebra  algorithms [38, 391 for  parallel  machines  which  sparked our interest 

in the  idea, but to our  knowledge we are  the  first  to  apply  the  idea  to  short-range MD simulations [40, 411. 

The  assignment of sub-blocks of F to processors  is  depicted  in  Figure 7. We  assume for ease of expositmion 

that P is an even  power of 2 and  that A' is a  multiple of P ,  although  again  it is fairly  straightforward to 

relax  these  constraints.  The block  owned  by  each  processor  is thus  square  and of size ( N / O )  x ( N I e ) .  

We use the Greek subscripts a and ,L? to index the row and  column blocks of F running  from 0 to 0 - 1. 

A sub-block of F is denoted as Faa, and  the  processor owning it is Pap. We note  that, o and 0 also  index 

sub-vectors of x and f of length N / G .  To  compute  the  matrix  elements in Fap, processor Pap must know 

the I, and xp pieces of I. As these  elements  are  computed  they will be  stored  in  local copies of the force 

sub-vectors,  namely fa and f p .  

Figure 7: The division of the force matrix  among  processors  in  the force-decomposition algorithm.  Processor 

Pa@ is  assigned a sub-block F,p of size A'/@ by N/@. Likewise  it stores  the  corresponding lengt,h K / f l  

pieces of the position and force vwtors. 

In  addition to comput,ing the matrix  elements  in Pap, each  processor will be rPsponsible for updating 

the positions and  velocities of N I P  atoms,  as in the atom-decomposition  algorithm.  These  atoms  are  a 

sub-vector of 2,: that is! the fi processors  in row (Y divide 2, among  them, so each is responsible for 
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a  contiguous  piece of length N I P .  Numbering  these pieces with  the  column  index p of the processor, we 

denote  each processor’s  piece with a superscript as zap. Similarly, the  total force acting  on  these  atoms is 

the  NIP-length vector f:. As in the atom-decomposition  case, an element off,” is the  sum of all the  matrix 

elements  across  the  corresponding row of F .  
Our first  force-decomposition algorithm F1 is outlined in Figure 8. As before,  each  processor  has  updated 

copies of the needed  atlorn  positions at  the beginning of the  timestep. In this case it is the  current  sub-vectors 

z, and zp.  In  step (1) neighbor  lists  are  constructed.  Again, for small  problems  this  is  most quickly  done 

be  checking  all N 2 / P  possible pairs  in Fa@. For large  problems,  the N / O  atoms in zp are  binned,  then 

the 27 surrounding bins of each atom in z, is  checked. The  total  number of interactions  stored in each 

processor’s  lists  is  still O ( N / P ) .  The scaling of the binned  neighbor  list  construction is thus N I P  + N / O .  

In step (2) the neighbor  lists  are  used to  compute  the  matrix  elements in F,$. As before the  elements  are 

summed  into  a local  copy of fa as  they  are  computed, so Fop never  need  be stored in matrix  form. In 

step  (3) a fold operation is  performed  within  each row of processors so that processor Pap obtains  the  total 

forces on it,s N I P  atoms. ft. Although  the fold algorithm used is the  same as in the preceding  sect,ion, 

there is a key difference. In  this case the vector fa being  folded is only of length N/@ and only the 0 
processors  in  one row are  participating in the fold. Thus thik operation  scales  as N / f i  instead of N as in 

t h e  a tonl~decon~~,os i~ io i l  iulil1nunication  steps. 

In step (4), f: is  used by Pap to  update  the N I P  atom  positions in x{. Steps  (5a-5d)  share  these 

updated  positions  with  all  the  processors who will need them for the next  timestep.  These are the  processors 

who share a row or column wit,h Pea. First, in (sa),  the processors  in row Q do an  expand of their x,@ 
sub-vect’ors so that each  acquires the  entire za.  As with  the  fold,  this  operation  scales as the  length 

of 2, instead of as N as  it  did  in  algorithms A1 and A2. In step  (5b), each  processor  exchanges  its  updated 

atom  positions  with  processor Ppa which  owns the  transpose  position block of F .  The cost of this  operation 

scales as the K / P  length of the  data being  exchanged.  Finally, in  st,ep (5c),  the processors in each  column 

p do an expand of the received  sub-vector x;. As a  result  they all acquire x p  and  are  ready to begin the 

next timestep. 

As with  algorithm A l ,  algorithm F1 does not  take  advantage of Newton’s  3rd  law;  each  pairwise force 

interaction is computed  twice.  Algorithm F2 avoids this  duplicated effort by using the  same  checkerboarded 

matrix G that was  defined in the preceding  section.  Note that now the  total force  on atom i is the  sum of 

all non-zero matrix  elements in  row i minus  the  sum of all  non-zero elements in colunm i .  The modified 

force-decomposition  algorithm F2 is outlined in Figure 9. Step (1) is the  same  as in F1,  except  that half 

as  many  interactions  are  stored in the neighbor  lists.  Likewise, step (2) requires  only  half  as  many  matrix 

elements  be  computed. For each (ij) element,  the  computed force components  are now summed  into  two 

force vectors  instead of one.  The force  on atom i is summed  into fa in the  location  corresponding  to row 

i. The  same force (negative of the force  on atom j )  is  also  summed  into fp in the  location  corresponding 

to column j .  Steps  (3a-3d)  accumulate  these forces so that processor Pap ends  up  with  the  total force 011 
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(1) Construct neighbor  lists of non-zero interactions  in F,p 

(D 5 4rS) All pairs 7- N Z  

(D 2 4rs) Binning s.5 
(2) Compute elements of F,p, storing  results  in f, P N 

(3) Fold fa within row C Y ,  result  is ft . N  J7; 
(4) Update atom  positions  in x! using f! P A; 

(5a) Expand xt within row C Y ,  result is x, 

(5b) Exchange atom  positions  with  transpose  processor Pp, 
5 

Send x! to Pocy P N 

Receive xp* from Pp, P N 

(5c) Expand x; within  column 8, result  is xcp A' JT; 

Figure 8: Single  t,imestep of force-decomposition  algorithm F1 for  processor Pap 

its N/P atoms.  First,  in  step  (3a),  the  processors  in  column ,O fold their  local copies of f p .  The result 

is @ .  Each  element of this :Y/P-lengt,h sub-vector is the  sum of an  entire  column of G. In step (3b) 

this sub-vect,or is exchanged  with  the  transpose-position  processor Poa. The values  in the sub-vector  each 

processor  receives in this  transpose  operation  are  t,he  partial  forces  (column  cont,ribution)  on  its N / P  at,oms. 

Next,  in  step  (3c),  the  row  contributions to the forces  are  summed  by  performing a fold of the fa vector 

within  each row CY. The result is a second  copy of f!, each  element of which is the  sum across a row of G. 

Finally,  in step  (3d)  the  two  partial  contributions (column and  row)  are  subtracted  element  by  element to 

yield the  total forces on  the  atoms  owned  by  processor Pap. The processor  can now update  the  positions 

and velocities of its  atoms:  steps 4 and 5 are  identical to those of F1. 

In  the force-decomposition  algorithms,  implementing  Newton's  3rd  law  again  halves the  computation 

required  in steps 1 and 2.  However, the  communication  cost  in  steps  3  and  5  does  not  double.  Rather there 

are 4 expands  and  folds  required in F2 versus  3  in F1. There  are also two  transpose  operations  instead 

of one.  The key  point  is that  the  expand  and fold operations now scale as N / o  rather thar!  as .N as 

was the case  in  algorithms A1 and A2. As we shall  see,  this  significantly  reduces  the  communication  time 

spent in t h e  force-decomposition  algorithm  when  run  on  large  numbers of processors as compared t,o t,he 

atom-decomposition  algorithms. Thus,  in  practice,  it is  usually  faster to use  algorithm F2 with  its  reduced 

computational cost a,nd slightly  increased  communication  cost rather  than F1. 

Finally, the issue of load-balance  is a more  serious  concern for the force-decomposition  algorithms. 

Processors will have  equal work to do only if all the  matrix blocks Fa@ are  uniformly  sparse. If the  atoms  are 

ordered  geometrically  this will not  be  the case  even  for  problems  with  uniform  density. This is because  such 

an  ordering  creates a force matrix  with  diagonal  bands of non-zero elements.  As  in  the  atom-decomposition 
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(1) Construct neighbor  lists of non-zero interactions in Gap 

( D  5 4r,) All pairs 2p N 2  

( D  2 4r,) Binning Tp+$ N 

(2) Compute elements of Gap, 

storing  results  in  local copies of fa and fo 2 7  N 

(3a) Fold f~ within  column p, result is f ,  
(3b) Exchange partial  forces  with  transpose  processor Ppa 

%- 
Send f; to  Poa P N 

Receive partial f a p  from PRO P N 

(3c) Fold fa within row a ,  result is partial f a P  

(3d) Subtract received ff copy from folded  copy,  result is total fg $ 
(4) Update atom  positions  in x; using ff P N 

(Sa) Expand x! within row cy, result is x, 

(5bj Exchange atom  positions  with  transpose  processor Pp, 

5 

5%- 
Send x! to Ppa P N 

Receive x; from Pp, P N 

(5c) Expand x$ within  column p, result  is xp 5 
Figure 9: Single  t,imest,ep of force-decomposition  algorithm F2 for  processor Pap. This version takes  advan- 

tage of Newt,on’s  3rd  law. 

case, a random  permutation of the  atom  ordering  produces  the  desired effect. Only now the  permutation 

should  be  done  as a pre-processing step for  all problems, even those  with  uniform  atom  densities. 

In  summary,  algorithms F1 and F2 divide the MD computations  evenly a.cross  processors as did  the  atom- 

decomposition  algorithms.  But  the  block-decomposition of the force matrix  means  each  processor only needs 

O ( N / @ )  information to perform  its  computations.  Thus  the  communication  cost is reduced  by a factor 

of O(@) versus  algorithms A1 and A2. The force-decomposition strategy  retains  the  simplicity of the 

aton-decomposition  technique; F1 and F2 can IF im1’1emcnt ( ~ 1  115ing thr same “hlack-box”  communicat,ion 

routines as A1 and A2. The force-decomposition  algorithms  also  need  no  geomet,ric  information  &out, the 

physical  problem  being  modeled to perform  optimally.  In  fact, for  load-balancing  purposes they  intentionally 

ignore  such  information  by  using a random  atom  ordering. 
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5 Spatial-Decomposition  Algorithm 

In  our  final  parallel  algorithm  the  physical  simulation  domain is subdivided  into  small 3-d boxes,  one for 

each  processor. We call  t’his  a spatial-decomposition of the  workload.  Each  processor  computes forces on 

and  updates  the  positions  and velocities of all atoms  within  its  box  at  each  timestep.  Atoms  are reassigned 

to new processors as they move through  the  physical  domain. In order  to  compute forces  on its  atoms,  a 

processor  need  only  know  positions of atoms in nearby  boxes. The communication  required  in the spatial- 

decomposition  algorithm is thus local  in nature as compared  to  global in the  atom-  and force-decomposition 

cases. 

The size and  shape of the  box assigned to each  processor will depend  on N ,  P ,  and  the  shape of 

the physical  domain, which we assume  to be a 3-d rectangular  parallelepiped.  Within  these  constraints 

the  number of processors  in  each  dimension  is  chosen so as  to  make  each processor’s box as “cubic” as 

possible.  This is to minimize communication  since  in  the  large N limit the  communication cost of the 

spatial-decomposition  algorithm will turn  out  to be  proportional  to  the  surface  area of the boxes. An 

important  point  to  note is that, in contrast  to  the link-cell method for  conventional MD described in Section 

2, the box lengths  may now be  smaller or larpcr than  the force  cutoff lengths r, and r,. 

Each processor  in our spatial-decomposit’ion  algorithm  maintains  two data  structures,  one for the Ar/P 

atoms in its box and  one for atoms in nearby  boxes. In the first data  structure, each  processor stores  complete 

information - positions,  velocities,  neighbor  lists, etc.  This  data is stored in a linked  list to allow insertions 

and  deletions  as  atoms move to new boxes.  In  the  second data  structure only atom positions  are  stored. 

Interprocessor  communication  at  each  timest,ep keeps this  information  current. 

The communication  scheme we use to acquire  this  information  from  processors owning the  nearby boxes 

is  shown in Figure 10. The first step (a) is for each  processor to pair  up  with  an  adjacent processor  in the 

east/west  dimension, 2 pairs  with 1 for example.  Processor 2 fills a message  buffer  with atom  positions  it 

owns  that  are  within  a force  cutoff length r, of processor 1’s box.  (The  reason for  using r, instead of r ,  

will be  made clear  below.) If d < r , ,  where d is the  box  length in the  east/west  direction,  this will be  all of 

processor 2’s atoms; otherwise  it will be  those  nearest  to  box 1. Now processors 2 and 1 exchange  messages. 

Processor 2 puts  the  information  it receives into  its second data  structure. Now the processors  pair up 

i n  the  opposite east-west direction. 2 with 3 in this  case,  and  perform  the  same  operation. If d > r , ,  all 

needed  at,om  positions in the east-west  dimension  have now been  acquired by each  processor. If d < r,. this 

procedure is repeated  with each  processor sending more  needed atom  positions  to  its  adjacent  processors. For 

example, processor 2 sends processor 1 atom positions  from  box  3  (which  processor 2 now has in its second 

data  struct.ure).  This can he repeated  until each  processor  knows  all atom  positions  within a distance r, of 

its  box, as indicated by the  dotted  boxes in the  figure.  The  same process  is now repeated in the  north/south 

dimension; see step  (b) of the figure. The only  difference is that  messages sent  to  the  adjacent processor now 

contain  not  only  atoms  t,he processor  owns (in  its  first  data  structure),  but also any  atom positions  in its 

second data  structure  that  are needed  by the  adjacent  processor. For d = r, this  has  the effect of sending  3 
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boxes  worth of atom  positions in one  message as shown in (b).  Finally, in step  (c)  the process  is  repeated in 

the  up/down  dimension. Now atom  positions  from  an  entire  plane of boxes (9 in the figure)  are effectively 

being  exchanged in each  message. 

(a) east/west exchanges 

(b)  northhouth  exchanges . 
U 

b up/down exchanges 

Figure 10: Method  by  which a processor  acquires  nearby  atom  positions in the spat'ial-decomposition  algo- 

rithm.  In 6 data  exchanges all atom  positions in adjacent  boxes in the  (a)  east/west,  (b)  north/south,  and 

(c)  up/down  directions  can  be  communicated 

There  are severa.1 key advantages t30 t,his  scheme, all of which reduce  the overa.11 cost of communication in 

our  algorithm.  First, for d 2 r , ,  needed atom  positions  from  all 26 surrounding  boxes  are  obtained in just 6 

data  exchanges.  Moreover,, as will be  discussed  in the  results  section, if the  parallel  machine is a  hypercube, 

the processors  can  be  mapped  to  the  boxes in such a way that  all 6 of these  processors will be  directly 

connected to  the  center  processor.  Thus  message  passing will be  fast  and  contention-free.  Even if d > r, so 

t'hat  atom  information is needed  from  more  distant  boxes,  this  occurs  with  only a few extra  data  exchanges. 

all of which are  still  with  the 6 immediate  neighbor  processors.  Second,  the  amount of data  communicated is 

minimized.  Each  processor  acquires  only  the  atom  positions  t1~a.t  are  within a dist,ance r, of its  box.  Third, 

all of the received at30m  positions  can  be pla.ced as contiguous  data  directly  into  the  processor's  second  data 

structure. No time need  be spent  rearranging  data,  except  to  create  the buffered  messages that need to 

be  sent.  Finally,,  as will be  discussed  in  more  detail  below,  this  message  creation  can  be  done  very quickly. 

A full  scan of the  two  data  structures is  only  done  once  every few timesteps,  when  the  neighbor  lists  are 

created,  to decide  which atom  positions  to  send in each  message. The  scan  procedure  creates a list of atoms 

that  make up each  message.  During  all the  other  timesteps,  the  lists  can  be  used,  in lieu of scanning  the  full 
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atom  list,  to buffer up  the messages  quickly. This is the equivalent of a gather  operation. 

We now outline  our  spatial-decomposit,ion  algorithm S1 in  Figure 11. Box t is  assigned to  processor P,, 

where z runs  from 0 to P - 1 as before.  Processor P, stores  the  atom  positions of its N I P  atoms in 

(first data  structure)  and  the forces on  those  atoms  in ft. Steps  (la-lc)  are  the  neighbor  list  construct~ion, 

performed  once  every few timesteps.  This is somewhat  more  complex  than  in  the  other  algorithms  because, 

as discussed  above,  it  includes  the  making of lists of atmoms  that will be  communicated at every  timestep. 

First, in st,ep (la) the  positions,  velocities,  and  any  other  identifying  information of atoms  that  are  no longer 

inside  box z are  deleted  from x, and  stored in a message  buffer. These  atoms  are  exchanged  with  the 6 

adjacent  processors via the  communication  pattern of Figure 10. As the  information  routes  through  each 

dimension,  processor P, checks  for new atoms  that  are now inside its  box  boundaries,  adding  them  to x,. 
Next, in step  (lb), all atom  positions  within a distance T ,  of box z are  acquired by the  communication  scheme 

described  above.  As the different  messages are buffered  by scanning  through  the  two  data  structures. list's 

of included atoms  are  made.  The  lists will be  used  in  step (5). The scaling  factor A for  steps ( la) and  ( lb) 

will be  explained  below. 

' la)  Move necessary atoms to new boxes 

l b )  Make lists of all atoms  t.hat will need to  be  exchanged 

:IC) Construct neighbor  lists of interaction  pairs  in  box z 

( d  5 2rs)  All pairs 

( d  2 2 ~ , )  Binning 

'2) Compute forces  on atoms in  box z ,  doubly  storing  results  in fz 

4) Update atom posit,ions x, ill box 2 using f2 

' 5 )  Exchange atom  positions  across  box  boundaries 

with  neighboring  processors 

( (1 < r s  j Send S I P  posit'ions to many  neighbors 

( d  X T,)  Send N I P  positions to nearest  neighbors 

(d > T,) Send  positions  near  box  surface to  nearest  neighbors 

A 

A 

Figure 11: Single timestep of spatial-decomposition  algorithm S1 for processor P, . 

When  steps  (la)  and (111) are  complete,  both of the processor's data  structures  are  current,. Keighbor 

lish for its N I P  atoms  can now be  constructed  in  st,ep  (IC). If atoms i and j are b0t.h  in box 2 ,  the ( i j )  pair 

is only  stored  once in the neighbor  list. If i and j are  in different boxes,  both  processors  store  the  interaction 

in their  respective  neighbor  lists. If this were not  done,  processors would compute forces on atoms  they  do 

not own and  communication of the forces  back to the processors  owning the  atoms would  be  required. A 

modified algorithm  which  performs  this  communication  to  avoid  the  duplicated force computation of two- 

box  interact'ions is  discussed  below.  When d,  the  length of box t, is less than  two cutoff distances,  it is 

20 



quicker to find  neighbor  interactions by checking  each atom inside  box z against  all  the  atoms in both of the 

processor’s data  structures.  This scales as the  square of h’/P. If d > 2rs. t,hen  with the shell of atoms  around 

box z ,  there  are 4 or more  bins in each  dimension.  In  this case: as  with the  other  algorithms,  it is quicker 

to  perform  the neighbor  list  construction by binning. All the  atoms in both  data  structures  are hashed  into 

bins of size r,. The  surrounding bins of each atom in box z are  then checked  for  possible neighbors. 

Processor P, can now compute all the forces  on its  atoms in step (2) using the neighbor  lists.  When 

the  interaction is between  two  atoms  inside  box z ,  the  resulting force  is stored  twice in & ,  once  for atom 

i and once  for atom j. For  two-box interactions, only the force  on the processor’s  own atom is stored. 

After  computing f i ,  the  atom positions  are  updated in step (4). Finally,  these  updat’ed  positions must  be 

communicated  to  the  surrounding  processors in preparation for the next  timestep.  This  occurs in step (5) 

using  the  previously  made  lists to create  each message and  the  communication  pattern of Figure  10. The 

amount of data  exchanged in this  operation is a  function of the relative  values of the force  cutoff distance 

and bos  length  and is discussed  in the  next  paragraph. Also, we note  that on the  timesteps  that  neighbor 

lists  are  constructed,  step (5) does  not  have  to  be  performed  since  step ( l b )  has  the  same effect. 

The  communication  operations in algorithm S1 occur  in  steps ( la),  (lb),   and (5). The  communication 

in the  latter  two  steps is identical. The cost of these  steps  scales  as  the  volume of data  exchanged. For step 

(5). if  we assume  uniform  atom  density,  this is proportional  to  the physical  volume of the  shell of thickness 

r ,  around  box z ,  namely ( d  + 2r,)3 - d3. Note  there  are  roughly N / P  atoms in a  volume of d 3 ,  since d3 is 

the size of box z .  There  are 3 cases to consider. First, if d < r, data  from  many neighboring  boxes  must 

be  exchanged  and  the  operation  scales  as 8rS3. Second, if d X r, ,  the  data in all 26 surrounding boxes  is 

exchanged  and  the  operation  scales  as 27N/P.  Finally, if d is much  larger  than r , ,  only atom  positions  near 

the G faces of box z will be  exchanged.  The  communication  then  scales  as  the  surface  area. of box z ,  namely 

Gr,(N/P)”’. These 3 cases are  explicitly  listed in the scaling of step (5). Elsewhere  in  Figure  11, we use 

the  term A to  represent, whichever of the  three is applicable  for a given A:, P ,  and r,. We note tl1a.t step 

( l a )  involves  less communication  since  not  all  the  atoms  within  a cutoff distance of a box face will move out 

of t,he hox. But  this  operation  still  scales as the  surface  area of box z ,  so we list  its  scaling as A .  

The  computational  portion of algorithm S1 is  in steps  (lc), ( 2 ) ,  and (4). All of these  scale as N I P  with 

additional work in st,eps ( IC)  and (2) for atoms  that  are  neighboring box 2 and  stored in the s rcond  d a t a  

structure.  The  number of these  atoms is proportional  to A so it  is  included  in the scaling of those  steps. 

The leading term in the scaling of steps (IC) and ( 2 )  is  listed  as N / 2 P  as in  algorithms A2 and F2, sinw 

Newton’s third law  is implemented in algorithm SI. Note that as d grows  large  relat,ive to T ,  as  it will for 

very  large  simulations,  the A contribution  to  the overall  computation  time  decreases  and  the  overall  scaling 

of algorithm S1 approaches  the  optimal N/2P .  In  essence,  each  processor  spends  nearly  all  its  time working 

in its own box  and only communicates  with  neighbors to  update  its  boundary  conditions. 

An important  feature of algorithm S1 is that  the  lists  and  structure of the  data  are only  changed  once 

every few timesteps  when  neighbor  lists  are  constructed. In particular, even if an  atom moves outside box 2’s 
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boundaries  it is not  reassigned  to  a  new  processor  until  step ( l a )  is executed.  Processor P, can  still  compute 

correct  forces  for  the  atom so long as two  criteria  are  met.  First,  the  atom  cannot  move  farther  than d 

between  two  neighbor list constructions, which  would  cause problems for step  (la).  Second, all nearby  atom 

positions  within a distance r J ,  instead of r , ,  must  be  updated at every  timestep.  We  learned  this  idea  from 

Tamayo  and Giles [2l]. The  alternative [20] is to  move atoms  to  their new  processors  at.  every  timestep. 

This  has  the  advantage  that only atom  positions  within  a  distance r ,  of box z need be  exchanged at  all the 

timesteps  when  neighbor  lists  are  not  constructed.  This is a  reduced  volume of communication  since r, < T,. 

However, the  neighbor  list of a reassigned atom  must now be  sent  along  with  it.  Also,  the  information  stored 

in  the  neighbor  list is atom indices. If atoms  are  continuously  moving  to  new  processors,  these local  indices 

become  meaningless. Our implementation  in [20] assigned a global  index (1 to N )  t o  each  atom which  moves 

with  the  atom. A mapping of global  index to  local  memory  must  then be stored in a  vector of size N by each 

processor or the global  indices  must be  sorted  and  searched to  find the  correct  atoms.  The  former  solution 

limits  the size of problems  that  can  be  run;  the  latter  solution  incurs a considerable  cost  for the  sort  and 

search  operations. We found  that,  implementing  Tamayo’s  idea in our algorithm S1 made  the  resulting  code 

less  complex and reduced the  computational  and  communication  overhead.  This  did  not affect the  timings 

for simulations with  large IT, but improved the  algorithm’s  performance  for medium-sized problems. 

A modified  version of S1 t.hat  takes  more  advantage of Newton’s  3rd  law  can be  devised, call it  algorithm 

S2. If processor P, acquires  atoms  only  from  its  west,  south,  and  down  directions  (and  sends  its  own  atoms 

only in the  east,  north,  and  up  directions),  then  each pairwise  interaction need only be  computed  once. 

even  when the  two  atoms  reside in different, boxes.  This  requires  sending  computed  force  results  back in the 

opposite  directions to the processors  who  own the  atoms, as a st,ep (3) in the  algorithm.  This  scheme  does 

not  reduce  communicat,ion  costs,  since  half  as  much  information is communicated  twice  as  often,  but  does 

eliminate  the  duplicated force computations for twebox  interactions.  We  have delayed  implementing  such a 

scheme  for t,wo reasons.  First.  the  savings of S2 over S1 is small,  particularly in t’he  large N limit.  Only  the 

A t,erm is saved in steps  (IC)  and (2). More  importantly,  as we mention in our conclusions, the real  speed 

to  be  gained in spatial-decomposition  algorithms for  large  systems is by  improving  the single-processor 

performance of force computation in step (2). As floating  point  processors in parallel  machines  become  more 

sophisticat,ed  this will require  more  attention  be  paid  to  data  structures  and  loop  orderings in the force and 

neighbor-list const,ruction  routines.  Implementing S2 requires special-case  coding  for atoms  near  box edges 

and  corners t,o insure all interactions  are  counted  exactly  once  and  thus  affects  this  optimization  process. 

Finally,  the issue of load-balance  is  an important concern  in  any  spatial-decomposition  algorithm. Al- 

gorit>hm S 1  will be  load-balanced  only if all  boxes  have  a  roughly  equal  number of atoms  (and  surrounding 

atoms).  This will not be the case if the physical atom  density is  non-uniform.  Additionally, if the physical 

domain is not a rectangular  parallelepiped,  it  can  be difficult to  split  into P equal-sized  pieces.  Sophis- 

ticated  load-balancing  algorithms  have been  developed [42] to  partition  an  irregular physical  domain or 

non-uniformly dense  clusters of atoms,  but in general  they  create  sub-domains  which  are  irregular in shape 
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or are  connected  in  an  irregular  fashion  to  their  neighboring  sub-domains.  In  either  case,  the  task of assign- 

ing  atoms  to  boxes  and  communicating  with  neighbors  becomes  more  costly. If the physical atom densit,y 

changes  over  time  during  the MD simulation,  the  load-balance  problem is compounded.  Any  dynamic 

load-balancing  scheme  requires  additional  comput,at.ional  overhead  and data  movement. 

In  summary,  the  spatial-decomposition  algorithm, like the  atom-  and force-decomposition algorithms, 

evenly  divides the  MD  computations  across all the processors.  It,s chief benefit is that it  takes full  adva.nt,age 

of the local nature of the  interatomic forces  by  performing  only  local communication.  Thus,  in  the  large Ai 
limit,  it  achieves  optimal O ( N / P )  scaling  and is clearly the  fastest  algorithm.  However,  this is  only if good 

load-balance  is  also  achievable.  Since its performance is sensitive to  the problem  geometry,  algorithm S1 

is more  restrictive  than A2 and F2 whose  performance is geometry-independent.  A  second  drawback of 

algorithm S1 is its  complexity; it is more difficult to  implement  efficient,ly than  the simpler  atom-  and force- 

decomposition  algorit.hms.  In  particular  the  communication  scheme  requires  extra  coding  and  bookkeeping 

to  create  messages  and access data received from  neighboring  boxes. In practice,  integrating  algorithm S1 

into  an  existing  serial  MD  code  can  require a substantial  reworking of data  structures  and  code. 

6 Benchmark Problem 

The  test case  used to  benchmark our three  parallel  algorithms is a  MD  problem  that  has been  used  extensively 

by various  researchers  [3, 4, 20, 6 ,  12, 211. It models  Lennard-Jonesium  with  energy  between  pairs of atoms 

separated by a  distance r given by the  standard G - 12 potential 

where c and  are  constants.  The  derivative of this  energy  expression  with  respect to  r is the fi  term i n  

equation (1); F3 and  higher-order  terms  are  ignored. 

The AI &oms  are  simulat.ed in a 3-D parallelepiped  with  periodic  boundary  conditions  at  the  Lennard 

Jones  state  point defined by the reduced  density p’ = 0.8442 and  reduced  temperature T* = 0.72. This is a 

liquid state  near  the  Lennard-Jones  triple  point.  The  simulation is begun  with the  atoms  on a fcc lattice witjh 

randomized  velocities  chosen from a Boltzmann  distribution.  The solid  quickly melts  as  the  system evolves 

to  its  natural liquid state. A roughly  uniform  spatial  density  persists for the  duration of the  simulation. T h e  

simulat,ion  is  run  at  constant N ,  volume V ,  and  energy E ,  a  statistical  sampling  from  the  microcanonical 

ensemble.  Force  computations  using  the  potential in equation  (2)  are  truncated  at  a  distance r, = 2 . 5 ~ .  

The  integrat,ion  timest,ep is  0.00462  in  reduced  units. For  simplicity we use a leapfrog  scheme to  integrate 

equation (?? as in [a]. Other  implementations of the  benchmark [3] have used  predictor-corrector  schemes; 

this only  slows their  performance by 2-3%. 

For timing  purposes,  the  critical  features of the  benchmark for a given  problem 

These  determine how many force interactions  must  be  computed  at  every  timestep. 

size N are p* and r,. 

The  number of atmoms 



in a  sphere of radius T* = ~ / g  is given  by 47 rp*(~*)~ /3 .  For  this  benchmark,  using T ,  = 2.5a,  there  are 

about 55 neighbors  interacting  with  each  atom  at,  every  timest.ep. If neighbor  lists  are  used,  the  benchmark 

also  defines an  extended cutoff length r, = 2 . 8 ~  (encompassing  about 78 atoms) for forming  the  neighbor 

lists  and specifies that  the lists  be  created (or updated) every 20 timesteps.  Timings for the  benchmark  are 

usually  reported in CPU seconds/timestep. If neighbor  lists are used then  the cost of creating  them  every 

20 steps is amortized  over  the  per  timestep  timing. 

It is worth  noting  that  without  running  a  standard  benchmark  problem  it  can  be difficult to  accura.tely 

assess the  performance of a  parallel  algorithm.  In  particular,  it  can  be  misleading to  only  compare  perfor- 

mance of a  parallel  version of a code to  the original  vectorized or serial  code  because, as we have  learned  from 

our codes as well as  other's  results,  the  vector  code  performance  may well be  far  from  optimal.  Even when 

problem  specifications  are reported,  it  can be  difficult to  compare  two  algorit.hm's  relative  performance  when 

two different  benchmark  problems  are  used.  This is  because of the wide  variability  in the cost of calculating 

force equations,  the  number of neighbors  included in  cutoff distances,  and  the  frequency of neighbor list 

building  as  a  function of temperature,  atom  density, cutoff distances,  etc. 

7 Results 

The parallel  algorithms of Sections 3, 4, and 5 were tested  on  three  parallel  MIMD  supercomputers,  a  nCUBE 

2 .  a11 111trl iPSC'/W. and the Intel Df>l ta .  Thr, first two machines  are  at  Sandia;  the  Delta is at  Cal  Tech. 

The  nCUBE  2 is a 1024-processor hypercube.  Each  processor  is  capable of about 2 Mflops and  has  4  Gbyt.es 

of memory.  Sandia's  iPSC/860  has 64  i860 processors  connected in a  hypercube  topology.  Its  processors 

have 8 Mbytes of memory  and  are  capable of about 60 Mflops, but in practice 5-10 Mflops  is the  typical 

compiled  Fortran  performance. The  Intel  Delta  has 512  processors  configured as a 2-D mesh.  The  individual 

processors  have 16 Mbytes of memory  and  are  identical to  those  in  the  iPSC/860,  though  the  communication 

network is somewhat  faster. 

Because the  algorithn~s were implemented in standard  Fortran  with message-passing subroutine  calls, 

only  minor  changes  were  required to  implement  the  benchmark  codes  on  the  different  machines.  The  al- 

gorithms as described do not  specify a mapping of processors to  the  computational  elements (force matrix 

sub-blocks, 3-D boxes.  etc.).  The  mapping could potentially  be  tailored for a  particular  machine  architecture 

to  minimize  message  contention  (multiple  messages  using  the  same  communication wire) and  the  dist'ance 

messages  have to  travel  (between  pairs of processors that  are  not  directly  connected  by a conlnlun~cat~on 

wire). We chose mappings  that  are  simple  and  good choices  for hypercubes. For code  portability we used 

the  same  mappings on the  mesh-architecture  Delta. 

For the atom-decomposit,ion  algorithm we simply  assign  t,he  processors  in ascending  order  to  the ron- 

blocks of the force matrix in Figure 1. The  expands  and folds then  take place  exactly as in  Figure  2. For the 

force-decomposition  algorithm we use a natural  calendar  ordering of the processors to  the force matrix in 

Figure 7 .  This  means  each row and  column of t,he  matrix is a  sub-cube of processors so that  expands  and folds 
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within  rows  and  columns  can  be  done  optimally.  However,  the  transpose  operations in algorithms F1 and F2 

now require  communication  between  pairs of processors that  are  architecturally  distant.  With  this  mapping 

there will be  some  message  contention  during  the  transposes  as  multiple messages route  to  their  distant 

destinations  simultaneously. Since the  transpose  operations  scale  as  the volume of data exchanged or N I P ,  

even  with  some slow-down due to  message  congestion,  the  overall N/o scaling of the  communication 

portion of the force-decomposition  algorithms is not  affected.  Though we did  not  implement it for t,his 

work, a mapping of processors to  the force matrix  that  produces contention-free  transposes for a hypercube 

is  possible and is described  in [43]. 

For the spatial-decomposition  algorithm. we use a processor mapping  that essentially  configures a hy- 

percube as a 3-D mesh.  Such  a  mapping is done  using a Gray-coded ordering [lo] of the processors. This 

insures  each  processor’s  box  in  Figure 10 has 6 spatial  neighbors  (boxes in the  east, west,, north,  south. 

up, down directions)  that  are assigned to  processors  which  are  nearest  neighbors in the  hypercube  topol- 

ogy. Communication  with  these  neighbors is thus contention-free  and  as  fast  as  possible.  Gray-coding  also 

provides  nat’urally for  periodic  boundary  conditions in the  hlD  simulation  since  processors at  the edge of 

the 3-D mesh  are  nearest  neighbors  to  those on the opposit,e  edge. The only restriction  the  Gray-coding 

imposes is that.  the  number of processors  assigned to  each  dimension of the 3-D mesh  be a power-of-two. 

For the  Intel  Delta  there is no  obvious  best way to  map  a 3-D problem to  it8s 2-D mesh of processors. We 

use the  same 3-D Gray-coding  assignment  scheme  for  code  portability. 

Timing  results for the  benchmark  problem on the different,  parallel  machines are  shown in  Tables I ,  
11, and 111 for the  atom-, force-, and  spatial-decomposition  algorithms. A wide  range of problem sizes are 

considered  from N = 500 atoms  to N = 10,000,000 atoms.  The  lattice size  for  each  problem is also  specified; 

there  are 4 atoms  per  unit cell for the fcc lattices.  Entries  with a dashed line are for  problems that would 

not fit in  available  memory.  The  last  entries in each  table  are  roughly  the  largest  problem sizes that can  be 

run  due  to  memory  restrictions  on  the  three  parallel  machines. 

For comparison, we also  implemented  the  vectorized  algorithm of Grest,  et  al. [3] on  Sandia’s  Cray Y- 

hlP. Our version is slightly  different from  t,he  original  Grest.  code,  using a simpler  integra.t,or  and  allowing 

for  non-cubic  physical domains.  The  timings  in reference [3] were  for a Cray X-MP. Ours are for the  faster 

Y-MP;  thus we believe they  are  the  fast,est  timings  that  have been reported for this  benchmark  problem 

on a single  processor of a. conventional  vector  supercomputer. It,  is worth  noting  that  the  same  ideas used 

i n  the parallel  algorithms could  be  used to  create a parallel Cray code that would  use  all 8 processors of a 

1’-MP, potentially  speeding  its  performance by  nearly a factor of 8. The  starred  Cray  timings  are  estimates 

for  problems too large to  fit  in memory on our Y-MP. They  are  extrapolations of the N = 100,000 atom 

timing  based on the observed  linear  scaling of the  Cray  algorit,hm. 

The  parallel  timings in the  three  tables  are all for single-precision  (32-bit)  implement,at,iolls of t,he  bench- 

mark.  The  Cray  timings  are, of course,  for  64-bit  arithmetic  since that is the only option. MD simulations 

do  not  typically  require  double precision  accuracy  since there is a much  coarser  approximation  inherent in 
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Problem Size Y-MP  nCUBE  2  Intel  iPSC/860 

N Lattice P=l P=5 12  P=1024  P=32  P=64 

500 5 x 5 ~ 5  .00930  .00724 --- .0111 .00880 

2048 8 x 8 ~ 8  .0369  .0252  .0217  .0446 .0336 

4000 lOxlOxl0 .0610  .0458  .0394  .0807  .0616 

6912 I 12x12~12 11 .lo6 I .0780 I .0669 I .138 I .lo3 

10976 I 14x14~14 11 .167 I .124 I .lo6 I .220 I .164 

16384 16x16~16 .250 .182 .155 .337 .249 

32000 20x20~20 .470 .351 .301 .635 .474 

50000 20x25~25 .733 .546 .469 .993 .740 

100,000 25x25~40 1.47 1.09 .935 1.98 1.48 

Intel 
Delta 

P=256 

.005 18 

.O 172 

.03 14 

.0532 

.0863 

.130 

.256 

.399 

320 

Table I: CPU  seconds/timestep for the atom-decomposition  algorithm A1 on  several  parallel  machines  for 

the  benchmark  sin~ulation. Single  processor  Cray Y-MP timings  using  a fully  vectorized  algorithm  are also 

given  for comparison. 

the  potsential  model  and  the  integrator.  This is particularly  true of Lennard-Jonesium  since  the 6 and u co- 

efficients are  only specified to  a frn. digits of accuracy as an approximate  model of the  interatomic  energies 111 

a  real  material.  With  this  said,  double precision timings  can  be  easily  estimated  for  the  parallel  algorithms. 

The processors in all three of the  machines  compute  about 20-30% slower  in  double-precision arithmetic 

than single, so the  time  spent  computing would be  increased  by that  amount.  Communication  costs in each 

of the  algorithms would essentially  double,  since  the  volume of information  being  exchanged in messages 

would  increase  by  a  factor of two.  Thus  depending  on  the  fraction of time  being  spent in communication for 

a particular A' and P (see the scaling  discussion  below), the overall  timings  typically  increase  by 20-50%' for 

double-precision runs. 

The  tables show that all three  algorithms  are  competitive  with  a single-processor Y-MP across the  entire 

range of problem  sizes. The force-decomposition  algorithm is fastest for the  smallest  problem  sizes;  spatial- 

decomposition is fastest  for  large N .  The  Intel  Delta is the  fastest of the  three  machines,  up  to 30 times 

faster  than a single Y-MP processor on the  largest  problem sizes  using the  spatial-decomposition  algorit,hm. 
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Problem  Size 

.00592 ! .00930 5 ~ 5 x 5  500 

P=512  P=256 P=64 P=32  P=1024  P=512 P=l Lattice N 

Intel  Delta Intel iPSC/860 nCUBE 2 Y-MP 

.00480 1 .00455 .00695 .00980 --- 

~~ ~~~~~~~ 

2048 

.0244 .0399  .122 .180 .0277 .167 I .0394 14x14~14 10976 

.0160  .0250 .0759 .112  .0179  .0245  .lo6 12x12~12  6912 

.00677 BO894 .0250 .0359  ,00864  .0110  .0369 8x8~8 

32000 I 20x20~20 1 1  .470 I .Of390 I .0603 I .521 I .349 I . I15 I .0667 
50000 1 20x25~25 1 1  .733 I .162 I .112 I 328 I .544 I .I79 I .lo3 

100,000 

2.41  4.04 --- --- 3.29 --- 14.7* 50x50~100 1,000,000 

1.17 1.96 6.04 --- 1.66  2.47  7.33* 50x50~50 500,000 

.210  .369 1.10 1.75  .171 .251 1.47 25x25~40 

Table 11: CPU seconds/timestep for the force-decomposition  algorithm F2 on  several  parallel  machines  and 

t.he Cray Y-MP. 

The  nCUBE 2 and  Intel  Delta  can  perform million atom  simulat,ions of the  benchmark  problem at, 1.17 

and ,498 secondsjtimest~ep  respectively. A surprising  result is tha.t  the  parallel  machines  are  as  fast as the 

Cray even  for the  smallest  problem  sizes.  One  typically does not  think of there  being  enough  parallelism  to 

exploit  when  there  are only a few atoms  per  processor.  The  best  timing for this  benchmark on other  parallel 

machines  is that  of Tamayo  and  Giles,  reported in [21]. They  achieve a time of 0.4 seconds/timestep  on a 

A' = 51,200  at,om  simulation on 256 processors of a CM-5 using  a  spatial-decomposition  algorithm  similar 

in several  respects  to  the  algorithm of Section 5. This was for a CM-5 without  vector  units  programmed in 

MIhlD  mode  with  explicit message passing;  the  timings  should  improve  dramatically witch the vector  units. 

The  timings in Table  I show that  communication  costs  have  begun  to  dominate  in  the  atom-decomposition 

algoritlm b y  the  t,ime  hundreds of processors  are  used.  There is little  speed u p  gained by doubling  the  number 

of processors  used. By contrast  timings in  Table I1 show  the force-decomposition algorithm is  speeding  up 

by roughly 30% when the  number of processors  is  doubled. The  timings for the largest'  problem sizes  in Table 

I11 evidence  excellent  scaling  properties.  Doubling P nearly  halves the run times for a given N .  Similarly, 

as N increases  for  fixed P ,  the  run  times  per  atom  become  faster  as  the  overhead of the O(N/@'3)  terms 

is  lessened. We note,  however,  that  this  scaling  depends  on  uniform  atom  density  within a simple  domain 

such as the  rectangular  parallelepiped of the  benchmark  problem. 

A comparison of the different  algorithms  performance  using data  from all 3 tables  can  be  better  displayed 
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I Problem  Size 1 1  Y-MP I nCUBE  2 I Intel  iPSC/860 I Intel  Delta 

N P=1024  P=512  P=l Lattice 

500 

.0250 .0374 .lo6 12X12X12 6912 

.0148  .0173  .0369 8 x 8 ~ 8  2048 

.0119 .0130  .00930 5X5X5 

P=32  P=64  P=256  P=512 

.0129  .0106 ' .00706  .00592 

.0321 .0189 .00837 .00650 

.0768 .0436 .0159 .0111 

16384 

.798  .418 .119 .0678 .165  ,298 1.47 2sx25x40 100,000 

.420  .224  .0664  .0380  .0967 .160 .733 20x25~25 50000 

.161 .0874  .0275  .0167 .0407 ,0650  ,250  16x16~16 

I 500,000 I 50x50~50 1 1  7.33* I 1.17 1 .650 I 3.66 I 1.88 I SO1 I .261 

1,000,000 

100x100~125 5,000,000 

_ _ _  3.68 ,951  .498 1.17 2.23  14.7* 50~50x100 

--- --- 4.45 2.31 5.28 10.2 73.3* 

10,000,000 _ _ _   _ _ _  --- 4.60 10.2 --- 147.* 1 0 0 ~ 1 2 5 ~ 2 0 0  

Table 111: CPI- secondsjtimestep for t,he  spat,ial-decomposition  algorithm S1 

in graphical  form.  Figure 12 shows the  nCUBE 2's performance  on  the  benchmark  simulation  on 1024 

processors as a function of problem  size. Single  processor Y-MP timings  are also included.  The linear 

scaling of all the algorithms n-hen S is large is evident.  Note  t8hat force-decomposition is faster  than  atolll- 

decomposition  across all problem sizes due t,o its  reduced  communication  costs.  On  this  many  processors. 

the spatial-decomposition  algorit,hm has significant  overhead  costs  for  small :V. This is hecaust t h e  d l ? ,  
ratio is so large that  each  processor  has to  communicate  with a large  number of neighboring  boxes to acquire 

all its needed  information. As .N increases,  t'his  overhead is reduced  relative to  the  cornputmation  performed 

inside the processor's box,  and  the  algorithm's  performance  asymptot,ically  approaches  its  optimal O(iY/F') 

performance.  Thus  there is a cross-over size N at which the spatial-decomposition  algorithm  becomes  faster 

than force-decomposition.  We return to this  point  in  the  conclusion. 

In  Figure 13  we plot  the  Intel  Delta's  performance  on  the A' = 10976 atom  benchmark  as  a  function 

of number of processors. The single-processor  Y-MP timing is  also  shown;  it  is  about 13.3 times  fast,er 

than a single iPG0 processor  on t,his  problem. The  dotted line is the  maximum achievable  speed of the 

Delta if any of the  algorithms were 100% efficient. Parallel efficiency is defined as the  run  time  on 1 

processor  divided by t h e   q ~ a n t i t ~ y  ( P  x run  time on P processors).  Thus if the 512-processor timing is 256 

times  as  fast  as  t,he  l-processor  timing,  the  algorithm is 50% efficient. On  small  numbers of processors 
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Figure  12:  CPU  timings  (seconds/timestep) for the  three  parallel  algorithms  on 1024 processors of the 

nCUBE 2 for  different  problem  sizes. Single-processor Cray Y-MP timings  are  also given for comparison. 

communication is not a significant, factor  and all the  algorithms  perform  similarly.  But as P increases,  the 

algorithms  become less  efficient. The atom-decomposition  falls off most  rapidly  due  to  the O ( N )  scaling 

of its  communication. On the  Delta's  large 2-D mesh the all-to-all communication  this  algorithm  requires 

is particulary inefficient (because of message contention),  causing a slow-down when  going from 256 to 512 

processors.  Force-decomposition  is  next  most  efficient  due to  its O ( N / O )  communication  scaling.  But  it 

remains  competitive  with  the  spatial-decomposition  algorithm  across  a wide range of numbers of processors. 

When  hundreds or thousands of processors  are  used,  even  the  spatial-decomposition  algorithm becomes  less 

efficient.  since now the  box size is small  relative  to  the force  cutoff distance for this N .  It is worth  noting 

that  the  trends in the  plots of Figures 12 and 13 are  the  same for the  other  machines  and  problem sizes 

tested in this  study.  Though  the  absolute  data values  are  functions of N ,  P ,  and  the  benchmark  attributes, 

the  relative trade-offs  between the various algorithlns  are  cousistent,ly  the  same. 

Using  olle-node timings  on  the  nCUBE  and  Intel  machines  as reference points,  parallel efficiencies  can  be 

computed for  all the  algorithms.  The  nCUBE 2 one-processor timing is 9.15 x seconds/timestep/atom. 
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Both  Intel  machines give a one-processor timing of 2.03 x seconds/timestep/atom.  These values  can 

be  used to predict  optimal  timings for  problems  larger than will fit on  a single  processor  because the codes 

scale so linearly.  For  the million-atom simulation,  the  spatial-decomposition  algorithm  thus  has a parallel 

efficiency of 76% on 1024 processors of the  nCUBE  and 80% on 512 processors of the  Intel  Delta.  The larger 

simulations  achieve  roughly a 90%  parallel  efficiency. To put  these  numbers in context,  consider  that on 

the  nCUBE,  the million-atom simulation  means  each processor has  about 1000 atoms in its  box.  But  the 

range of the cutoff distance in the  benchmark is such  that  about 2600 atoms  from  surrounding boxes are 

still needed at every timestep  to  compute forces. Thus  the spatial-decomposition  algorithm is  76%  efficient 

even  though  tweand-a-half  times  as  many  atom  positions  are  communicated  as  are  updated locally by each 

processor. 

lo1 I 
E---+ Atom-Decomposition 

Force-Decomposition 

- u  * Spatial-Decomposition 

. . 
'. 

I I I I I I I I I 

1 2 4 8 16 32 64 128  256  512 

P (processors) 

Figure  13: CPI' timings  (seconds/timestep) for the  three  parallel  algorithms  on  the  Intel  Delta for  different 

numbers of processors  on a benchmark  simulation  with N = 10976 atoms. Single-processor i860 and  Cray 

Y-MP timings  are  shown for comparison. 

Finally, we discuss the  scalability of the different  parallel algorithms in the large N limit.  Table IV shows 

the overall  scaling of the  computation  and  communication  portions of the 5 algorithms.  This is constructrd 
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from  the  entries for the  various  steps of the  algorithms in Figures 5, 6 , 8 ,  9,  and 11, using  large N values  when 

there is an  option.  Some coefficients are  included to  show contrasts  between  the  various  algorithms.  The 

amount of memory  required  per  processor to  implement  the  algorithm is  also  listed  in the  table. Note that 

in  all of the  algorithms  processors  store  additional O ( N / P )  information  such as neighbor  lists  and  velocities 

for the hr/P atoms  they  own.  In  practice, for the force- and  spatial-decomposition  algorithms,  storage of 

neighbor  lists  is a dominant  factor in limiting  the size of problem  that can  be run. 

Computation in the at,om-decomposition  algorithm A1 scales as N / P  + N where the second  term is 

for  binned  neighbor  list  construction. The coefficient  on this  term is  small so it, is  usually  not, a significant 

factor.  The  communication  scales  as N ,  as  does  the  memory  to  store  all  atom  positions. By contns t ,  

atom-decomposition  algorithm A2 implements  Newton’s 3rd law so its  leading  computational  term is cut 

i n  half. Now the  communicat,ion cost  is  doubled and  the  entire force  vector  must  he  stored as well. 

Force-decomposition algorithms F1 and F2 have the  same  computational  complexity  as A1 and A2 

except  t,he  binning for  neighbor  list  construction now scales  as N/*, again not. t.ypically a significant 

factor.  In F1 there  are  3  expands/folds  and  one  transpose  operation for a  total  communication cost of 

3>4‘,/@+ N / P .  Similarly F2 requires 4 expands/folds and 2 transposes.  Implrmenting F1 requires storing 

two  atom  position  sub-vectors  and  one force sub-vector,  all of length N/o. F2 requires  an extra force 

sub-vector. 

Computation  in  the  spatial-decomposition  algorithm S1 scales  as N / 2 P  since  it  implements Newton’s 

3rd law. In the large N limit  there is an extra  factor for  comput,a.tions prrfoormed on nearby  at.oms  within a 

distance r,  of the  box  faces.  The  number of atoms in this  shell  volume is the  surface  area of the  box face 

(Ar/P2’3) times r ,  for  each of the 6 faces.  The  communication in algorithm S1 scales  as  the  same  fact,or  as 

do the  memory  requirements for storing  the  nearby  atoms.  Additionally O(,V/P)  memory  must  be  allocated 

for storing  information  on  atmoms in a  processor’s  box. 

8 Application of the Algorithms 

While  the  benchmark  problem  discussed  in  Sections 6 and 7 is  relatively  simple,  the  parallel  algorithms 

described  in  this  paper  can  be used in a variety of more  complex  MD  simulations  with  little  modification. 

We discuss the parallel  implications of some  conmon MD  issues  in the next  several  paragraphs. 

(A) Force  models  more  comput,ationally  expensive  than  Lennard-Jones  potentials  are  often used  in MD 

simulations of various  materials.  Pairwise  forces, even if they  are very expensive, can often  be  pre-computed 

once and  then  stored in table  form or as a  set of interpolating coefficients. Then t>hey  turn out to be lit,tle 

more  expensive  to  compute  with  than 6-12 potentials.  Modern  parallel  computers  have  ample  memory for 

storing  quite  large  tables of force  values and/or coefficient,s in duplicate on  every  processor. 

(B) Force  models that  are  functions of atom velocities, or other  quantities  besides  just  atom  positions, 

are  sometimes  used.  An  example is the  embedded  atom  method (EAM) potentials  commonly used  in 

modeling  metals  and  metal alloys  where an  atom’s  energy is a function of elect,ron density  contributions from 
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Table IV: Scaling  properties of all 5 parallel  algorithms as a function of problem size N and  number of 

processors P Run  time  scaling for the communicat,ion and  computation  portions of the  algorithms as \ w l l  

as  their per-processor memory  requirements  are  listed. 

neighboring  atoms as well as  conventional  pair-potential  interactions. A more  general N-body simulation 

example is vortex  methods in fluid dynamics  where  “particles” of fluid interact  via  their  vorticities. All of 

the parallel  algorithms  described  here  can be augmented  in  steps (3) and (5) to communicate addlrlonai 

atom-based  quantities as needed [40] without  affecting  their  overall  parallel  scaling. 

(C) More  sophist,icated  multi--atom  force  models  are  often  used in h lD simulations of covalentl!, bol~dt~tl  

materials.  Examples  include  angular  (three-body) forces  for  silicon and  torsional  (four-body)  forces for 

organic  polymers or proteins.  These forces  can be  most easily computed  in  parallel if a single  processor kno~vs  

the  positions of all the  atoms in a particular  bond  group.  The atom-decomposition  algorithm  guara.nt,ees 

t’his  since  each  processor  knows all  the  atom  positions.  Since  the  bond  groups  are  still  short-range in 

nature,  the spatial-decomposition  algorit,hm  can  also  be modified to  insure  each  processor  acquires  enough 

illformation  from surrou1lding blocks to  compute all the many-body terms  its  atoms  are a party  t,o.  The 

force-decomposition algorithm  requires  special  care  in  this  respect.  This is because a processor  only  knows 

the  positions of 221‘/@ atoms t,hat  have  no  special  spatial  relationship to  each  other.  One  solution is to  
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perform  the  pre-processing  step of reordering the  atoms for the force-decomposition algorithm in  such a 

way that  one or more  processors will know the  positions of all the  atoms  in  each  bond  group. We discuss 

methods for  doing  this in organic  MD  simulations  where  the  connectivity of the bond groups is static in 

reference [4l]. However, we know of no  simple way to use the force-decomposition  idea for the  more  general 

case of dynamically  changing  connectivities,  such as for  silicon  three-body potentials. 

(D) Though force  calculation  is the key computational  kernel in  MD simulations,  the  quantities of interest 

are  often  global  parameters like pressure,  structure  factors,  and diffusion  coefficients. These  thermodynamic 

and  transport  properties  are  often  calculated once  every 50 or 100 timesteps  and  add  little  to  the overall 

computational  cost of a serial  program.  The  same is true for the parallel  case.  In  short-range MD  each 

processor  can  compute  its  partial  contribution  to  one of these  quantities  from  the  atom  information  it  already 

knows. Then  the local  values  can  be  accumulated quickly as a  global sum across  all the processors. 

(E) In many MD codes,  neighbor  list  construction is  triggered by atom  movement. For example.  lists will 

only be recreated  when  an  atom  has moved  half the  distance rs - T, .  Again,  this can  easily be  implement,ed 

in the  parallel  algorithms by having  each  processor check if any of its NIP atoms  have  met  the  criterion, 

thcn  exchanging a global  flag t,o decide if the neighbor  list  routines  should be called. If the list of interacting 

neighbors is stat,ic in a particular  MD  simulation  (e.g.  atoms  on a lattice),  then  step (1) in  all of the parallel 

algorit,hms  becomes  unnecessary The  remaining  steps of the  algorithms  are  still  a  fast way to parallelize the 

necessary  computation  and  communication for this  special  case. 

(F) The  benchmark  problem  implements  a  constant N ,  volume V ,  and  energy E microca.nonica1 ensemble. 

Another  common choice  is to  hold N ,  pressure P ,  and  temperature T constant,  sampling  from  the  canonical 

ensemble.  This involves  rescaling the  simulation  domain  dimensions  and  velocities  at  each  timestep (or every 

few timesteps)  to hold the pressure and  temperature  constant. In parallel  this  requires a small  amount of 

additional  communication, a global  exchange of the rescaling  parameters,  similar  to  the effort  involved  in 

(D) and (E) above. 

(G) A  simple  leapfrog  integrator was  used  in our implementation of the  benchmark  problem. More 

complex ODE integrators  such as Runge-Kutta or predictor-corrector  methods  can easily be used  in the 

context of any of the  parallel  algorithms  in  step (4). These  methods will also  be  perfectly  parallel  since  they 

only  require  information  about  the N I P  atoms  already owned by each  processor.  Extra  storage of O(AAi/P) 
can  also  be allocated  to  store  past  timestep values or work vectors. 

(H)  Multiple-timescale  MD  methods  have  been  proposed [44], where  work  is  done at staggered  times on 

different  length  scales  to allow  longer timesteps  to  be  taken on average.  Only  very  short-range  information 

is used to  compute forces  in  the  smallest  (most  rapid)  timesteps.  These  schemes  are  an effort to include 

longer-range  effects  while  avoiding true long-range  force computation.  They  are  typically  implemented by 

a hierarchy of neighbor  lists  which  store  information for the different  length  scales. Since they  are  st,ill 

inherently  short-range force models,  they can be  implemented  within  the  general  framework of any of the 

parallel  algorithms we have  presented. In the limit that  the force computation  becomes  truly long-range  in 
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nature, pairwise  forces  are  usually  not  the  computational  method of choice as discussed  in  Section 2. However, 

if they  are  used:  the  framework of the  atom-  and force-decomposition algorithms  can  compute  them  directly 

[43]. By contrast  the  spatial-decomposition  algorithm would now  require  long-range  communication  and 

become an inefficient solution. 

9 Conclusion 

We have  detailed  the  construction  and  implementation of three  kinds of parallel  algorithms for MD simu- 

lations  with  short-range  forces.  Each of them  has  advantages  and  disadvantages.  The  atom-decomposition 

algorithm is  simplest to  implement  and load-balances  automatically,  but  because  it  performs all-to-all  com- 

munication,  its  communication  costs begin to  dominate  its  run  time on  large  numbers of processors. The 

force-decomposition algorithm is also  relatively  simple,  though  it  often  requires  some pre-processing to as- 

sure  load-balance. It also  works well independent of the physical  problem’s  geometry.  Its O ( N / O )  scaling 

is better  than  that of the atom-decomposition  algorithm,  but is not  optimal for  large  simulations. The 

spatial-decomposition  algorit’hm  does  exhibit  optimal O ( N / P )  scaling  for  large  problems. However  it  suffers 

more easily from load-imbalance and is more difficult t o  implement efficiently. 

In practical  terms, how  does  one  choose the  “best”  parallel  algorithm for a particular MD simulation? 

Assuming  one knows the ranges of N and P the  simulation will be  run  with, we find the following 4 guidelines 

helpful. 

(A)  Choose  an  atom-decomposition  algorithm only if its  communication cost is negligible.  In this case 

simplicity  outweighs the inefficient com~nunications. Typically  this will only  be true for small P (sa!. P < 16 

processors) or very  expensive  forces  where  computation  time  dominates  communication  time. 

(B) A force-decomposition approach will be  faster  than  atom-decomposition in all other  cases.  Both 

the  atom-  and force-decomposition algorithms  scale  linearly  with N for fixed P .  This  means for a given 

P ,  the parallel  efficiency of either  algorithm is independent of A’. Moreover, as P doubles,  the efficiency 

of the  communication  portion of t,he  at,om-decomposition  algorithm goes  down by a  factor of 2, while  t,he 

force-decomposition  algorithm’s  efficiency  decreases  by a  factor of only 4. Thus, once P is  large  enough 

that force-decomposit,ion  is faster  than  atom-decomposition,  it will be faster for  all P ,  independent of N .  

For the  benchmark  problem  this was the case  for P 2 16 processors. 

(C) For a given P, the scaling of the spatial-decomposition  algorithm is not  linear  with N .  For small 

N communication  and  overhead  costs  are  significant  and the efficiency is poor; in the large N limit the 

efficiency  is asymptotically  optimal (100%). Thus when compared  to a force-decomposition approach,  there 

will be  some cross-over point  as N increases  for  a  given P where a spatial-decomposition  algorithm becomes 

faster.  In  the  benchmark  the cross-over  size  was  several thousands of atoms  on  hundreds of processors.  In 

general,  the cross-over size is a  function of the  complexity of the force model, force  cutoff distances,  and  the 

computational  and  communication  capabilities of a particular  parallel  machine.  It will also  be a function of 

P. A rough estimate of the spatial-decomposition  algorithm’s efficiency  for a given N and P can  he made  
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by  noting  each  processor’s  box  has  volume d3 = N / P ,  but  it  computes  and  communicates  information  in an 

extended  volume of ( d  + 2 ~ ~ ) ~ .  Comparing  the  extended  volume to the  box  volume gives a rough  measure 

of the  extra (inefficient)  work the  algorithm is performing. 

(D)  The  preceding  paragraph  assumes  the  computation  in  the  spatial-decomposition  algorithm is per- 

fectly  load-balanced.  Load-imbalance  imposes an  upper  bound  on  the efficiency a spatial-decomposition 

algorithm  can  achieve. For example, biological simulations of proteins  solvated  by  water  often  are  performed 

in a vacuum so that  the  atmoms in the  simulation fill a  roughly  spherical volunx. If this  domain is treated 

as a cube  and  split  into P pieces then  the  sphere fills only a ~ / 6  fraction of the  cube  and a 50% parallel 

inefficiency results.  The  net effect of load-imbalance is to  increase the cross-over size at which a spatial- 

decomposition  algorithm  becomes  faster  than a force-decomposition  approach.  In  practice, we have  found 

the force  decomposition  algorithm  can  be  faster or a t  least  quite  competitive  with  spatial-decomposition 

algorithms for simulations of up  to  many  tens of thousands of atoms [41]. 

In Section 7 we discussed t,he performance of the  algorithms 011 three  different  parallel  computers,  the 

nCUBE 2 and  Intel  iPSC/860  and  Delta.  We  believe  these  are  the  fastest  timings  reported  on  any  machine 

for this MD benchmark  and  show  that,  current-generation  parallel  machines  are  competitive  with  Craywlass 

vector  supercomputers for shoyt-range  MD  simulations. More  generally, the  algorithms  can  be  implemented 

011 any  parallel  computer  that allows its processors to execute  code  independently of each  other  and  exchanges 

data  between  processors  by standard message-passing techniques.  This is the definition of a multiple in- 

struction/mult,iple  data  (MIMD)  parallel  architecture. Most of the  current-  and  next,-generation  parallel 

supercomputers  support  this  mode of programming,  including  the  Intel  Paragon, CM-5, and  Cray  MPP  ma- 

chines.  Several  features of the  algorithms  take  advantage of the flexibility of the  MIMD  paradigm,  including 

the  code  to  build  and  access  variable-length  neighbor  lists  via  indirect  addressing, t’o select/pack/unpack 

data  for messages,  and to efficiently exchange  variable-length data  structures  between sub-groups of pro- 

cessors  as  in  Figures 2 and 10. Considerable inefficiency would  be  incurred  were  the  algorithms  written 

in a SIMD  form  where ea.ch statement would  require all processors to  operate  on a global data  structure 

simultaneously. 

Finally, we are confident  these  algorithms  or  versions  based  on  similar  ideas will continue to be  fast choices 

for AID simulations  on  parallel  machines of the  future.  Optimizing  their  performance for next-generation 

machines will require  improving  their single-processor computational  performance. As the  individual pro- 

cessors  used  in  parallel  machines  become  faster  and  more  complex,  high  computational  rates  can  only  be 

achieved  by  writing  pipelined or vectorized  code. Thus,  many of the  data  reorganization  and  other  optimiza- 

tion  techniques that  have been  developed  for  MD on vector  machines [3] will become important for  parallel 

implementations as well. 
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