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1 INTRODUCTION

Task mapping — the assignment of a parallel application’s
tasks to the processors of a parallel computer — is in-
creasingly important as the number of computing units in
new supercomputers grows from O(100K) to O(1M) and
beyond. With large-diameter networks in these supercom-
puters and many users submitting jobs of various sizes,
processor allocations (sets of processors assigned by a job
scheduler to parallel jobs) can become sparse and be spread
far across the entire network. As a result, communication
messages can travel long routes in the network and network
links may become congested, which makes maintaining
scalability in large-scale machines difficult. These effects
can be lessened through the use of topology-aware task
mapping. Recent experiments have shown that task map-
ping can significantly impact performance of parallel appli-
cations (e.g., [1], [4], [10], [15], [19], [30]); one application
exhibited a 1.64X speedup due to improved mapping [24]

Most parallel scientific computing applications ignore
the details of the underlying computer network; rather, they
use generic task-to-rank mapping. Such generic mappings
become problematic when the rank ordering scheme of
the underlying network and task ordering scheme of the
application do not match. For example, IBM’s BlueGene/Q
has a 5D torus network with dimensions A, B, C, D, and
E. The default rank ordering first places consecutive ranks
within a node, and then along dimensions E, D, C, B and
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A. In this architecture, contrary to what one would believe,
an application that assigns nearby MPI ranks (say, using
graph partitioning) to tasks that communicate with each
other will likely face a problem. Such applications will have
most of their communication within the nodes first and then
along E or D. As a result, the links in A or B will not be
fully utilized. On the other hand, Cray Gemini intercon-
nection networks use a space filling curve (SFC) algorithm
to order the ranks within the set of allocated nodes. As a
result, consecutive MPI ranks are placed first within a node,
then in nodes that are close within SFC. The application
in the previous example will have a good utilization of
the network with these ordering schemes. However, an
application using a 3D domain that does nearest neighbor
communication, and orders its tasks along x, y and z spatial
dimensions is likely to have communication imbalances.
Such applications will perform most of their x-dimension
communication within a node, but their communication
along y and z are likely to happen with other nodes. Both
of these examples demonstrate that an effective mapping of
tasks to processors should consider both the communication
pattern of the tasks and the physical network topology to
reduce application communication cost.

We propose a new task mapping strategy that uses
geometric data to represent application tasks and compute
resources. We define metrics based on this geometric data to
represent the cost of communication between tasks, and use
these metrics to evaluate and select effective mappings.

Much research has focused on mapping tasks to block-
based allocations, such as those on IBM’s BlueGene systems
(e.g., [3], [10], [24], [42]). Recently, the task mapping meth-
ods for sparse allocations on 3D torus [19], [21], [28], drag-
onfly [40], slim fly [25], and fat tree [34] networks have been
explored. We address both contiguous allocations and non-
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contiguous (i.e., sparse) allocations, in which nodes from
any portion of the machine can be allocated to a job without
regard to the allocation’s shape or locality. Such allocations
are used in many parallel systems (e.g., Cray, clusters).
Mapping strategies developed for general allocations can
be used directly for more restrictive block allocations.

Most previous non-contiguous approaches have repre-
sented tasks’ communication patterns and network topolo-
gies as graphs; graph algorithms were then applied to
find good mappings. Finding optimal topology mappings
is NP-Complete [28], so heuristics are often used to reduce
complexity (e.g., [7], [11], [12], [16], [17], [19], [22], [31], [32],
[35]). We, instead, use inexpensive geometric partitioning
to reorder tasks and processors based on their geometric
locality, and use the reordering to map tasks that are “close”
to each other geometrically to processors that are “close”
to each other in the mesh or torus. Initial experimentation
with geometric approaches proved promising [21], [33]. This
work improves the previous geometric strategies with a
new ordering method and ideas for optimizing mapping
on various networks. We demonstrate the benefit of these
ideas in applications on two different architectures with
heterogenous network links.

General-purpose, open-source graph-based mapping al-
gorithms are available. The LibTopoMap library [28] re-
quires as input a task-communication graph describing the
amount of communication between tasks, as well as static
files describing the network topology. It uses the ParMETIS
graph partitioner [29] to divide tasks into n parts, where n
is the number of nodes in the allocation, and then applies
a graph algorithm (Greedy, Recursive Bisection, Reverse
Cuthill-McKee) to map the parts to nodes. The JOSTLE [41]
and Scotch [38] libraries combine mapping with load balanc-
ing by using recursive bisection of both network-topology
and application-data graphs to partition data and map the
resulting parts to processors. Like these libraries, our ap-
proach is designed for general-purpose use in applications
and is available in the Zoltan2 [13] library.

The main contributions of this paper follow.
• We present a new geometric algorithm for task map-

ping in both contiguous and non-contiguous processor al-
locations (Section 4). We show that it is possible to use the
same foundational algorithm for various applications and
various architectures by performing different optimizations
and transformations to the input coordinates to account for
architecture and application specific characteristics, such as
heterogeneity in the performance of network links.
• We present a new ordering scheme and show its

effectiveness for task mapping.
• We demonstrate our algorithm in two applications on

up to 128K cores, and assess the ability of our mapping to
reduce application communication cost (Section 5).
• We compare our geometric mapping to the default

mapping used in applications and to application-specific op-
timizations; we show that our geometric mapping reduces
both communication time and communication metrics for
the target applications relative to other methods (Section 5).

2 TARGETED COMPUTING ENVIRONMENTS

Geometric task mapping requires that the coordinates of
the nodes provide information about the network topology.

Such methods can be applied to mesh- or torus-based in-
terconnection networks. However, to apply the geometric
mapping methods to other networks such as Fat-Tree or
DragonFly networks, one needs to pre-process the node
coordinates to approximate the network topology. Mesh- or
torus-based networks are common in parallel computers; for
example, Cray’s XT, XE, XK computers and IBM’s BlueGene
computers have torus-based networks. Our target environ-
ments include Cray XE6 and XK7 machines (e.g., Titan
at Oak Ridge National Laboratory), and IBM BlueGene/Q
machines (e.g., Mira at Argonne National Laboratory).

In the Cray XE6 and XK7 3D torus, each Gemini router
has connections to six neighboring routers, two each in the
x, y and z dimensions. Messages’ routes between nodes can
be represented as a path of “hops” along network links in
x, y and z. Differences in bandwidth can exist depending
on the physical connections (e.g., backplane, mezzanine,
cable) used. For example, X cables are uniform and have
bandwidth of 75 GB/s. Two types of links are used in y: Y
cables and Y mezzanine traces. These cable and mezzanine
links have 37.5 GB/s and 75 GB/s bandwidth, respectively.
Similarly, Z links consist of Z cables with 75 GB/s and Z
backplane traces with 120 GB/s bandwidths. IBM’s Blue-
Gene/Q (BG/Q) machines has 5D torus networks; the links
have uniform bandwidth along all dimensions.

In mesh- and torus-based systems, “coordinates” of the
routers within the network are often available via calls to
a system library. A router with 3D coordinates (i, j, k) can
communicate with a router with coordinates (i+1, j+1, k+
1) via a three-hop path, with one hop in each dimension (x,
y, z). A torus provides wrap-around, so that messages take
the shortest path (i.e., proceed in the positive or negative
direction) along each dimension. In the Cray XK7, these
coordinates are available from the Resiliency Communi-
cation Agent (RCA) tool (rca_get_meshcoord). On the
IBM BlueGene/Q, they can be obtained using TopoMgr [8].
Each MPI process can obtain the coordinates of the router
to which its compute node is attached. Our task-mapping
methods then use SPL between routers within the network
as an approximation of communication cost between MPI
processes in the corresponding nodes.

Each router in a mesh/torus network is typically con-
nected to one or more multicore compute nodes. In the Cray
XK7, for example, each router connects two nodes. The Cray
platform Titan has 16 cores per node. Parallel applications
can use from one MPI process per node (with threaded
parallelism within the node) to one MPI process per core
(with shared-memory message passing within the node).
In the latter case, co-locating interdependent MPI processes
within a node reduces communication over the network,
and, thus, reduces execution time. Our task-mapping exper-
iments address this case, but they can be applied without
loss of generality to the multithreaded case as well.

One difference between the Cray and IBM systems is the
way they allocate compute nodes to jobs. In IBM systems,
jobs are given a contiguous block of nodes within the
network; each dimension of this block is a power of two.
In contrast, Cray systems allocate non-contiguous sets of
nodes of any size requested by the user. Available nodes
are selected according to a space-filling curve algorithm in
the ALPS scheduler [2]. While the scheduler attempts to
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assign nearby nodes to jobs, no guarantees of locality are
provided. As a result, task-mapping algorithms for Cray
systems need to accommodate non-block, non-contiguous
allocations. Our proposed methods can be applied to non-
contiguous allocations as well as block-based allocations.

Ideally, closer proximity of router coordinates results in
lower communication costs. However, congestion caused by
communication patterns within an application and by other
applications on the system can affect application behavior.
In [21], information about input and output message stalls
(a measure of network congestion [37]) was obtained from
Cray Gemini tile counters and used to validate a computed
congestion metric (Eqn. 7). Using this stalls data for graph-
based mapping was explored in [14].

3 MAPPING METRICS

We define several metrics to evaluate our mappings. We
assume static routing of messages. Also, we assume that
each message is transferred over a single path (i.e., messages
are not split and sent through multiple paths).

Let Gt(Vt, Et) be the task communication graph, where
Vt is the set of tasks, and Et is the set of edges that
represent communication between tasks. If t1, t2 ∈ Vt, edge
(t1, t2) ∈ Et if and only if tasks t1 and t2 communicate. The
volume (weight) of the communication message is denoted
with w(t1, t2). In the same way, let Gn(Vn, En) be the
network topology graph. Vn is the set of nodes in a machine,
and En is the set of edges that represent the physical
communication links between nodes. If n1, n2 ∈ Vn, edge
e = (n1, n2) ∈ En if and only if nodes n1 and n2 have a
connecting link between them. Each link e is associated with
a bandwidth that is denoted with bw(e). LetM be a function
for the assignment of tasks to nodes. That is, n1 =M(t1), if
t1 ∈ Vt is assigned to node n1 ∈ Vn.

Using these two graphs, we define the Hops(t1, t2) of an
edge (t1, t2) ∈ Et as the length of the shortest path between
nodesM(t1) andM(t2) in the network topology graph Gn

(i.e., the number of links or “hops” a message from t1 to t2
travels in Gn). Then the total hops for any task assignment
M is the sum of the hops for all the communicating tasks:

Hops(M) =
∑

(t1,t2)∈Et

Hops(t1, t2). (1)

When all messages have the same size (i.e., uniformw(t1, t2)
for all edges (t1, t2)), we examine the average number of
edges traversed by each message:

AverageHops(M) = Hops(M)/|Et|. (2)

With non-uniform w(t1, t2), we measure weighted hops:

WeightedHops(M) =
∑

(t1,t2)∈Et

w(t1, t2)Hops(t1, t2). (3)

The total data on an edge e ∈ En is defined as

Data(e) =
∑

(t1,t2)∈Et

w(t1, t2)× InPath(e,M(t1),M(t2)),

(4)
where InPath evaluates to 1 if and only if e is in the shortest
path between nodes M(t1) and M(t2), and 0 otherwise.

The maximum amount of data going through any link, then,
is a measure of the congestion in the network:

Data(M) = max
e∈En

Data(e) (5)

Data(M) ignores the bandwidth bw(e) of network links
e. We define serialization latency of an edge e and an
assignmentM to account for links that are not uniform:

Latency(e) =
Data(e)

bw(e)
; (6)

Latency(M) = max
e∈En

Latency(e). (7)

Latency(e) is the time to transfer the given data through a
given link e, while Latency(M) is the time for the bottle-
neck link. Contention is an emperical measure of the num-
ber of stalls due to heavy traffic on the links. The contention
of link e is proportional to Latency(e); the maximum con-
tention in a network is proportional to Latency(M).

4 GEOMETRIC TASK MAPPING

Our proposed topology-aware mapping algorithm uses the
router coordinates to represent the network topology of the
machine. The cost of communication between pairs of cores
is approximated by the length of the shortest path between
their routers’ coordinates. Thus, the machine topology is
described only by the cores’ coordinates, rather than a topol-
ogy graph in which bandwidth information between every
pair of cores must be specified. Each of the application’s MPI
processes is also represented by a coordinate, corresponding
to either the center of the process’ application domain or
the average coordinate of its application data. For exam-
ple, in a structured grid-based finite difference application,
the center of an MPI process’ subgrid can be used as its
coordinate. Our algorithm uses a geometric partitioning
algorithm to consistently reorder both the MPI processes
and the allocated cores; this reordering is used to construct
the mapping. In this section, we provide details of our
mapping algorithm. We use the term “machine coordinates”
to refer to the router coordinates associated with each core,
and “task coordinates” to refer to the centroid or averaged
coordinates provided by the application’s MPI processes.

4.1 Multi-Jagged (MJ) Geometric Partitioning
Our proposed task mapping algorithm uses a geometric
partitioning algorithm, the Multi-dimensional Jagged algo-
rithm (MJ) [20] of the Zoltan2 Toolkit [13], to partition task
and machine coordinates. MJ partitions a set of coordinates
into a desired number of parts (P ) in a given number of
steps called the recursion depth (RD). During each recursion,
one-dimensional partitioning is done along a dimension; the
partitioning dimension changes in each recursion. There-
fore, MJ is a generalization of the Recursive Coordinate
Bisection (RCB) algorithm [6] in which MJ has ability to
do multisections instead of bisections. Although our imple-
mentation of MJ can partition into any number of parts P ,
we simplify our explanation here by assuming P can be
written as P =

∏RD
i=1 Pi. In the first level, MJ partitions the

domain into P1 parts using P1 − 1 cuts in one direction. In
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the next level, each of the P1 parts is partitioned separately
into P2 parts using cuts in an orthogonal direction. This
recursion continues in each level. Figure 1 shows two 64-
way partitions using MJ with RD = 3, P = 4× 4× 4 (left),
and RD = 6, P = 2 × 2 × 2 × 2 × 2 × 2 (right). When
RD = dlog2 P e, MJ is equivalent to RCB (as in Figure 1(b)).

(a) RD = 3 (b) RD = 6

Fig. 1. Partitioning into 64 parts using MJ with different recursion depths.
Cutlines in the same level of recursion share the same color.

MJ’s complexity depends on P , RD, the number
of points n, and the average number of iterations it
needed to compute cutline locations. During partition-
ing on level i, each point is compared to log2 Pi cut
lines (using binary search). Thus, MJ’s complexity is
O(n× it×

∑RD
i=1 log2 Pi). When MJ is used as RCB, its

complexity is O(n× it× log2 P ).

4.2 Using MJ for Task Mapping
Although MJ is proposed as a parallel (MPI+OpenMP)
algorithm [20], we use it as a sequential algorithm in this
context. The size of the partitioning problem is proportional
to the number of processors. Since current supercomputers
typically have O(100K) processors, the partitioning algo-
rithm would be communication bound if done in parallel;
little or no speedup would be obtained by parallelizing
this process. Instead, each processor calculates the map-
ping independently. A gather operation is performed at
the beginning of task mapping to provide all machine and
task coordinates to every processor. Then every processor
performs the sequential mapping operation. We describe
in Section 4.3 how we exploit parallelism to improve the
quality of the mapping with minimal additional cost.

The mapping algorithm is defined as follows: Given
td-dimensional coordinates of tasks (tcoords), and pd-
dimensional coordinates of allocated cores (pcoords), along
with the number of tasks (tnum) and cores (pnum), com-
pute a mapping from tasks to cores (M) and/or from cores
to tasks (M−1). Algorithm 1 provides details.

Algorithm 1 Task Mapping Algorithm using MJ
Require: tcoords, tdim, tnum, pcoords, pdim, pnum,RD

NP← MIN (pnum, tnum)
TASKPARTITION← MJ (tcoords, tdim, tnum, NP, RD)
PROCPARTITION← MJ (pcoords, pdim, pnum, NP, RD)
M,M−1 ← GETMAPPINGARRAYS ( tnum, pnum,

TASKPARTITION , PROCPARTITION )

MJ’s main purpose in Algorithm 1 is to order the tasks
and processors in a way to exploit their hierarchies. Function
MJ partitions the task and cores into NP parts, and assigns
a part number to each task and core. Tasks and cores that

share the same part number are then mapped to each other
by GETMAPPINGARRAYS; the resulting mappings are stored
inM andM−1.

There are three mapping cases, depending on tnum and
pnum:

1) tnum = pnum: A one-to-one mapping exists such
that, for task t assigned to core p, t =M−1[p] and p =M[t].

2) tnum > pnum: When there are more tasks than
cores, a core is assigned multiple tasks. Both cores and tasks
are partitioned into pnum parts, with multiple tasks in the
each part. The mapping results will be t ∈ M−1[p] and
p =M[t]. This case can be considered a one-phase mapping
and partitioning algorithm that can perform simultanous
partitioning and mapping.

3) tnum < pnum: When there are more cores than tasks,
the algorithm does not split a task among multiple cores.
Instead, it chooses a subset of tnum cores. Then, mapping
is performed within this subset as if pnum = tnum. Some
cores will be idle, as they are not assigned any tasks. Our
implementation uses a modified K-means clustering algo-
rithm [26] to choose the closest subset of cores within the
allocation. In this paper, this special case is not considered
as it does not arise frequently in applications.

The complexity of Algorithm 1 is dominated by the calls
to MJ, since getMappingArrays runs in linear time with
respect to tnum and pnum. Thus, when MJ is used as RCB
and tnum = pnum, the overall complexity of the mapping
algorithm is O(tnum× it× log2(tnum)).

4.3 Improving the quality of the mapping
The ability of our mapping strategy to reduce communica-
tion costs depends on the results of the MJ partitioner. In this
section, we describe several ways that we can improve the
quality of the mapping by modifying the input to MJ. These
improvements are computed with very little extra expense,
as they are computed in parallel across sets of processors.

Shifting the machine coordinates: The first improvement
involves considering the torus interconnection present in
many supercomputer networks. Torus networks provide
wrap-around communication links in each network dimen-
sion that are not reflected in the machine coordinates. Thus,
since MJ is not aware of connectivity information, MJ con-
siders nodes at edges of the network coordinates to be far
apart, even though there is a one-hop path between them.
We transform the coordinates to account for wrap-around
in each dimension. Our shifting strategy applies a one-
dimensional operation to each dimension independently.
First, we find the shift position – the largest gap in the node
coordinates. Then, assuming the largest gap is greater than
one, we transform the machine coordinates on one side of
the shift position by adding to them the maximum machine
coordinate in that dimension. Refer to [21] for details.

Rotating the machine and task coordinates: The quality of
the mapping also depends on the order of the dimensions
to which the partitioning is applied (e.g., first partition in
x, then y, then z). It is difficult to predict which dimension
order will provide the best mapping. Since there are pnum
processes, we instead calculate different mappings with
different rotations in each process. Then, given the commu-
nication pattern of the tasks, WeightedHops (Eqn. 3) for
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each mapping is computed; the mapping with the smallest
value is chosen. This comparison requires one extra Allre-
duce and broadcast operation. With td-dimensional tasks
and pd-dimensional processors, there are rp = (td)!× (pd)!
different rotations. For a 3D torus with 3D task coordinates,
rp = 3!×3! = 36. We group processes into sets of size 36, in
which each process calculates a mapping using a different
rotation, along with the quality of that mapping. Then
within each group, the best quality mapping is determined,
and is broadcast to the group. Refer to [21] for details.

Partitioning along the longest dimension: In geometric
methods, partitioning perpendicular to the longest dimen-
sion given by the data’s coordinates is commongly used to
minimize the surface area of the cutting plane, and, as a
result, the communication volume between the partitions
(e.g., RCB [6], Recursive Inertial Bisection [39]). Our previ-
ous work [21] used a fixed ordering of the partitioning di-
mensions (strictly alternating in each recursion level) rather
than considering the longest dimension. It also assumed
dimension sizes pd and td were equal; when pd 6= td,
the smaller dimension was chosen. These decisons were
made to achieve consistent ordering of the resulting parts.
However, in order to find the task and node hierarchies,
these decisions needed to be revisited.

In this work, we incorporate longest dimension parti-
tioning into our task mapping algorithm to increase lo-
cality and connectivity between interdependent tasks and
nodes. For example, Figure 2 shows the partitions of the
node coordinates, without (left) and with (right) longest
dimension partitioning. In Figure 2(left), strictly alternating
partitioning directions are used, starting with a vertical cut
(gray), then a horizontal cut (blue), and another vertical cut
(red). The resulting parts p0-p3 are assigned to nodes n0-n3,
which are connected with three links in a mesh network.
With longest direction partitioning, parts p0-p3 are assigned
to to nodes n0, n8, n1 and n9, which are connected by four
links. (Equal benefits are seen for the other parts in this
example.) Thus, the longest-dimension partition provides
higher bandwidth for the highly communicating tasks.

Adaptation of space filling orderings for part numbers:
MJ assigns part numbers using Z-order (Z) space filling
curves [36]. That is, it recursively assigns lower part num-
bers to parts with coordinates less than the cut coordinate.
Figure 3 shows several space filling curve orderings in the
literature, applied to 64 parts. Hilbert’s order (H) is achieved
by partitioning into quadrants recursively; a rotation of the
coordinates (e.g., swapping x and y coordinates) or flip of
the coordinates (i.e, multiplying each coordinate by −1) is
applied to different quadrants. Similarly, Gray order (G) is
obtained by bisecting the dataset recursively, and flipping
all coordinates of the higher part. In this work, we use a
Flipped Z order (FZ), which is achieved by flipping one
coordinate of each points in the higher part; it is similar to
Gray and Z ordering, but the flipping is applied only to the
coordinate for which the cut is obtained. Algorithm 2 shows
the modified MJ that adopts these orderings. To simplify the
presentation, the MJ algorithm shown performs recursive
bisection, and its target number of parts is assumed to
be a power of two; these restrictions do not apply in the
actual implementation. In each recursion, the algorithm

Algorithm 2 MULTI-JAGGED Algorithm (MJ). For simplicity,
the algorithm shown runs using bisection and assumes the
number of parts np is a power of two.
Require: coordsdim,ncoord, dim, ncoord, np
µ(c)← 0, for 0 ≤ c < ncoord
//sfc type is Z, Gray or FZ
MJ_Helper (coords∗,∗, dim, ncoord, np, sfc, µ)
return µ

procedure MJ HELPER(coords∗,∗, dim, nc, np, sfc, µ)
if np = 1 then

return
end if
//get longest dimension
d←GETPARTDIM(coords∗,∗, ncoord, dim)
//in dim d, bisect into parts L and R
L,R← BIN1DPART(coordsd,∗, ncoord)
np← np

2
for r ∈ R do

if sfc is Gray then
coords∗,r ← −coords∗,r

else if sfc is FZ then
coordsd,r ← −coordsd,r

end if
µ(r)← µ(r) + np

end for
MJ_Helper(coords∗,L, dim, ‖L‖, np, sfc, µ)
MJ_Helper(coords∗,R, dim, ‖R‖, np, sfc, µ)

end procedure

finds the dimension to partition and calls a 1D partitioning
algorithm. Z ordering does not modify the coordinates; it
always assigns lower part numbers to coordinates less than
the cut position, and higher part numbers to coordinates
greater than the cut. Gray ordering flips the coordinates
in all dimensions for points in the higher half, while the
proposed FZ ordering flips only the coordinates for the
dimension in which the bisection was performed.

Our previous work [21] enforced consistent cut order
for both task and node partitions, even for datasets in
which the dimensions of task and node coordinates differed.
When the task and node dimensions differed, the minimum
dimension was used. Thus, all mappings using any ordering
from Figure 3 were equivalant. In this work, we loosen the
restriction of equal task and node dimensions to support
high-dimensional networks like the 5D network in Blue-
Gene/Q. In such cases, the choice of ordering affects the
quality of the mapping because the cut order is different in
the task and node partitions.

As we will show in the experiments, FZ ordering obtains
superior performance in general than Z ordering. (Here, we
briefly explain the the differences; more detailed analysis is
in Appendix A.) FZ has advantages over Z when

• the ordering of the cut dimensions is not consistent
between the task and node networks, or

• the task or node network has wrap-around links.

For example, we show 3D and 1D partitions of 64 points
using FZ and Z orderings in Figures 4 and 5. We then map
2D task graphs (as given in Figure 3) to the networks in
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Strictly	alternating	partition Longest	dimension	partition
Fig. 2. An example of node partitions after three levels of recursion with strictly alternating (left) and longest dimension (right) partitioning. Gray,
blue, and red lines show the first, second, and third dimension cut-lines, respectively.

(a) Z order [36] (Z) (b) Gray Order [23] (G) (c) Hilbert Order [27] (H) (d) Flipped Z order (FZ)

Fig. 3. Examples of different space-filling curve orderings of partitions. For (a), (b), and (d), the order of the cuts is indicated with colors; the first to
last cuts are represented by gray, blue, red, cyan, orange and purple lines, respectively.

Figures 4 and 5. We assume that each task communicates
with only its immediate neighbors, and each node has links
with only its immediate neighbors along each dimension.

When Z ordering is used to partition 2D tasks (Fig-
ure 3(a)) and 3D nodes (Figure 4(a)):

• The first gray cut separates tasks (10, 32), (11, 33),
(14, 36), (15, 37), . . .; messages to corresponding
pairs travel (2, 2, 1) hops in the (x, y, z) dimensions.

• The second blue cuts separate tasks (47, 58), (45, 56),
(39, 50), (37, 48), . . ., with (1, 1, 2) hops.

• The third red cuts separate tasks (34, 40), (35, 41),
(38, 44), (39, 45), . . ., with (2, 0, 1) hops.

• The fourth cyan cuts separate tasks (43, 46), (41, 44),
(35, 38), (33, 36), . . ., with (1, 1, 0) hops.

• The fifth purple cuts separate tasks (40, 42), (41, 43),
(44, 46), (45, 47), . . ., with (0, 0, 1) hops.

• The sixth orange cuts separate tasks (42, 43), (40, 41),
(34, 35), (32, 33), . . ., with (1, 0, 0) hops.

Each task has four neighbors, and although the 3D node
network provides more links per node, only the task neigh-
bors that are separated along the last two cuts are placed in
adjacent nodes. For example, node 35 is adjacent to nodes
33, 34, 42, 49, 7 and 39. For task 35, it communicates with
nodes 33 and 34, while task 35’s other neighboring tasks 38
and 41 are placed two and three hops away.

Again using 2D task and 3D node networks, Figures 3(d)
and 4(b) show the partitions using FZ ordering. In this case,

• The first gray cut separates tasks (8, 40), (9, 41),
(13, 45), (12, 44), . . .; messages to corresponding

pairs travel either 1 (if there are wrap-around links)
or 3 (if not) hops in the y dimension.

• The second blue cuts separate tasks (36, 52), (38, 54),
(46, 62), (44, 60), . . ., with either 1 (with wrap-
around) or 3 (without) hops along z.

• The third red cuts separate tasks (34, 42), (35, 43),
(39, 47), (38, 46), . . ., with either 1 (with wrap-
around) or 3 (without) hops along x.

• The fourth cyan cuts separate tasks (33, 37), (35, 39),
(43, 47), (41, 45), . . ., with 1 hop along y.

• The fifth purple cuts separate tasks (32, 34), (33, 35),
(37, 39), (36, 38), . . ., with 1 hop along z.

• The sixth orange cuts separate tasks (32, 33), (34, 35),
(42, 43), (40, 41), . . ., with 1 hop along x.

Task pairs separated with the last three cuts are all placed
one hop apart. For the other cuts, the number of hops
increases from one hop to pd− 1 hops. The number of hops
is reduced when there are torus wrap-around links; with
wrap-around links, each message is sent using only a single
hop. A node in the network, such as 39, is next to the nodes
7, 35, 37, 38, 47, 55, where each neighbor differs in a single
bit as a Gray-code property. All of task 39’s neighbors, 35,
37, 38 and 47, are placed in neighboring nodes.

In this example, we have different cut-dimension order-
ing for tasks and nodes, as their networks have different
dimensions. We have shown that FZ ordering outperform Z
in such cases. The same relative performance results when
3D tasks are mapped to a 2D node network. Also, in
these examples, we alternated the cut dimension for each
cut. With the use of longest dimension partitioning, the
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cut-dimension orders are more likely to be arbitrary even
for datasets with matching dimensions. In such cases, FZ
ordering is expected to have even greater advantage over Z.

In general, Z ordering achieves good performance when
td 6= pd and td is a multiple of pd. For example, consider
mapping the 2D tasks to a 1D processor network. 1D order-
ing with Z and FZ is shown in Figure 5. With Z, messages
from task 44 to its neighbors travel 3, 2, 1, and 6 hops;
with FZ, messages to task 44’s neighbors travel 1, 3, 15 and
47 hops. However, even in this case, the addition of torus
links improves FZ ordering. For example, with Z order, the
number of hops to neighbors of task 37 is 1, 2, 11 and 22;
with FZ, task 37’s neighbors are 5, 13, 1 and 1 hops away.

Another example of the structured case occurs when
pd 6= td and pd is a multiple of td, such as when the
previous example is reversed so that 1D tasks are mapped
to 2D nodes. For example, with Z-order, the tasks that are
separated along the cuts corresponding to the third level of
recursion are (7, 8), (23, 24), (39, 40), and (55, 56). Messages
corresponding to these pairs travel 3 hops along x and
1 along y. If FZ ordering is used, the same cuts separate
tasks (4, 12), (28, 20), (52, 60), and (44, 36); their messages
travel 3 hops along y. Although FZ already reduces the
hops relative to Z, we can reduce the hops further when
pd is a multiple of td. For these cases, we propose MFZ, a
slightly modified FZ. In MFZ, we number only one of the
coordinate sets (either tasks or nodes) using FZ ordering.
When we partition the other set, we flip the coordinates
in the lower half, rather than the higher half. For example,
application of MFZ to a 1D dataset is shown in Figure 5.
With mapping of 1D tasks with MFZ ordering to 2D nodes
using FZ as in Figure 3(d), the third-level cuts divide tasks
(27, 28), (3, 11), (43, 35), and (51, 59). Each of these tasks are
separated by only one hop along y in Figure 3(d). Therefore,
MFZ is a modification of FZ that differs from FZ only when
pd is a multiple of td to reduce the number of hops further.
Appendix A provides detailed analysis of Z and FZ.

5 EXPERIMENTS

We evaluate the proposed geometric mapping methods. In
Section 5.1, we compare the quality of different orderings
in terms of AverageHops (Eqn. 2) with several different
task- and node-coordinate dimensions. The proposed task
mapping method is evaluated on a BlueGene/Q network
(Mira) in Section 5.2, and on a Cray Gemini network (Titan)
in Section 5.3. The Gemini results are applicable to other
Gemini networks such as BlueWaters; those on BlueGene/Q
are also applicable to Vulcan and Sequoia. See [21] for ex-
periments of our earlier methods on two other Cray Gemini
interconnection networks (Hopper and Cielo).

5.1 Effect of Ordering on Mapping Quality

We study the effect of the SFC orderings on the quality
of geometric mapping. We generate td-dimensional mesh-
and torus-connected tasks, where tasks communicate with
their immediate neighbors. These tasks are then one-to-one
mapped to pd-dimensional block-allocated nodes. Table 1
gives the calculated AverageHops for these mappings us-
ing the Hilbert (H), Z-order (Z), and Flipped Z-order (FZ)

(a) 3D Z order

(b) 3D FZ order

Fig. 4. Examples of Z and FZ space-filling curves for 3D datasets.

curves. When pd is a multiple of td, Modified Flipped Z-
order (MFZ) is applied as well. Results with Gray-order (G)
(not shown) were similar to Z-order results.

In general, Hilbert and Flipped Z-order are better than
Z-order and Gray. When td or pd is one, Hilbert obtains
the lowest AverageHops. Because Hilbert is a continous
ordering, it does not have any jumps when mapping 1D to
multi-dimensional orderings. As explained in Section 4.3,
when td is a multiple of pd, Z-order obtains the lowest
AverageHops. For the rest of the experiments, Flipped Z-
order is significantly better than both Hilbert and Z-order.
AverageHops are reduced further with Modified Flipped Z-
order (MFZ) on datasets with pd (mod td) = 0. On average,
MFZ obtains 27% and 38% lower AverageHops than Z-
order and Hilbert orderings; it also improves upon Flipped
Z-order by 7%. Because of the cyclic properties of the
Gray Ordering, Flipped Z-order captures locality in torus
datasets; therefore, its reductions are even greater when
nodes and tasks have torus connectivity. The performance
of Z-order is similar on mesh and torus-based processors
because it does not exploit the cyclic properties of the
networks. As Flipped Z-order is the best in most cases, we
use this ordering for the rest of the experiments.

5.2 Task Mapping for BlueGene/Q
We evaluate the mapping methods using an atmospheric
modeling application, HOMME (High-Order Method Mod-
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Fig. 5. Examples of Z, FZ and MFZ space-filling curves for 1D datasets.

TABLE 1
AverageHops (Eqn. 2) resulting from geometric mapping with different SFC orderings: Hilbert (H), Z-order (Z), Flipped Z-order (FZ), and Modified

Flipped Z-order (MFZ). Each row represents a mapping with td-dimensional tasks onto pd-dimensional nodes. The left-most column gives the
number of tasks and nodes used. Along each dimension, the number of tasks (similarly, nodes) is equal. Gray order obtains very similar quality to

Z-order; therefore, we do not show results for Gray. The A to B headings indicate that A-connected tasks are mapped onto a B-connected
network. For example, the results for mapping mesh-connected tasks onto a torus-connected network have the heading “Mesh To Torus.” MFZ’s
modification is used only when pd is a multiple of td; otherwise, MFZ is identical to FZ. The best method in each instance is highlighted in red.

Mesh to Mesh Mesh to Torus Torus to Torus
# task pd td H Z FZ MFZ H Z FZ MFZ H Z FZ MFZ
262, 144

1

2 311.05 256.50 384.00 246.92 256.50 351.94 411.01 426.67 447.25
32, 768 3 380.49 352.33 410.67 292.40 352.33 322.58 518.62 633.90 525.83

1, 048, 576 4 8755.69 8456.25 9060.00 6641.63 8456.25 6945.94 12324.09 15837.86 12360.88
32, 768 5 951.63 936.20 967.20 717.57 936.20 733.14 1229.50 1611.95 1230.30

262, 144 6 6291.69 6241.50 6342.00 4731.31 6241.50 4781.62 8193.25 10835.96 8194.58
65, 536 8 2735.92 2730.63 2741.25 2053.25 2730.63 2058.58 3071.94 4087.94 3071.94

262, 144

2

1 1.00 2.00 1.99 1.20 1.00 1.99 1.99 1.20 1.00 1.99 1.99 1.20
262, 144 3 11.55 13.45 10.67 10.79 13.45 9.31 14.03 17.81 11.17

1, 048, 576 4 24.63 16.50 24.00 21.15 16.50 21.94 32.93 26.66 27.25
1, 048, 576 5 40.11 39.92 34.56 34.38 39.92 27.73 53.28 62.20 40.40

262, 144 6 31.22 24.33 28.00 26.14 24.33 21.90 41.43 39.58 32.50
65, 536 8 25.73 21.25 22.50 21.28 21.25 17.17 30.59 30.88 23.88

32, 768

3

1 1.00 2.00 1.33 1.04 1.00 1.99 1.32 1.04 1.00 1.99 1.32 1.04
262, 144 2 2.56 3.30 1.97 2.50 3.28 1.88 2.55 3.40 1.89

4, 096 4 3.46 3.54 2.57 3.18 3.54 2.14 3.80 4.50 2.38
32, 768 5 5.33 5.11 3.89 4.79 5.11 3.20 6.10 6.80 3.80

262, 144 6 7.15 4.50 6.00 6.23 4.50 5.43 8.97 6.63 6.25
262, 144 9 9.89 7.00 7.78 8.41 7.00 6.00 11.67 9.83 7.83

1, 048, 576

4

1 1.00 2.00 1.14 1.01 1.00 2.00 1.14 1.01 1.00 2.00 1.14 1.01
1, 048, 576 2 1.80 1.94 1.91 1.17 1.80 1.91 1.82 1.17 1.82 1.91 1.82 1.18

4, 096 3 2.38 2.58 1.60 2.21 2.58 1.38 2.37 3.00 1.42
1, 048, 576 5 4.91 4.75 3.20 4.61 4.75 2.77 5.47 6.00 3.10

4, 096 6 2.83 2.44 2.00 2.48 2.44 1.56 2.89 3.00 1.67
65, 536 8 3.79 2.50 3.00 3.24 2.50 2.67 4.25 3.25 2.75

32, 768

5

1 1.00 2.00 1.07 1.00 1.00 1.99 1.06 1.00 1.00 1.99 1.06 1.00
1, 048, 576 2 1.96 2.43 1.27 1.94 2.42 1.24 1.95 2.44 1.24

32, 768 3 2.38 2.55 1.46 2.27 2.55 1.31 2.37 2.83 1.33
1, 048, 576 4 3.18 3.27 1.94 3.03 3.27 1.74 3.24 3.75 1.81
1, 048, 576 10 3.93 2.50 3.00 3.36 2.50 2.67 4.38 3.25 2.75

262, 144

6

1 1.00 2.00 1.03 1.00 1.00 2.00 1.03 1.00 1.00 2.00 1.03 1.00
262, 144 2 1.67 1.96 1.30 1.03 1.65 1.91 1.22 1.03 1.67 1.91 1.22 1.03
262, 144 3 1.91 1.78 1.67 1.10 1.84 1.68 1.38 1.10 1.91 1.69 1.38 1.13

4, 096 4 1.97 1.93 1.29 1.77 1.93 1.00 1.89 2.25 1.00
262, 144 9 3.05 2.44 2.00 2.67 2.44 1.56 3.12 3.00 1.67

65, 536
8

1 1.00 2.00 1.01 1.00 1.00 1.99 1.00 1.00 1.00 1.99 1.00 1.00
65, 536 2 1.60 1.95 1.12 1.00 1.57 1.87 1.00 1.00 1.59 1.88 1.00 1.00
65, 536 4 1.74 1.60 1.40 1.00 1.60 1.47 1.00 1.00 1.73 1.50 1.00 1.00

262, 144

9

1 1.00 2.00 1.00 1.00 1.00 2.00 1.00 1.00 1.00 2.00 1.00 1.00
262, 144 2 1.68 2.06 1.05 1.64 2.06 1.00 1.64 2.09 1.00
262, 144 3 1.78 1.86 1.22 1.00 1.70 1.73 1.00 1.00 1.74 1.75 1.00 1.00
262, 144 6 2.14 1.93 1.29 1.88 1.93 1.00 2.00 2.25 1.00

1, 048, 576

10

1 1.00 2.00 1.00 1.00 1.00 2.00 1.00 1.00 1.00 2.00 1.00 1.00
1, 048, 576 2 1.61 1.99 1.06 1.00 1.59 1.93 1.00 1.00 1.59 1.94 1.00 1.00
1, 048, 576 4 2.08 2.08 1.16 1.92 2.08 1.00 2.00 2.25 1.00
1, 048, 576 5 1.76 1.60 1.40 1.00 1.61 1.47 1.00 1.00 1.74 1.50 1.00 1.00

GEOMEAN 6.69 7.24 5.64 5.26 6.07 7.17 4.88 4.69 7.24 8.68 5.50 5.28
Normalized w.r.t. Best 1.27 1.38 1.07 1.00 1.30 1.53 1.04 1 1.37 1.64 1.04 1

eling Environment) [18], on the IBM BlueGene/Q computer
Mira at Argonne National Laboratory. HOMME is part of
the Energy Exascale Earth System Model (E3SM). It use an
unstructured quadrilateral finite element mesh on a sphere,
such as a cubed-sphere mesh for quasi-uniform resolution.
Each surface element is projected into a column of hex-
ahedral elements in the atmosphere. It employs spectral
element and discontinous Galerkin methods to solve the
shallow water or dry/moist primitive equations.

Figure 6 shows a simplified 2D slice of the assignment
of mesh elements to processors in HOMME. A task (shown

with a single color) is a single vertical column of the ele-
ments in the atmosphere. HOMME is designed to scale to
one task per core. Thus, we run strong scaling experiments
with various configurations. Tasks have 3D coordinates; the
BlueGene/Q network has a 5D torus layout. The mapping
methods that we compare are explained below:

• SFC: HOMME’s default partitioning and mapping use
Hilbert space filling curves. HOMME projects the sphere
representing the earth onto a cube to obtain six faces, and
partitions the tasks on these faces using Hilbert curves. The
mapping is the output part number from the SFC; that is, an
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Fig. 6. A simple distribution of tasks to parts in a 2D slice of HOMME.
The inner circle is the earth surface, and there are multiple elements in
a vertical column in the layer of the atmosphere. Tasks correspond to
vertical columns of elements.

MPI rank is given the part with the same number. The rank
ordering in BG/Q can be changed with built-in methods.
ABCDET is the default mapping method; it places MPI
ranks first along T (hardware threads within a node), then
along E, then D, and so on. Other built-in mappings can
be generated with different permutations such as TABCDE,
TEABCD, etc. In our experiments, the HOMME SFC map-
pings with rank ordering ABCDET obtained the best results;
thus, we report results using only ABCDET.
• SFC+Z2: HOMME’s SFC method is used to partition

the mesh elements as in SFC. Then our proposed mapping
method with FZ ordering (as implemented in Zoltan2) is
used to map the parts to nodes.
• Z2: Our proposed mapping method with FZ ordering

is used to both partition and map the mesh elements to
processors within a single step.

In addition to the above variants, we investigated several
application- and architecture-specific optimizations.
• Architecture Specific Optimizations: BlueGene/Q has

a 5D torus network. A complete torus with different di-
mension lengths is allocated for each allocation. For exam-
ple, allocations with 512 and 2048 nodes contain complete
toruses, usually with dimensions 4 × 4 × 4 × 4 × 2 and
4 × 4 × 4 × 16 × 2, respectively. Allocations along the E
dimension can have length at most two. Therefore, there
are two links that connect the immediate E neighbors.
Moreover, the network driver has special optimizations for
the messages routed along E. Therefore, it is usually best to
place heavily communicating tasks within a node, and then
within nodes that are neighbors along E. We achieve this
by ignoring E during the partitioning of the processors. We
denote this optimization in the figures below with “+E”.
• Application Specific Optimizations: The application

coordinates in HOMME are 3D coordinates on a sphere,
as shown in Figure 7(a). HOMME’s SFC implementation
projects these coordinates to a cube 7(b) and partitions these
cube coordinates. In our preliminary experiments, we saw
that Z2 outperformed SFC in terms of mapping quality on
smaller numbers of parts. However, as the number of parts
increased, SFC obtained better quality than Z2. Z2 started
by slicing the sphere; then partitioning the sphere slices
became difficult in further steps when the number of parts
was high. Partitioning the cube coordinates made achieving
higher quality easier in further partitioning. Therefore, we
transform the application coordinates in the pre-processing
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Fig. 7. The original sphere coordinates, transformed cube and 2D face
coordinates of the mesh elements in HOMME.

step as in Figure 7(b). In addition, in order to make use
of the torus’ wrap-around links, we transform the cube
coordinates into 2D face coordinates, preserving the locality
as much as possible as shown in Figures 7(c) and 7(d). With
the 2D transformation of the task coordinates, the furthest
mesh elements along the x dimension are connected, which
helps Z2 to place these tasks on nearby processors.

HOMME is usually run with a hybrid setting in Mira;
four MPI ranks are executed within a node, and each rank
is occupied with 16 threads (with hyperthreads). In order to
study strong scaling, we first run HOMME with MPI only
(16 ranks per node); then we run the mapping in hybrid
mode as in the real-use case. HOMME is usually run to
simulate time frames as big as years; however, we simulate
only a single day, since from the mapping perspective, the
communication pattern does not change. We use 98, 304
tasks (six faces of the cube-sphere with 128 × 128 elements
per face) and various numbers of nodes to study strong scal-
ing. In the experiments, we use the lightweight BGQNCL
library [9] to monitor the network link occupancies.

Table 2 gives the communication times of MPI-only
HOMME with different mappings (SFC, SFC+Z2, and Z2)
and coordinate transformations (Sphere, Cube and 2DFace
from Figure 7). Times are normalized with respect to the
communication time with HOMME’s SFC mapping on 8K
processors. With SFC, HOMME’s communication time does
not strong scale; there is a 36% and 56% reduction in the
communication time on 16K and 32K processors. On 8K
processors, neither SFC+Z2 nor Z2 variants (using Sphere,
Cube and 2DFace transformations, with or without “+E”
optimization) are able to reduce the communication time
further. Although SFC+Z2 reduces WeightedHops by 1-
25%, it increases Data (Eqn. 5) by 14-31% on 8K processors
(not shown). And even though Z2 reduces both average
Data (Eqn. 4) per link and WeightedHops, it increases the
number of messages exchanged in the system. We believe
that these are the reasons for not seeing any reductions
on 8K processors. On the other hand, as the number of
processors increases, our mapping methods reduce the com-
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munication time significantly. For example, SFC+Z2 and Z2
reduce the communication time by 17% (16%) and 20%
(27%) on 16K (32K) processors, respectively. Z2 usually
performs best with 2DFace coordinates, but using 2DFace
coordinates for SFC+Z2 hurts performance, different coor-
dinate transformations are used during the partitioning and
mapping steps. The architecture-specific “+E” optimization
usually reduces communication time by another 4 − 5%
(and at most 22%). Overall, the communication time of
HOMME with Z2 is reduced by 49% and 67% on 16K and
32K processors with respect to 8K processors. Thus, strong
scaling for communication time is improved.
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Fig. 8. Hybrid HOMME communication time normalized with respect to
the time using HOMME’s SFC mapping with 4K ranks. Actual communi-
cation time for HOMME with SFC are given above the blue line.

Figure 8 shows communication time in hybrid HOMME
normalized with respect to HOMME using its default SFC
mapping on 4K ranks. In this experiment, we examine
strong scaling using 1024 to 8192 nodes with four ranks
each. At low node counts, each rank has 12 threads; how-
ever, above 4096 nodes, we reduce the number of threads
because we run out of tasks (98304 tasks in total). We
run only the best variants of our mappings for SFC+Z2
(Cube+E) and Z2 (2DFace+E). SFC+Z2 and Z2 reduce com-
munication time up to 12% and 31%, respectively. Figure 9
gives the maximum and average amounts of data across
the A, B, C, D, and E links, as measured with BGQNCL.
Since all links have uniform bandwidth, link contention is
proportional to these values. As seen in Figure 9(a), our
mapping methods reduce Data (Eqn. 5). Figure 9(b) shows
that they also improve utilization of the links. HOMME with
SFC overutilizes the D and E links, while it underutilizes
A, B and C. Highly communicating tasks are given consec-
utive part numbers with SFC; therefore, with the ABCDE
rank ordering, most of the communication occurs along D
and E. The SFC+Z2 and Z2 mapping methods distribute
the communication along the other dimensions, providing
better link utilization as well as less contention in the links.

5.3 Task Mapping for Gemini Interconnection Networks

In this section, we evaluate the mapping methods on
HOMME and a proxy application, MiniGhost [5], on the
Cray XK7 (Titan) at Oak Ridge National Laboratory.

5.3.1 HOMME Task Mapping on Titan
We evaluate our task mapping with a strong scaling exper-
iment using HOMME on Titan. The size of the dataset is
86, 400 surface elements in a cube-sphere mesh. Each face of
the cube has 120×120 surface elements, which is a frequent
test case for HOMME on Titan. On Titan, HOMME obtains
its best performance without threads; therefore, we run
the MPI-only HOMME without threads. The strong scaling
experiments are run from 10, 800 to 86, 400 processors.

As opposed to BlueGene/Q’s contiguous allocations,
Titan returns possibly sparse allocations. The default MPI
rank ordering within an allocation is based on a Hilbert
space filling curve that prioritizes the visit order based on
the link bandwidths. For example, before jumping through
slow Y links, it traverses whole a box in the dimension of
a×2×4, where the length a of the box along the X dimension
depends on the allocation and can be between 2 and 5.
Therefore, the default MPI rank ordering preserves locality
in the network, as long as locality is also preserved by the
application. Since HOMME uses Hilbert SFC by default, it
maps well to the default MPI rank ordering; therefore, there
is only a little room for improvement from task mapping.

We compare the performance the proposed task map-
ping method to HOMME’s default SFC method. We use
three variants of our mapping methods:
• Z2 1: Our proposed mapping method with FZ order-

ing is used to map and partition the mesh elements to pro-
cessors within a single step (equivalent to Z2 in Section 5.2).
• Z2 2: The partitioning algorithm used for mapping is

slightly changed. The number of processors used in this
experiment is not a power of 2. Because MJ recursively
bisects the domain, processors within a node are bisected
early in the partitioning process when the number of pro-
cessors is not a power of 2. For example, when 10, 800
processors are used, overall 675 nodes are allocated. When
bisecting these nodes equally, one of the nodes will be split
in the first bisection. This will cause processors within the
split node to have tasks that are likely to be far apart. In
Z2 2, the bisection algorithm performs an uneven bisection,
distributing the nodes/tasks in a way that prevents split
nodes early in the hierarchy. The uneven bisection uses
the largest prime divisor to determine weights for the two
resulting parts. Since 10, 800 = 24×33×52, the largest prime
divisor is 5. Rather than split the processors into two parts
containing half the processors ((2.5/5) × 10, 800 = 5400 )
each, it creates one part with 6480 = 3/5×10, 800 processors
and one with 4320 = 2/5× 10, 800 processors. This method
also employs an architecture-specific optimization, in which
it scales the distances between the node coordinates based
on the link bandwidths. The distances corresponding to
links are scaled by 1

bandwidth , so that nodes across links with
higher bandwidth appear to be “closer” to each other than
those across slower links.
• Z2 3: As with Z2 2, this method bisects based on

the largest prime divisor. In addition, it creates boxes of
dimension 2×2×8 and transforms the 3D node coordinates
to 6D node coordinates. Three of the coordinates are a
node’s coordinate within a box; the other three coordinates
are the coordinates of the box. The coordinates are scaled
based on the bandwidth as before; however, the coordinates
corresponding to the box coordinates are scaled with larger
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TABLE 2
HOMME communication time with various mapping strategies and transformations, normalized with respect to the communication time on 8192

processors using HOMME’s SFC.
Ref SFC+Z2 Z2
SFC Sphere Sphere+E Cube Cube+E 2DFace 2DFace+E Sphere Sphere+E Cube Cube+E 2DFace 2DFace+E

8192 1.00 (51.49 s) 1.12 1.15 1.10 1.04 1.06 1.01 1.00 1.04 1.07 1.04 1.04 1.02
16384 0.64(33.14 s) 0.58 0.58 0.58 0.53 0.61 0.59 0.57 0.56 0.56 0.53 0.51 0.51
32768 0.44(22.79 s) 0.38 0.39 0.39 0.37 0.58 0.45 0.36 0.36 0.38 0.36 0.32 0.33
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Fig. 9. Data (Eqn. 5) and average Data (Eqn. 4) on BG/Q links along different dimensions for Hybrid HOMME with 32K ranks.

weights to guide the partitioner to divide between boxes
first, before dividing within boxes.

Figure 10 shows the communication time obtained with
different mapping methods in HOMME. This experiment
examines strong scaling, with the number of processors
ranging from 10, 800 to 86, 400. We run three instances for
each processor count, where each instance corresponds to
a different allocation. Within each allocation, each mapping
is executed twice. We experienced job interference due to
external jobs on the system; therefore, for the sake of fair
comparison, we include only those allocations where the
execution time of the two mappings does not change signif-
icantly for all mappings run.
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Fig. 10. HOMME’s communication time using different mapping meth-
ods, normalized with respect to communication time using SFC. The
numbers above the line are the communication time of SFC in seconds.

As seen in Figure 10, the improvements are minimal on
HOMME on Titan. Z2 1 increases the communication time
because nodes are assigned tasks that are far from each
other. Z2 2 solves this problem partitioning based on the
longest prime factor, which obtains similar performance to
the default SFC. Only Z2 3 obtains reductions with respect
to SFC, and these reductions increase as the number of

processors increases. Z2 3 obtains up to 18% reduction in
the communication time of HOMME on 86, 400 processors.

Figure 11 shows the communication metrics for each of
the allocations using Z2 3, normalized with respect to the
metrics using SFC. In general, SFC obtains a good mapping
that minimizes WeightedHops, Latency (Eqn. 7), and total
number of messages. In experiments with small numbers of
processors, the Z2 mapping methods usually fail to improve
most of these metrics, except for the total number of mes-
sages exchanged. As a result, their performance with low
processor counts is usually close to SFC. On the other hand,
on 86,400 processors, the partitions become identical (one
task per part); therefore, changes in performance come only
from the mapping methods. Z2 3 usually reduces Latency,
while it increases the WeightedHops.

Figure 12 characterizes the network contention in each
dimension on Titan for both SFC and Z2 3. Each result is
normalized with respect to SFC in the X+ links. Data(M)
values do not consider the distinct bandwidths of the links,
while Latency values incorporate link bandwidths. SFC
distributes Data somewhat evenly, with most of the traffic
going through Y- links. Thus, its Latency is highest in
the Y links. With its coordinate transformation methods,
Z2 3 avoids traffic along the Y dimension and increases
traffic along the X and Z dimensions. Although Data is less
evenly distributed by Z2 3, the traffic is well-distributed
based on the bandwidth of the links. Therefore, Latency
along each dimension is more equal. This traffic distribution
increases the utilization of the links, and reduces Latency
(and, as a result, the communication time), even though
WeightedHops increase by 25%. Because HOMME’s mes-
sages are large, these bandwidth-based metrics are more
important than latency-based ones.

In summary, when both applications and nodes employ
similar ordering techniques, the room for improvement
is likely to be small. However, performance can still be
improved when application-specific requirements such as
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messages sizes and architecture specifications such as the
non-uniform bandwidths are considered. In the next section,
we study an application that uses a different task ordering
than the underlying architecture.
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Fig. 11. Communication metrics in HOMME with Z2 3, normalized with
respect to the metrics with SFC: WH (WeightedHops, Eqn. 3); TM
(Total number of messages); Data(M) (Eqn. 5); Latency(M) (Eqn. 7).
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each network dimension (X+, X-, Y+, Y-, Z+, Z-), normalized by SFC X+

5.3.2 MiniGhost Task Mapping on Titan

MiniGhost [5] is a proxy application that implements a
finite difference stencil and explicit time-stepping scheme
across a three-dimensional uniform grid. Using a seven-
point stencil, each task communicates with two neighbors
along each dimension; tasks along geometry boundaries
communicate with only their neighbors interior to the
boundary (i.e., boundary conditions are non-periodic). Each
task is assigned a subgrid of the 3D grid based on its task
number. The number of tasks tnumx, tnumy , and tnumz in
each dimension (with tnum = (tnumx)(tnumy)(tnumz)) is
specified by the user. Subgrids of the 3D grid are assigned
to tasks by sweeping first in the x direction, then the y
direction, and then the z direction. Thus, task i shares sub-
grid boundaries (and, thus, requires communication) with
tasks i+ 1 and i− 1 to its east and west, respectively; with
tasks i + tnumx and i − tnumx to its north and south; and
with tasks i+(tnumx)(tnumy) and i− (tnumx)(tnumy) to
its front and back. In the default MiniGhost configuration,
task i is performed by rank i. MiniGhost also provides an
application-specific grouping of tasks for multicore nodes;
on Titan, this Group method reorders tasks into 2 × 2 × 4
blocks to better align tasks with the 16 cores in a node.
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Fig. 13. Maximum communication time in MiniGhost (weak scaling)
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Fig. 14. AverageHops and Latency(M) in MiniGhost (weak scaling)

We ran weak scaling experiments using MiniGhost to
evaluate the effect of mapping on communication time.
We compared our geometric method with the MiniGhost’s
default task layout and its application-specific grouping. In
these experiments, both the application connectivity and the
network are three-dimensional. We used the same mapping
variants Z2 1, Z2 2, and Z2 3 as before.

As shown in [4], the execution time of MiniGhost with
its default mapping does not scale well in weak scaling
tests. Our goal is to increase scalability by increasing lo-
cality of tasks within the allocation. We ran weak-scaling
experiments with 8K–128K processors. Each task owned a
60 × 60 × 60-cell subgrid; we ran the simulation for 20
timesteps with 40 variables per grid point. For each exper-
iment, we obtained a node allocation of the requested size,
and ran all mapping methods within that allocation. We
repeated each experiment twice with different allocations.

Figure 13 shows the maximum communication time
(across processors) for weak scaling experiments with
MiniGhost. With MiniGhost’s default mapping (Default),
communication time increases dramatically as the number
of processors is increased. The Group method controls the
growth in communication costs, but consistent with results
in [4], costs increase at the highest processor counts. Our
geometric mapping methods provide the lowest commu-
nication costs, and, as desired for weak scaling, the com-
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munication costs remain nearly constant as the number
of processors increases. Among the Z2 variants, Z2 1 and
Z2 2 had similar performance. Their mappings differ only
slightly, as the problem sizes are powers of two. On the other
hand, Z2 3 obtains slightly slower performance.

Figure 14 shows the metrics AverageHops (Eqn. 2) and
Latency (Eqn. 7). With the default MiniGhost mapping,
AverageHops, Latency and communication time all fol-
low the same upward trend as the number of processors
increases. Since Group does not account for inter-node
communication, its AverageHops increase with the number
of nodes. AverageHops for the geometric mappings Z2 1
and Z2 2, however, remain nearly unchanged as we use
more nodes, suggesting greater scalability using the geo-
metric mappings. Latency is also low with the geometric
mappings, resulting in lower communication time. As in
HOMME, Z2 3 obtains the lowest Latency in most cases.
However, its AverageHops are up to twice as high as with
Z2 1 and Z2 2. MiniGhost’s messages are smaller (1 MB)
than HOMME’s; thus, reducing Latency while doubling
AverageHops does not improve performance.

Overall, our geometric mapping methods reduced com-
munication time by 35-64% relative to the default MiniGhost
mapping, and 10-28% relative to the application-specific
Group mapping. The largest reductions were seen at the
highest processor counts, reflecting the importance of map-
ping as the number of cores in parallel computers increases.

6 CONCLUSION

We have proposed a new topology-aware task mapping
method that uses multijagged geometric partitioning to
reorder task and processor coordinates in a way that assigns
communicating tasks to “nearby” processors. This method
is designed for mesh and torus-based networks with con-
tiguous and non-contiguous node allocations, such as IBM’s
BlueGene/Q and Cray’s XK7. We also proposed several
strategies (e.g., multiple rotations, coordinate shifting, new
ordering schemes) that improve geometric mapping relative
to a baseline geometric method. We compared our methods
with the default mapping in two applications, as well as
with application-specific mapping. Our geometric mapping
reduced communication time up to 75% on 128K cores rel-
ative to the default mapping in the MiniGhost finite differ-
ence proxy application, and up to 31% on 32K ranks for the
E3SM/HOMME climate modeling code. Our method can be
applied to various applications and networks with heteroge-
nous links by applying transformations to the coordinates to
represent the application and network characteristics. Our

implementation is open-source software in Zoltan2, avail-
able in Trilinos at https://github.com/trilinos/Trilinos.

We have also presented guidance about when task map-
ping is essential to reduce to communication time. We
showed that applications obtain somewhat good mapping
if their task placement is aligned with the network’s MPI
rank placement, while the mapping quality is low when
the task placement schemes do not correspond. We showed
that task mapping methods provide a portable way of ob-
taining good mappings for different network architectures.
As future work, our mapping methods will be extended to
accommodate dragonfly networks such as the Cray Aries
network. We will investigate coordinate transformations to
represent the hierarchies within the dragonfly networks.
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APPENDIX A
ANALYSIS OF THE ORDERINGS

In this section, we study the number of hops induced by Z
and Flipped-Z orderings. For simplicity, we assume that we
have a one-to-one mapping of tasks to nodes, and that the
number of tasks and nodes is a power of two, 2n. We assume
a pd-dimensional mesh-topology processor network, and a
td-dimensional tasks with a td-dimensional stencil-based
communication pattern (i.e., each task communicates with
2 × td neighbors). n is divisible by both td and pd. For the
analysis, we assume that the cuts in the task- and processor-
partitions are made in a consistent order. (This assumption
may not apply with longest-dimension partitioning; we will
comment about that case later.)

A.1 Z Order
Z order is the default part numbering in our geometric par-
titioning methods. Using the example in Figure 3(a), we see
the order of the cuts is [gray, blue, red, green, pink, orange]
We use 0-based reverse indices to represent these cuts; i.e.,
the indices of orange, pink, green, red, blue, and gray are
0, 1, 2, 3, 4, and 5, respectively. Let cutsi be the sorted list
of cut indices that is applied along dimension i. For the
example,

• cuts0 = cutsx = [orange, green, blue] = [0, 2, 4].
• cuts1 = cutsy = [pink, red, gray] = [1, 3, 5]

Let p be the binary representation of a part number that
is assigned with Z ordering. And let pi denote the binary
number that is obtained by filtering only the bits corre-
sponding to cutsi. The ordering along each dimension i is
affected only by cutsi, and consecutive parts along dimen-
sion i have consecutive pi. For example, the bottom row of
Figure 3(a) includes part numbers {0, 1, 4, 5, 16, 17, 20, 21}.
Because cutsx = [0, 2, 4], we find

• p = 0 = 000000, px = 000 = 0
• p = 1 = 000001, px = 001 = 1
• p = 4 = 000100, px = 010 = 2
• p = 5 = 000101, px = 011 = 3
• p = 16 = 010000, px = 100 = 4
• p = 17 = 010001, px = 101 = 5
• p = 20 = 010100, px = 110 = 6
• p = 21 = 010101, px = 111 = 7

As a result, for two neighboring parts p1 and p2 along
dimension i, pi1 = pi2 + 1. Further, when pi1 has a pattern
xxx...xxx0111...111, where there are j consecutive 1s
starting from the least significant bit (Bit 0), pi2 has a pattern
xxx...xxx1000...000. pi1 and pi2 differ in their j+1 least
significant bits.

Neighbors differ in the least significant j + 1 bits if their
pi are separated by the cut with index j in dimension i. For
example, in Figure 3(a), the blue cut has index j = 2 along
the x dimension. It separates neighbors

• p1 = 5 = 000101, px1 = 011
• p2 = 16 = 010000, px2 = 100

on the first row, which differ in j + 1 = 3 red bits.
In 1D, the number of neighbors that are separated by a

cut with index j along dimension i is

NN1Di(j) =
2|cutsi|

2j
. (8)

Since NN1Di(j) is replicated along all other dimen-
sions, there are 2n

2|cutsi|
replications. Thus, the overall num-

ber of neighbors that are separated by the cut with index
j ∈ cutsi along dimension i is

NNi(j) = 2n−j (9)

We analyze the number of hops for the messages associ-
ated with each cut index j along a task dimension tdi. Let

• cutstdi = [x|x = i+ td× j and j ∈ [0, n
td )]

• cutspdi = [x|x = i+ pd× j and j ∈ [0, n
pd )]

for tdi = 0, 1, . . . , td− 1, and pdi = 0, 1, . . . , pd− 1.
Figure 16(a) shows a four-dimensional (td = 4) partition

and numbering of two tasks that are neighbors in task
dimension td3. Each dimension’s partition is shown with
a different color; the bits with red, blue, yellow and green
colors correspond to dimensions td0, td1, td2, and td3,
respectively. We have cutstd3

= [3, 7, 11, 15, 19, ...], and we
consider the neighborhood of two consecutive numbers that
are separated by the cut j = 4 along dimension td3. Such
neighbors differ in the least significant j + 1 bits of ptd3 .

Since tasks are mapped to processors that have the same
part numbers, we need to find the number of hops between
the processors that share these tasks’ part numbers. Fig-
ure 16(b) shows an example of the processor partition and
the bits for the case where pd = 1. In this case, the number
of hops between the neighbors is the difference between the
part numbers (ppd0

2 − ppd0

1 ) = 219 − 215 − 211 − 27 − 23.
Similarly, Figure 16(c) shows processor part assignments

for pd = 2. In this case, the number of hops along dimension
pd0 (red bits) is (ppd0

2 −ppd0

1 ) = 0, while the number of hops
along pd1 (blue bits) is (ppd1

2 −ppd1

1 ) = 29−27−25−23−21.
The number of hops for pd = 3, pd = 4 and pd = 8 is

explained in Figure 16. In general, the number of hops for
neighbors that are separated by cut j along tdi (neighbors
that differ in the j + 1 least significant bit of ptdi ) is

NHZtdi
(j) = 2b

td×j+i
pd c+

j−1∑
k=0

2b
td×k+i

pd c sign((td× k + i) (mod pd),

(td× j + i) (mod pd))
(10)

where sign(a, b) = −1 if a = b; 1, otherwise. That is, b =
(td×j+i) (mod pd)) is the processor dimension of the most
significant differing bit in the node partition, and b td×j+i

pd c
is the position of that bit in pb. In Z ordering, differing bits
that are in the same dimension with the most significant bit
reduce the number of hops, while the differing bits in other
dimensions increase the number of hops. Thus, if pd and td
are similar and somewhat structured, Z ordering is likely
to reduce the number of hops. We simplify Equation 10 for
further comparisons:
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(a) Task partition with td = 4. These tasks are neighbors along task
dimension td3.

(b) Processor partition with pd = 1. The number of hops between
the two consecutive task numbers in a one-dimensional processor
network is the difference of the two numbers:
ppd02 − ppd01 = 219 − 215 − 211 − 27 − 23.

(c) Processor partition with pd = 2. The number of hops along
processor dimension pd0 (red) is zero, since all red bits are identical
(ppd02 − ppd01 = 0). The number of hops along pd1 (blue) is the
difference of the blue bits: ppd12 − ppd11 = 29 − 27 − 25 − 23 − 21.

(d) Processor partition with pd = 3. The numbers of hops along
processor dimensions pd0 (red), pd1 (blue), and pd2 (yellow) are
25 + 21, 26 − 22, and 23, respectively.

(e) Processor partition with pd = 4. Because pd = td, the task and
processor partitions align. Thus, the number of hops is zero for pd0
(red), pd1 (blue), and pd2 (yellow), and one for pd3 (green).

(f) Processor partition with pd = 8. The bit patterns for dimensions
pd0, pd1, pd2, pd4, pd5, and pd6 are identical, so there are zero hops
in these dimensions. The number of hops is 22− 21− 20 along pd3
(green), and 21 + 20 along pd7 (light green).

Fig. 16. Partitioning of two consecutive part numbers in Z order with task
dimension td = 4 and varying processor dimensions pd = 1, 2, 3, 4, 8.
The bit patterns of two part numbers that are consecutive in Z-order
are shown in each subfigure; an “x” in a bit position indicates that the
two part numbers share the same value in that position. The partitioning
of the bits to determine Z-order position in each dimension is indicated
with colors. The number of hops in each dimension is calculated from
the partitioning of the bit pattern.

TABLE 3
Decimal/binary (used in Z ordering) and FZ/Gray Code (used in FZ

ordering) values up to 32.

Decimal Binary FZ Gray Code Decimal Binary FZ Gray Code
0 00000 0 00000 16 10000 24 11000
1 00001 1 00001 17 10001 25 11001
2 00010 3 00011 18 10010 27 11011
3 00011 2 00010 19 10011 26 11010
4 00100 6 00110 20 10100 30 11110
5 00101 7 00111 21 10101 31 11111
6 00110 5 00101 22 10110 29 11101
7 00111 4 00100 23 10111 28 11100
8 01000 12 01100 24 11000 20 10100
9 01001 13 01101 25 11001 21 10101

10 01010 15 01111 26 11010 23 10111
11 01011 14 01110 27 11011 22 10110
12 01100 10 01010 28 11100 22 10010
13 01101 11 01011 29 11101 18 10011
14 01110 9 01001 30 11110 19 10001
15 01111 8 01000 31 11111 17 10000

NHZtdi(j)


= 1, if td = pd;

< 2b
td×j+i

pd c, if td (mod pd) = 0;

> 2b
td×j+i

pd c, otherwise.

(11)

That is, if the two most significant bits are in the same di-
mension with respect to the processor partition dimensions,
the number of hops is strictly less than 2b

td×j+i
pd c; otherwise,

the number of hops is greater.

A.2 Flipped-Z Order

Flipped-Z (FZ) order performs ordering that is somewhat in
between Z-order and Gray order (G). G flips all coordinates
of the larger half after each bisection, while FZ flips only
those coordinates corresponding to the partitioning dimen-
sion. When applied to 1D data, FZ returns the same order as
G, as shown in Table 3. Consecutive indices differ by only a
single bit in Gray order. Two observations follow.

• Two neighbor parts in FZ that are separated with a
cut with index j differ only in bit j of their Gray-code
representation. For example, the FZ parts 0 and 1 are
separated by the cut with index j = 0; they differ
only in the least significant bit. Similarly, neighboring
FZ-order parts 8 (Gray-code 01000) and 24 (11000)
are separated by the cut with index j = 4; they differ
only in bit 4.

• If two neighbors differ in bit j of their Gray-code
value, all the bits up to and including bit j − 2 are 0,
and bit j − 1 is 1. For FZ-order tasks 8 and 24, bits 0,
1, and 2 are zero bits, and bit j − 1 = 3 is 1 in both.

As with Z, the FZ ordering along dimension i is affected
only by cutsi. FZ induces a Gray order on pi, the bits
corresponding to cutsi. For example, in the bottom row of
Figure 3(d), the parts are {0, 1, 5, 4, 20, 21, 17, 16}; this order
corresponds to Gray ordering of the red bits px.

• p = 0 = 000000, px = 000
• p = 1 = 000001, px = 001
• p = 5 = 000101, px = 011
• p = 4 = 000100, px = 010
• p = 20 = 010100, px = 110
• p = 21 = 010101, px = 111
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• p = 17 = 010001, px = 101
• p = 16 = 010000, px = 100

Figure 17(a) shows a 4-dimensional (td = 4) partition
and numbering of two consecutive tasks in dimension td3
with FZ. Each dimension’s partition is shown with a differ-
ent color. The bits with red, blue, yellow and green colors
correspond to dimensions td0, td1, td2, and td3, respectively.
We consider the neighborhood of two consecutive numbers
that are separated by the cut with index j along dimension
td3; such neighbors differ in bit j = 4 in the figure. Fig-
ure 17(b) shows the processor partition and the distribution
of the bits for pd = 1. In this case, the number of hops
between neighboring tasks is the difference between the
decimal task numbers corresponding to the Gray code as
in Table 3. Because of Gray code’s properties, the distance
between two Gray-code numbers depends on the values of
the x’s in Figure 17(a); that is, the distance is different for
each pair of neighbors. For example, Figure 18 contains a
simple case with the Gray code for eight parts. Looking at
Gray-code pairs that differ only in bit 2, we see that the
number of hops between them is not a simple difference
of the Gray-code bits. The actual distance between such
pairs depends on the values of the lower-order bits that they
share.

However, it is possible to calculate the average number
of hops per message in FZ using the Gray-code values. To
calculate the average number of hops, we define the most
significant free bit, MSFB, to be the most significant bit
with “x” values. In Figure 17(b), consecutive pairs that differ
in bit 19 with respect to pd0 are shown; MSFB is bit 18. In
Gray code, half of such pairs have 0 for their 18th bit, and
half have 1. Therefore, for each pair in the form

• p1 = 01xx1xxx0xxx0xxx0xxx
• p2 = 11xx1xxx0xxx0xxx0xxx

there is another pair

• p3 = 00xx1xxx0xxx0xxx0xxx
• p4 = 10xx1xxx0xxx0xxx0xxx

Because of the properties of Gray code, if

• p3 = y in decimal, then
• p4 = 220 − y − 1 in decimal.

Similarly,

• p1 = 219 − y − 1 in decimal, and
• p2 = 220 − 219 + y in decimal.

The sum of the number of hops between these two pairs is

• [(220−y−1)−y]+[(220−219+y)−(219−y−1)] = 220.

For each set of pairs (p1, p2) and (p3, p4), the sum of the
hops is 220, making the average number of hops 219 for
pairs differing in bit 19. For example,

• p1 = 01111000000000000000 (Gray)
327680 (decimal)

• p2 = 11111000000000000000 (Gray)
720895 (decimal)

• p3 = 00111000000000000000 (Gray)
196607 (decimal)

(a) Task partition with td = 4. These tasks are neighbors along task
dimension td3.

(b) Processor partition with pd = 1. The average number of hops
between parts differing in bit 19 along processor dimension pd0 is
219. (See discussion in the text.)

(c) Processor partition with pd = 2. The average number of hops
along processor dimension pd1 for parts differing in bit 9 of ppd1
(blue) is 29; the number of hops along pd0 is zero.

(d) Processor partition with pd = 3. Along processor dimensions
pd0 (red) and pd2 (yellow), there are zero hops between the parts.
The average number of hops along pd1 (blue) for parts differing in
bit 6 of ppd1 is 26.

(e) Processor partition with pd = 4. Because pd = td, the task and
processor partitions align. Thus, the average number of hops is zero
for pd0 (red), pd1 (blue), and pd2 (yellow), and one for pd3 (green).

(f) Processor partitioning with pd = 8. The number of hops is zero
along processor dimensions pd0, pd1, pd2, pd4, pd5, pd6 and pd7.
The average number of hops along pd3 (green) is 23 − 1 = 7. (See
the discussion of conflict bits in the text.)

Fig. 17. Partitioning of two consecutive part numbers in FZ order
with task dimension td = 4 and varying processor dimensions pd =
1, 2, 3, 4, 8. Gray-code bit patterns of two part numbers that are consec-
utive in task dimension td3 are shown in each subfigure; an “x” in a bit
position indicates that the two part numbers share the same value in
that position. The partitioning of the bits to determine FZ-order position
in each dimension is indicated with colors. The average number of hops
in each dimension is calculated from the partitioning of the bit pattern.
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FZ 0 1 3 2 6 7 5 4
Gray 000 001 011 010 110 111 101 100

Decimal 0 1 2 3 4 5 6 7

5 hops

3 hops
7 hops

1 hop

Fig. 18. A simple eight-part example showing how, with FZ order, the
values of bits 0 and 1 in each Gray-code part number affect the number
of hops between pairs of parts that differ only in bit 2. In the example,
the average number of hops between pairs differing only in bit 2 is four.

• p4 = 10111000000000000000 (Gray)
851968 (decimal)

The sum of the number of hops between these pairs is
720895− 327680 + 851968− 196607 = 220.

In Figure 17(c) with pd = 2, the mapping has 29 hops on
average along pd1 (blue), and 0 along pd0 (red) for the task
pairs in Figure 17(a). Likewise, in Figure 17(d) with pd = 3,
the mapping has 26 hops on average along pd1 (blue) and
zero hops along pd0 (red) and pd2 (yellow). In fact, since the
neighboring parts differ by only a single bit, they always
have hops along only a single dimension.

In Figure 17(e), pd = 4, so the task and processor
partitions are exactly the same. In this case, there are no free
bits along pd3 (MSFB = −1). Thus, the average number of
hops along pd3 is 20 = 1.

For pd = 8 in Figure 17(f), pd3 (green) has the differing
bit; its neighboring tasks along pd3 are 000 and 100. In
this example, there are no free bits with “x” values in
pd3. Instead, the second most significant bit is 0. This is a
conflict case for FZ, causing the consecutive tasks to have
the maximum number of hops between them; i.e, 000 and
100 are the furthest tasks from each other considering only
3 bits. If the second most significant bits were “1” instead
of “0” (010 and 110), they would have only a single hop
between them. In general, if there is such a conflicting bit at
position CB, the number of hops is increase by 2CB+2 − 1.
In more general way, if MSFB < CB, the average number
of hops is 2CB+2 − 2MSFB+1. In this example, CB = 1,
and MSFB = −1 (does not exist), so the number of hops
between 000 and 100 is 7.

The average number of hops for FZ along dimension tdi
for tasks that differ in bit j is then

NHFtdi(j) =


1, if td = pd;

2b
td×j+i

pd c+1 − 1, else if pd (mod td) = 0;

2b
td×j+i

pd c, otherwise.
(12)

The first case is trivial. The second case results in conflict
bits, with CB = j − 1 and MSFB = −1. The third case is
the general case, in which td and pd are not factors of each
other, which results in MSFB = j − 1.

Comparing Equations 11 and 12, we see

• NHFtdi
(j) = NHZtdi

(j), if td = pd. The orderings
are equivalent when td = pd and the cuts have
consistent order.

• NHFtdi
(j) > NHZtdi

(j), if td (mod pd) = 0.
Z ordering is likely to have better mapping when
td-dimensional tasks are mapped to pd = td × k
processor dimensions. Yet even for this case, Z or-
dering might suffer if the cuts do not have consistent
ordering.

• NHFtdi
(j) < NHZtdi

(j), if pd (mod td) 6= 0. If td
and pd are not factors of each other, FZ is likely to
produce better mappings.

• The case with pd (mod td) = 0 is the worst case
for FZ. Yet, below we show that NHFtdi

(j) <
NHZtdi

(j) for pd (mod td) = 0.

Throughout the analysis, we assumed that consistent cut
orderings are used in both the task and processor partitions.
However, with longest-dimension partitioning, partitioning
can be done in arbitrary dimensions; e.g., two consecutive
cuts can be along the same dimension as in Figure 2. The
quality of the Z ordering increases as with the overlap of the
partitioning patterns of the tasks and processors. We expect
that such pattern overlaps are much smaller in mappings
with longest dimension partitioning. Therefore, we expect
FZ to be better than Z. In addition, our analysis assumes
that both task- and processor-networks are meshes. Because
of the cyclic properties of Gray code, we expect FZ orderings
to be even better on torus structures, as is demonstrated in
the experiments of Section 5.

A.3 Number of Hops when pd (mod td) = 0

We analyze the special case in which pd 6= td and
(pd (mod td)) = 0. Let m = pd

td . Equation 12 then becomes

NHFtdi
(j) = 2b

j
m c+1 − 1. (13)

In computing NHZtdi
(j) for this case, cut in-

dices k on the processor side (i.e., in cutspdim
,

cutspdim+1
, . . . , cutspd(i+1)m−1

) can be calculated as k =

b j
mc, where j is a cut index on the task side (i.e., in cutstdi

).
There are m cut indices that produce the same value for
k. Thus, in Equation 10, the sign function returns −1 once
everym indices, while it returns 1 for the otherm−1 indices.
Thus, we can rewrite Equation 10 as

NHZtdi(j)

= 2b
j
m c(j (mod m) + 1) + (m− 2)

b j
m c−1∑
k=0

2k

= 2b
j
m c(j (mod m) + 1) + (m− 2)(2b

j
m c − 1)

= 2b
j
m c(j (mod m)) + (m− 1)(2b

j
m c) + 2−m

(14)

For m ≥ 3, NHZtdi
(j) in Equation 14 is always larger than

NHFtdi
(j) in Equation 13; thus, FZ order is preferred.

However, for m = 2, the number of hops with respect to
cut j in Z ordering is

NHZtdi
(j) =

{
2

j
2 , if j is even;

2
j−1
2 +1, otherwise.

(15)
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To simplify the presentation, let C = |cutstdi
|. From

Equation 8, we have NN1Dtdi
(j) = 2C−j messages across

cut j. Therefore, using Z, the number of hops for all mes-
sages across cut j is

NeighborsHopsZtdi
(j) = NN1Dtdi

(j)×NHZtdi
(j)

=

{
2C−

j
2 , if j is even;

2C−
j−1
2 , otherwise.

(16)

We compute the total number of hops with respect to
tdi and all cuts by summing Equation 16 over all cuts j ∈
cutstdi

. First, assume that C is even. The total number of
hops for the even cuts (j = 2k) is

∑C
2 −1
k=0 2C−k; the number

of hops for the odd bits (j = 2k + 1) is also
∑C

2 −1
k=0 2C−k.

TotalHopsZtdi = 2

C
2 −1∑
k=0

2C−k

= 2(2C)

C
2 −1∑
k=0

2−k

= 2(2C)[
( 12 )

C
2 − 1

1
2 − 1

]

= 22(2C)(1− 2
−C
2 )

= 2C+2 − 4(2
C
2 ).

(17)

If C is odd, there is one extra term in the summation for the
even cuts, which becomes

∑C−1
2

k=0 2C−k; the summation for

the odd cuts becomes
∑C−1

2 −1
k=0 2C−k. Then,

TotalHopsZtdi
=

C−1
2∑

k=0

2C−k +

C−1
2 −1∑
k=0

2C−k

= 2C−
C−1

2 + 2

C−1
2 −1∑
k=0

2C−k

= 2
C+1

2 + 2(2C)

C−1
2 −1∑
k=0

2−k

= 2
C+1

2 + 2(2C)[
( 12 )

C−1
2 − 1

1
2 − 1

]

= 2
C+1

2 + 22(2C)(1− 2
−C+1

2 )

= 2
C+1

2 + 2C+2 − 4(2
C+1

2 )

= 2C+2 − 3(2
C+1

2 ).

(18)

Therefore,

TotalHopsZtdi =

{
2C+2 − 4(2

C
2 ), if C is even;

2C+2 − 3(2
C+1

2 ), otherwise.
(19)

For Flipped Z order, Equation 13 with m = 2 becomes

NHFtdi(j) = 2b
j
2 c+1 − 1.

The number of hops for all messages across cut index j is

NeighborsHopsFtdi
(j) = NN1Dtdi

(j)×NHFtdi
(j)

= (2C−j)(2b
j
2 c+1 − 1).

(20)

Summing across all cuts j ∈ cutstdi
, we find

TotalHopsFtdi
, the total number of hops for all messages

across all cuts j ∈ cutstdi
. When C is even, the number of

hops for the even cuts (j = 2k) is
∑C

2 −1
k=0 (2C−2k)(2k+1 − 1),

and the number of hops for odd cuts (j = 2k + 1) is∑C
2 −1
k=0 (2C−2k−1)(2k+1 − 1). The sum of the number of

hops for the even and odd cuts is then

TotalHopsFtdi
=

C
2 −1∑
k=0

3(2C−2k−1)(2k+1 − 1)

= 3(2C)

C
2 −1∑
k=0

(2−k − 2−2k−1)

= 3(2C)

C
2 −1∑
k=0

(2−k − 2−2k−1)

= 3(2C)[
( 12 )

C
2 − 1

1
2 − 1

− 1

2
(
( 14 )

C
2 − 1

1
4 − 1

)]

= 3(2C)[(2− 2
−C
2 +1 +

2

3
(2−C − 1)]

= 2C [6− 3(2
−C
2 +1) + 2−C+1 − 2]

= 4(2C)− 3(2
C
2 +1) + 2

= 2C+2 − 6(2
C
2 ) + 2.

(21)

When C is odd, the number of hops relative to even cuts

(j = 2k) is
∑C−1

2

k=0 (2C−2k)(2k+1 − 1), and relative to odd

cuts (j = 2k+1) is
∑C−1

2 −1
k=0 (2C−2k−1)(2k+1 − 1). The total

number of hops relative to all cuts is then
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TotalHopsFtdi
=

C−1
2∑

k=0

(2C−2k)(2k+1 − 1)+

C−1
2 −1∑
k=0

(2C−2k−1)(2k+1 − 1)

= 2
C+3

2 − 2 +

C−1
2 −1∑
k=0

3(2k+1 − 1)(2C−2k−1)

= 2
C+3

2 − 2 + 3(2C)

C−1
2 −1∑
k=0

(2−k − 2−2k−1)

= 2
C+3

2 − 2 + 3(2C)[
( 12 )

C−1
2 − 1

1
2 − 1

− 1

2
(
( 14 )

C−1
2 − 1

1
4 − 1

)]

= 2
C+3

2 − 2 + 3(2C)[2− 2(2
−C+1

2 ) +
2

3
(21−C − 1)]

= 2
C+3

2 − 2 + 2C [6− 6(2
−C+1

2 ) + 22−C − 2]

= 2
C+3

2 − 2 + 4(2C)− 6(2
C+1

2 ) + 22

= 2
C+3

2 − 2 + 2C+2 − 6(2
C+1

2 ) + 4

= 2C+2 − 4(2
C+1

2 ) + 2.
(22)

Therefore, the overall number of hops is

TotalHopsFtdi =

{
2C+2 − 6(2

C
2 ) + 2, if C is even;

2C+2 − 4(2
C+1

2 ) + 2, otherwise.
(23)

Comparing the number of hops with FZ in Equation 23
with the number for Z in Equation 19, we can see that FZ
obtains fewer hops in this case.
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