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ABSTRACT

This paper presents a basic tutorial on epistemic uncertainty quantification methods. Epistemic uncertainty,
characterizing lack-of-knowledge, is often prevalent in engineering applications. However, the methods we have
for analyzing and propagating epistemic uncertainty are not as nearly widely used or well-understood as methods
to propagate aleatory uncertainty (e.g. inherent variability characterized by probability distributions). We examine
three methods used in propagating epistemic uncertainties: interval analysis, Dempster-Shafer evidence theory,
and second-order probability. We demonstrate examples of their use on a problem in structural dynamics.
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1. Introduction

The treatment of uncertainty in the analysis of computer models is essential for understanding possible ranges of
outputs or scenario implications. Most computer models for engineering applications are developed to help
assess a design or regulatory requirement. The capability to quantify the impact of uncertainty in the decision
context is critical. This paper will focus on situations with epistemic uncertainty, which represents a lack of
knowledge about the appropriate value to use for a quantity. Epistemic uncertainty is sometimes referred to as
state of knowledge uncertainty, subjective uncertainty, Type B, or reducible uncertainty, meaning that the
uncertainty can be reduced through increased understanding (research), or increased and more relevant data.
[7,8] Epistemic quantities are sometimes referred to as quantities which have a fixed value in an analysis, but we
do not know that fixed value. For example, the elastic modulus for the material in a specific component is
presumably fixed but unknown or poorly known. In contrast, uncertainty characterized by inherent randomness
which cannot be reduced by further data is called aleatory uncertainty. Some examples of aleatory uncertainty
are weather or the height of individuals in a population: these cannot be reduced by gathering further information.
Aleatory uncertainty is also called stochastic, variability, irreducible and type A uncertainty. Aleatory uncertainties
are usually modeled with probability distributions, but epistemic uncertainty may or may not be modeled
probabilistically. Regulatory agencies, design teams, and weapon certification assessments are increasingly
being asked to specifically characterize and quantify epistemic uncertainty and separate its effect from that of
aleatory uncertainty [1].

There are many ways of representing epistemic uncertainty, including probability theory, fuzzy sets, possibility
theory, and imprecise probability. The problem of selecting an appropriate mathematical structure to represent
epistemic uncertainties can be challenging. At Sandia we have chosen to focus on three approaches: interval
analysis, Dempster-Shafer evidence theory, and (for mixed aleatory/epistemic uncertainties) second-order
probability. Section 2 presents a structural dynamics example that will be used to demonstrate the various
methods. Section 3 discusses interval analysis and shows results, Section 4 discusses evidence theory and
shows results, and Section 5 discusses second-order probability and associated results. Section 6 summarizes
the paper.
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2. Motivating Structural Dynamics Example

We present an example from structural dynamics, where the application of interest is the performance of the
bonding material in an aeroshell. In the example we present, the application has been simplified. We have a
fairly coarse, 3-D model of 3 discs. The outer 2 discs represent rigid masses (in this case, they are steel) and the
inner disc represents a layer of a filled rubber. Figure 1 depicts the geometry of the configuration used in this
example. We are interested understanding frequencies of the axial and shear modes for this experimental
configuration, shown in Figure 2. There is significant epistemic uncertainty in this example associated with the
material properties of the filled rubber. Specifically, we have a wide variety of tests and expert opinion on
potential values for the modulus of elasticity in tension and compression, E, and Poisson’s ratio, v. The filled
rubber is a rubber material with particles in it. In this case the particles are glass balloons, which are used to get
the density of the material down. A filled rubber softens with increased strain (on other rubbers, we have seen as
much as an order of magnitude difference in the modulus, depending on the strain level). In vibration, the strain
levels are usually very low, e.g. on the order of 0.1% strain or less.

The simulation code used is Salinas [11,12], which is a finite-element analysis code for modal, vibration, static
and shock analysis developed at Sandia National Laboratories for massively parallel implementations (for more
information, see: http://jal.sandia.qgov/Salinas/). This simulation takes approximately 2 hours to run on a Linux
workstation with two Dual-Core Intel® Xeon® 5000 series 64-bit processors and 2Gigabytes of RAM.

Figure 1. 3 disc model with filled rubber as the middle disc (in yellow)



Figure 2. Axial Mode (left) and Shear Mode (right) for 3-disc model

We have a variety of test data: some dynamic tests, some static, and one ultrasonic. Some of the tests are on
the discs and some on the system-level aeroshells. The test data has been taken by several organizations under
different conditions and is not very consistent. One of the static tests was taken at strain levels much higher than
the small strain of the rubber in vibration, thus invalidating the data for our needs. We don’t have much
confidence in the ultrasonic test because the filled rubber layer was too thin in comparison to the other layers they
had to send the ultrasonic signal through. Also, some of the test data reported to us involves people using test
results and calibrating their models to infer values of E and/or v. For the purposes of this paper, we are not trying
to calibrate our finite-element model; we are simply trying to use it to properly propagate epistemic uncertainty.
Finally, there is some correlation between E and v. To start, based on our assessment of the test data available,
we will assume that the value of E falls within the interval of [2000, 25000] psi and the value for v falls within the
interval of [0.45, 0.495].

We used DAKOTA [2,3], a software framework that allows one to perform uncertainty quantification, optimization,
and parameter studies (see: http://www.cs.sandia.gov/DAKOTA/) to perform the computational runs of the
Salinas model presented in subsequent sections. DAKOTA was configured to drive the analysis for 3 case
studies: pure interval analysis, Dempster-Shafer evidence theory, and second-order probability analysis.

3. Interval Analysis

The simplest way to propagate epistemic uncertainty is by interval analysis. In interval analysis, it is assumed
that nothing is known about the uncertain input variables except that they lie within certain intervals [6,8]. That is,
there is no particular structure on the possible values for the epistemic uncertain variables except that they lie
within bounds. The problem of uncertainty propagation then becomes an interval analysis problem: given inputs
that are defined within intervals, what is the corresponding interval on the outputs?

Although interval analysis is conceptually simple, in practice it can be difficult to determine the optimal solution
approach. A direct approach is to use optimization to find the maximum and minimum values of the output
measure of interest, which correspond to the upper and lower interval bounds on the output, respectively. There
are a number of optimization algorithms which solve bound constrained problems, such as bound-constrained
Newton methods. In practice, it may require a prohibitively large number of function evaluations to determine
these optima, especially if the simulation is very nonlinear with respect to the inputs, has a high number of inputs
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with interaction effects, exhibits discontinuities, etc. Local optimization solvers will not guarantee finding global
optima, and thus to solve this problem properly, one may have to resort to multi-start implementations of local
optimization methods or global methods such as genetic algorithms, DIRECT, etc. These approaches can be
very expensive.

Another approach to interval analysis is to sample from the uncertain interval inputs, and then take the maximum
and minimum output values based on the sampling process as the estimate for the upper and lower output
bounds. Usually a uniform distribution is assumed over the input intervals, although this is not necessary.
Although uniform distributions may be used to create samples, one cannot assign a probabilistic distribution to
them or make a corresponding probabilistic interpretation of the output. That is, one cannot make a CDF of the
output: all one can assume is that sample input values were generated, corresponding sample output values
were created, and the minimum and maximum of the output are the estimated output interval bounds. This
sampling approach is easy to implement, but its accuracy is highly dependent on the number of samples. Often,
sampling will generate output bounds which underestimate the true output interval.

In this paper, a single input variable is represented as x;, X represents the vector of m uncertain variables, and the
output y is a function of x: y = F(x). Figure 3 shows a Monte Carlo sampling approach that is often used to
propagate aleatory uncertainty. In this figure, there are 3 input parameter distributions (m = 3) represented on the
left side. Five samples are taken from each (N=5), and the simulation model is run five times with these sets of
input, resulting in 5 realizations of the output y shown on the right. In the case of aleatory uncertainty
propagation, one can interpret the resulting output samples probabilistically and fit an appropriate distribution.
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Figure 3. Monte Carlo Sampling used for Aleatory Uncertainty Propagation

Figure 4 shows how Monte Carlo sampling may be used to propagate epistemic uncertainty. Note that the input
distributions are all represented by intervals, and so is the output. As mentioned above, one must be careful not
to interpret the result with any type of structure other than an interval on the output. Also, while sampling is easy
to implement, it may underestimate the true output interval.
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Figure 4. Monte Carlo Sampling used for Epistemic Interval Propagation

Other approaches to interval analysis start with sampling, but then use the samples to create a surrogate model
(e.g. a regression model, a neural net, an adaptive spline model, etc.) The surrogate model can then be sampled
very extensively (e.g. a million times) to obtain an upper and lower bound estimate. Another approach is to use
surrogate-based optimization methods to obtain the upper and lower bounds.

3.1. Interval Results: Sampling

This section shows the results of applying the Latin Hypercube sampling methodology [17] to the epistemic
interval propagation. The input uncertainties in E and v were defined by the intervals [2000, 25000] and [0.45,
0.49], respectively. Initially, to ensure the DAKOTA and Salinas codes were properly coupled and everything was
working correctly, we performed a small, ten sample study. The results of this study are shown in Table 1 below
and in the Figures 5 and 6. Note that based on this small run, the output interval for the shear mode frequency is
[845.6, 2878.0] Hz, and the output interval for the axial mode frequency is [1088.1,3580.37] Hz.

E (Elastic Nu (Poisson's Shear Mode Axial Mode

Sample Modulus) ratio) Frequency Frequency
1 6377.50 0.473 1452.47 1858.78
2 24938.67 0.455 2877.98 3580.37
3 9764.92 0.463 1799.41 2263.74
4 20550.80 0.462 2610.35 3277.82
5 14733.46 0.466 2209.13 2793.58
6 19525.95 0.488 2539.35 3333.59
7 12791.57 0.482 2055.63 2670.29
8 16942.52 0.481 2365.74 3065.20
9 7312.58 0.452 1559.74 1931.17
10 2162.54 0.476 845.62 1088.09

Table 1: Initial Interval Sample
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Figure 5. Shear and Axial Mode Frequencies as a function of E for 10-sample case
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Figure 6. Shear and Axial Mode Frequencies as a function of v for 10-sample case

Figures 5 shows that both the axial and shear mode frequencies are almost perfectly linearly correlated with the
elastic modulus, E. However, Figure 6 shows no significant correlation between Poisson’s ratio and the shear
and axial modes. This was surprising to us at first glance (we expected some sensitivity between E and v
especially as v nears the upper end of its interval range), and so we performed some additional analysis. Note
that an initial interval analysis may also be used for sensitivity analysis and to identify issues and perform further
iterations, which is what we demonstrate here.

To further examine the effects of E and v on the axial and shear mode, and to determine if there were some
interactions between E and v, we performed a 36 sample orthogonal array study where we had six levels of E and
6 levels of v, so we had 36 sample points. Orthogonal arrays allow one to calculate “main effects.” That is, with
an orthogonal array, you can calculate the mean of the shear mode frequency (for example) with E being fixed as
2000psi as v varies from 0.45 to 0.495. If this mean is nearly that same as the mean shear mode frequency when
E is fixed at 10000psi or 25000 psi (again, averaging over v), we say that E does not have a strong influence.
However, if the mean shear mode frequency with E fixed at 2000psi and the mean shear mode frequency with E
fixed at 10000psi or 25000psi are statistically significantly different, than E has a strong main effect. Figures 7



and 8 show that as E is varied between 2000 and 25000, the mean frequency response of both the axial and
shear modes varies significantly. However, as v is varied between 0.45 and 0.49, the mean response variation is
NOT statistically significant. The significance tests were very strong for both cases: p-values of 0 for E and p-
values of 1.0 for v.

Note that the output intervals for the shear mode frequency based on the orthogonal array results is
[813.0,2884.0] Hz, and the output interval for the axial mode frequency is [1008.1,3831.9] Hz which are wider
than those obtained by the initial ten samples.
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Figure 7. Main Effects for Shear Mode
Main Effects Plot for Axial Mode
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Figure 8. Main Effects for Axial Mode

Figures 9 and 10 show the interaction effects. That is, they show as you keep E fixed (for example) at 2000 and
vary v (the black line in the upper right box), the shear mode frequency does not change: it is around 813 Hz.
There is a similar pattern for the other levels of E as v varies. However, in the lower left box, as Emod varies, the



value of v does not matter much: all the lines are on top of each other, meaning that at E of 10000 (for example),
the shear mode frequency is about 1820Hz no matter what the value of v. The interaction plot for the axial mode
is similar, though we do see a slight influence of v. There is no significant interaction between E and v, at least in
this model. If you look at the shear mode frequency for a particular E value, as v is increased from 0.45 to 0.495,
the shear frequency does decrease, but the decrease is around 5 Hz, which is insignificant when measured
against the change related to increasing E from 2000 to 25000.
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Figure 10. Interaction Effects for Axial Mode



Based on all of this analysis, we performed another 30 LHS samples. The 30 sample interval analysis gave
similar results to the ten sample study, but with slightly wider intervals: [845.6, 2878.0] for the shear mode
frequency and [1088.1, 3696.0] for the axial mode. Going from 10 to 30 samples did not change the output
intervals significantly in this example problem since we had one input with a very linear relationship and one
variable that was fairly uncorrelated with the output, but in other situations could improve the interval bounds on
the output significantly.

3.2. Interval Results: Surrogate-based Methods

This section discusses the use of surrogates to determine interval output bounds. Surrogate methods involve
constructing response surface approximations of computationally expensive functions. These surrogates
(sometimes called meta-models) are often constructed by taking a set of samples from the function or simulation
model of interest, then building a regression or non-parametric interpolation model based on the sample points
[5,15,16]. Other surrogate methods exist including multifidelity models (e.g. a low fidelity physics model can be
used as a surrogate for a high fidelity one) and reduced order models such as proper orthogonal decomposition
or spectral decomposition [4]. In this paper, we limit the discussion to data-fit surrogates, where the surrogate is
built or fit to a particular set of sample points.

We first combined the samples generated above (the ten sample, 30 sample, and 36 sample orthogonal array) to
create a full data set with 76 sample points. Then, we constructed a few different surrogate models based on
these points: a quadratic regression model, a MARS model (multivariate adaptive splines), and a neural network.
These surrogate models were then sampled with the same set of 1000 points to determine the upper and lower
bounds according to the surrogate model. These interval bounds on the output are shown in Table 2 below. Note
that the upper and lower bounds are reasonably consistent across the surrogate methods although the underlying
surrogates are based on very different models and assumptions.

SHEAR MODE FREQUENCY AXIAL MODE FREQUENCY
Surrogate Type Lower Bound Upper Bound Lower Bound Upper Bound
Quadratic
Regression 871.13 2849.90 1099.85 3775.50
Mars 816.03 2880.31 1028.04 3812.84
Neural Net 814.49 2893.26 1007.02 3807.57

Table 2. Interval bounds according to sampling a surrogate model

Finally, we used an optimization method on the surrogate to determine the upper and lower bounds. The
optimization method we used was DIRECT (Dividing Rectangles, see DAKOTA documentation), which is a global
optimization method that balances local search in promising regions of the design space with global search in
unexplored regions. We used a global optimization method since we are not using a trust region optimization
approach: we are constructing one surrogate over the entire [E, v] input space and optimizing the surrogate. The
results are shown in Table 3. Again, we see that there are not huge differences in the interval bounds obtained
for the shear and axial mode frequencies, although the neural net seems more inconsistent than the quadratic
regression and Mars. Also, the optimum point in input space is often the same, the bounds are different due to
the differences in the surrogate estimate of the response at those locations. Since this is a fairly linear problem,
we see that the bounds on the shear or axial mode frequencies occur where E is at its minimum or maximum.
Due to the difficulty of estimating a significant influence of v, we see that the optimum locations obtained for v
vary more than for E.

Note that when using surrogate methods, one needs to know something about the appropriateness of the
surrogate for a particular function, and be able to evaluate the accuracy of the meta-model. It is possible to use
metrics such as cross-validation metrics, root mean squared error, etc. to evaluate the goodness of fit of the
surrogate, but these metrics mainly involve the goodness of the surrogate with respect to the training points upon
which it was built. The metrics don’t necessarily indicate how good the surrogate will be when evaluated at new
sample points (for example, when sampling the surrogate extensively to calculate a mean, variance, or
percentile). Thus, while surrogates are a powerful tool, one must be careful of interpreting statistical measures
based on surrogate builds extremely accurately [5,16].



SHEAR MODE FREQUENCY AXIAL MODE FREQUENCY
Surrogate Type Lower Bound Upper Bound Lower Bound Upper Bound
Quadratic
Regression 865.26 2852.54 1088.54 3791.74
Mars 816.03 2882.92 1011.43 3829.90
Neural Net 772.30 2906.90 993.58 3831.86
Corresponding | Corresponding | Corresponding | Corresponding
Bounding Bounding Bounding Bounding
inputs [E,v] inputs [E,v] inputs [E,v] inputs [E,v]
Quadratic
Regression at 2000,0.494 at 25000,0.45 at 2000,0.45 at 25000,0.495
Mars at 2000,0.468 at 25000,0.45 at 2000,0.45 at 25000,0.495
Neural Net at 2000, 0.465 | at 25000,0.465 | at 2000,0.465 at 25000,0.495

Table 3. Interval bounds obtained according to optimizing a surrogate model

4. Dempster-Shafer Evidence Theory

Dempster-Shafer evidence theory is an attractive approach to propagation of evidence theory when using
computational simulations, in part because it is a generalization of classical probability theory which allows the
simulation code to remain black-box (it is non-intrusive to the code) and because the Dempster-Shafer
calculations use much of the probabilistic framework that exists in most places. [7]

Dempster-Shafer Theory of Evidence may be used to perform epistemic analysis [6,8,13,14,18]. It relaxes the
assumptions of probability theory in situations where there is little information on which to evaluate a probability or
when the information is nonspecific, ambiguous, or conflicting. For example, if an expert believes that a system
may fail due to a particular component with a likelihood of 0.3, does that necessarily mean that the expert
believes the system will not fail due to that component with a probability of 0.7? There may be certain pieces of
evidence, which when considered in combination, lend more or less credence to the likelihood of an event. The
Dempster-Shafer theory can account for evidence that can be assigned to multiple possible events (sets of
events) whereas in probability theory, evidence is associated with only one possible event. Additionally,
Dempster-Shafer theory can handle conflicting evidence. For example, if two people report that they saw a tree
branch fall on your car, you would have a higher degree of belief that a tree limb did in fact land on your car than if
one of the individuals said it fell on your car and the other individual reported it did not fall on your car.

In Dempster-Shafer evidence theory, the epistemic uncertain input variables are modeled as sets of intervals.
Note that each variable may be defined by one or more intervals. The user assigns a basic probability
assignment (BPA) to each interval, indicating how likely it is that the uncertain input falls within the interval. The
BPAs for a particular uncertain input variable must sum to one. The intervals may be overlapping, contiguous, or
have gaps. Dempster-Shafer has two measures of uncertainty, belief and plausibility. The intervals are
propagated to calculate belief (a lower bound on a probability value that is consistent with the evidence) and
plausibility (an upper bound on a probability value that is consistent with the evidence). Together, belief and
plausibility define an interval-valued probability distribution, not a single probability distribution.

The main method for calculating Dempster-Shafer intervals is computationally very expensive. Many hundreds of
thousands of samples are taken over the space. Each combination of input variable intervals defines an input
“cell.” By interval combination, we mean the first interval of the first variable paired with the first interval for the
second variable, etc. Within each interval calculation, it is necessary to find the minimum and maximum function
value for that interval “cell.” These minimum and maximum values are aggregated to create the belief and
plausibility curves. The Dempster-Shafer method may use a surrogate model and/or optimization methods. The
accuracy of the Dempster-Shafer results is highly dependent on the number of samples and the number of
interval combinations. If one has a lot of interval cells and few samples, the estimates for the minimum and
maximum function evaluations is likely to be poor. Surrogate methods may also be used in Dempster-Shafer,
either global surrogates or separate surrogates within each cell.



In this example, we specified a belief structure on the elastic modulus as follows: BPA of 0.3 on the interval [3000,
6000], BPA of 0.6 on the interval [6000, 10000], and BPA of 0.1 on the interval [10000,25000]. The belief
structure on the intervals for v are as follows: BPA of 0.7 on the interval [0.45,0.475], BPA of 0.3 on the interval
[0.475,0.495]. Note that the intervals in this example are defined as contiguous intervals but there is no
requirement that they be so: they can be overlapping or disjoint. These intervals are depicted graphically in
Figure 11 below. The resulting cumulative distribution functions of belief and plausibility for the shear mode
frequency are shown in Figure 12 and for the axial mode frequency are shown in Figure 13. Note that in the
context of belief, the cumulative belief function (similar to a cumulative distribution function or CDF) is the
cumulative belief that the uncertain quantity y* is less than a given value y: Bel(y*<y). Similarly, the cumulative
plausibility function is the cumulative plausibility that the uncertain quantity y* is less than a given value y:
Pl(y*<y). For example, in Figure 12, the cumulative belief that the shear modulus is less than or equal to 1800
Hz is 0.3, while the cumulative plausibility that the shear modular is less than or equal to 1800 Hz is 0.9. Another
way of looking at this is the minimum amount of likelihood that could be associated with 1800 Hz is 0.3, while the
maximum amount of likelihood that could be associated with 1800 Hz is 0.9. If we were to think in terms of
probabilities and CDFs, the belief and plausibility provide an upper and lower bound on the CDF: the cumulative
probability that the shear frequency is less than or equal to 1800 Hz is between 0.3 and 0.9. Finally, the “stair-
stepping” behavior of these cumulative curves is due to the discrete combinations of intervals on the input
variables and the discrete levels of output at which we requested plausibility and belief to be accumulated. It is
difficult to represent, but at 1500 Hz, for example, the cumulative belief jumps from 0 to 0.3, and the cumulative
plausibility jumps from 0.3 to 0.9. The axial mode plot in Figure 13 is more representative of Dempster-Shafer
analyses: it is easy to imagine that the cumulative probability function may lie between the pink (plausibility) and
blue (belief) lines in the figure.

3?00 6?00 100|OO ZSTOO

Elastic Mod.

I !
BPA=0.3 BPA=0.6

0475 0.495
!

BPA=0.3
Poisson’s Ratio

Figure 11. Intervals and associated BPAs for Dempster-Shafer analysis
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Figure 12. Cumulative Belief and Plausibility Distributions for Shear Mode
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5. Second-Order Probability

This section discusses the case where we are trying to propagate both aleatory and epistemic uncertainty. A
common situation is where one may know the form of the probability distribution for an uncertain variable (for
example, that it is distributed normally or lognormally), but one is not sure of the parameters governing the
distribution. In this case, the analysis is done with an outer loop and an inner loop. In the outer loop, the
epistemic variables are specified. In this example, the epistemic variables are specified as intervals on parameter
values such as means or standard deviations of uncertain variables. A particular value is selected from within the
specified intervals. Then, this value is sent to the inner loop. In the inner loop, the values of the distribution
parameters are set by particular realizations of the epistemic variables, and the inner loop performs sampling on
the aleatory variables in the usual way (e.g., a LHS sample is taken). Figure 14 shows the sampling structure of
second-order probability. Second-order probability approaches have been used extensively in the performance
assessment for nuclear waste repositories [9] and in nuclear reactor safety assessments [10]. There is a strong
regulatory precedent for using this approach.

Choose a possible realization, E;,
from epistemic variables
within interval bounds [L,U]

Sample from
aleatory distribution with
distribution parameters
set at E

J samples

Figure 14. Second-order Probability

Second-order probability may be expensive since we have two sampling loops. However, it has the advantage
that it is easy to separate and identify the aleatory vs. epistemic uncertainty. Each particular set of epistemic
variable values generates an entire CDF for the response quantities based on the aleatory uncertainty. So, for
example, if one had 50 values or samples taken of the epistemic variables, one would have 50 CDFs. When you
plot the 50 CDFs, you get the upper and lower bound on the family. Plots of ensembles or “families” of CDFs
generated in second-order probability are sometimes called “horsetail” plots since the CDFs overlaid on each
other can look like a horse’s tail. Note also that in some situations, second-order probability results can look
similar to a Dempster-Shafer analysis but the underlying assumptions are different.

Continuing with our example, we performed a second-order probability analysis where a value for the elastic
modulus, E, was taken in the outer loop. We assumed that Poisson’s ratio was an aleatory variable, in contrast
with the previous analyses in this paper. Conditioned on a particular value of E from the outer loop, 10 samples
of v Were taken on the inner loop. Over all outer loops, we then can calculate the minimum and maximum value
of the 10" percentile on the inner loop, or the median, or the 90" percentile, etc. Graphically, the results for the
second-order probability analysis based on eight outer loops samples of E, with 10 inner loop samples of v per
outer loop sample (80 samples total), are shown in Flgures 15 and 16. The blue and pink lines show the
minimum and maximum values of the 10", 50 and 90™ percentiles over all the inner loop empirical distribution
functions, respectively. For example, the 10 percentlle of the shear mode frequency could lie anywhere between



1137 and 2850 Hz in this example. Note that in a real analysis, one would want to take more samples on both
inner and outer loops to obtain more accurate estimates of the minimum and maximum percentiles: the few
samples here are shown just for demonstration of the method. In practice, one would want to take at least 30-50
outer loop samples and possibly hundreds of inner loop samples, depending on the inner loop statistic of interest.
Also note that the empirical distribution function created for each outer loop based on sampling the inner loop is
nearly vertical in Figures 15 and 16. This will not usually be the case: this is due to the fact that varying
Poisson’s ratio has a very small effect on the mode frequencies relative to varying the elastic modulus, as
discussed above.
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Figure 15. Second-order Probability Analysis for Shear Mode
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Figure 16. Second-order Probability Analysis for Axial Mode

6. Summary

This paper has presented a basic overview of three methods that are often used to quantify and propagate
epistemic uncertainty in uncertainty analyses. Epistemic uncertainty, characterizing lack-of-knowledge, is often
prevalent in engineering applications, but it is often treated (incorrectly) probabilistically as aleatory information.
We outlined and demonstrated three methods used in propagating epistemic uncertainties: interval analysis,
Dempster-Shafer evidence theory, and second-order probability. The structural dynamics problem provided a
realistic example of the epistemic treatment of material properties (elastic modulus and Poisson’s ratio) to
understand how the lack of knowledge about these properties affects the shear and axial mode frequencies.
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