Sandia
National
Laboratories

Exceptional

service
in the
national

interest

#CCR

KO k kO S : Center for Computing Research
Performance Portability

and Productivity
for Next Generation HPC

Workshop on Exascale
Software Technology

.
—_ P
o & N
= R
d

B

H. Carter Edwards

e

I

January 27-28, 2016
Albuquerque, NM
SAND2016-0648 PE

E

f

- Py P T T T N |

[== T== Y -

[? 3 3 [y 3 3 3
- A A R Y A N

\ gnvancen &
. SIMULATION
7 A\ ComPuTing®

7%, U.S. DEPARTMENT OF V/ VY A | DQ:G{

ENERGY /IVA A
Nz National Nuclear Security Administration
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Takeaway) e

LAMMPS EMPRESS

LAt © 00

Drekar Applications & Libraries | alglilales

Kokkos

performance portability for C++ applications

Multi-Core Many-Core APU CPU+GPU

What is Kokkos?)
= K()KKOQ (Greek, not an acronym)

= Translation: “granule” or “grain” ; like grains of sand on a beach

= Performance Portable Thread-Parallel Programming Model
= E.g., “X”in “MPI+X” ; not a distributed-memory programming model
= Application identifies its parallelizable grains of computations and data

= Kokkos maps those computations onto cores and that data onto memory

= Fully Performance Portable C++11 Library Implementation
= Production — open source at https://github.com/kokkos/kokkos

v’ Multicore CPU - including NUMA architectural concerns

v’ Intel Xeon Phi (KNC) — testbed prototype toward Trinity / ATS-1
v"NVIDIA GPU (Kepler) — testbed prototype toward Sierra / ATS-2
<> IBM Power 8 — testbed prototype toward Sierra / ATS-2

<> AMD Fusion — via collaboration with AMD

v" Regularly and extensively tested
<> Ramping up testing

Some Collaborations
= Sandia: ASC / ATDM, IC, CSSE, and PEM

i\

= |ntegral for performance portability to next generation platforms (NGPs)

= LANL: ASC/ATDM exploring Legion/Kokkos integration

= ORNL: Exploring for SHIFT using Kokkos

= LLNL: programming model discussions

= Universities and other HPC research labs (US Army, Swiss, ...)

= Vendors: DOE FastForward & DesignForward
NVIDIA — evaluating and influencing new CUDA C++ features
PGl — consulting to improve OpenACC/C++ integration

IBM — target new generation xlc compiler
AMD — target for HCC compiler

= |[SO/C++ Standards Committee

Sandia
National _
Laboratories

Abstractions: Patterns, Policies, and Spaces () &=

Laboratories

= Parallel Pattern of user’s computations
= parallel_for, parallel_reduce, parallel_scan, task-graph, ... (extensible)

= Execution Policy tells how user computation will be executed

= Static scheduling, dynamic scheduling, thread-teams, ... (extensible)

= Execution Space tells where user computations will execute

= Which cores, numa region, GPU, ... (extensible)

= Memory Space tells where user data resides

= Host memory, GPU memory, high bandwidth memory, ... (extensible)

= Layout (policy) tells how user data is laid out in memory

= Row-major, column-major, array-of-struct, struct-of-array ... (extensible)

= Differentiating: Layout and Memory Space
= Versus other programming models (OpenMP, OpenACg, ...)

= Critical for performance portability ...

Layout Abstraction: Multidimensional Array) e,

Laboratories

= Classical (50 years!) data pattern for science & engineering codes
= Computer languages hard-wire multidimensional array layout mapping
= Problem: different architectures require different layouts
» Leads to architecture-specific versions of code to obtain performance
= E.g., “Array of Structure” <> “Structure of Array” redesigns

=E
elgl’ — -; elgl’
“row-major” 15 “column-major”
CPU caching - Ll Lbitilil GPU coalescing
1> viviviviviviviv

= Kokkos separates layout from user’s computational code
= Choose layout for architecture-specific memory access pattern
» Without modifying user’s computational code
= Polymorphic layout via C++ template meta-programming (extensible)
> e.g., Hierarchical Tiling layout

= Bonus: easy/transparent use of special data access hardware
= Atomic operations, GPU texture cache, ... (extensible)

Performance Impact of Data Layout

Sandia
"1 National

Laboratories

« Molecular dynamics computational kernel in miniMD

Simple Lennard Jones force model:
Atom neighbor list to avoid N? computations

F_

b3 68[(r 1]

pos_i = pos(i);
for(jj = 0;
j:
r ij

neighbors (i, jj);

}
£(i) = £ i;

jJ < num_neighbors (i) ;

Ji++) A

= pos(i,0..2) - pos(j,0..2); // random read 3 floats
if (lr_ij| < r_cut) £ i += 6*e*((s/r_ij)* 7 - 2*(s/r_ij)'~1§\

Test Problem

o 864k atoms, ~77 neighbors

o 2D neighbor array

o Different layouts CPU vs GPU

o Random read ‘pos’ through
GPU texture cache

. Large performance loss
with wrong data layout

200

150

GFlop/s
[y
o
o

Xeon Xeon Phi

M correct layout
(with texture)

“ correct layout
(without texture)

ffffffffff
rAA

wrong layout
(with texture)

K20x

Performance Portability & Future Proofing) e,

Laboratories

Integrated mapping of users’ parallel computations and data
through abstractions of patterns, policies, spaces, and layout.

= Versus other thread parallel programming models (mechanisms)
= OpenMP, OpenACC, OpenCL, ... have parallel execution
= OpenMP 4 finally has execution spaces; when memory spaces ??
» All of these neglect data layout mapping
Requiring significant code refactoring to change data access patterns
Cannot provide performance portability
» All require language and compiler changes for extension

= Kokkos extensibility “future proofing” wrt evolving architectures
= Library extensions, not compiler extensions
= E.g.,, DOE/ATS-1 high bandwidth memory & just another memory space

Performance Overhead?) o
Kokkos is competitive with other programming models

= Regularly performance-test mini-applications on Sandia’s ASC/
CSSE test beds

= MiniFE: finite element linear system iterative solver mini-app

= Compare to versions with architecture-specialized programming models

MiniFE CG-Solve time for 200 iterations on 200"3 mesh

24
20
5
c 16 7
S 12 7 /
£ = =pap |7 2 2=l
4+ M Mmv — vy
0 | 7 Z 7 Z
K20X IvyBridge SandyBridge XeonPhi B0 XeonPhi CO IBM Power7+
NVIDIA ELL “NVIDIA CuSparse Kokkos ® OpenMP

® MPI-Only “OpenCL ETBB 7 Cilk+(1 Socket)

Simple and Incremental to Adopt) i,

Laboratories

Step 1: Replace loops with parallel patterns
= Default Execution Space and Memory Space are CPU
= Default Execution Policy is [0..N)

Example sparse matrix-vector multiply:
= QOriginal Serial version:
for (int i = 0 ; i < nrow ; ++i) {
for (int j = irow[i] ; Jj < irow[i+1l] ; ++3)
y[i]l += A[jJ] * x[Jcol[]j] 1;
}

= Kokkos parallel version:

parallel for(nrow , KOKKOS LAMBDA(int i) {

for (int j = irow[i] ; j < irow[i+l] ; ++3j)
y[i]l += A[j] * x[jecoll3j] 1;

})
Challenge: Find and Fix thread-unsafe code
» Required to adopt any thread-parallel programming models
= |nter-thread race conditions: use Kokkos’ atomic operations
= Serialization performance bottlenecks in algorithm: design new algorithms

Step 2: Identify Spaces for execution and data

Incremental to Portably Optimize) e

National
Laboratories
= Step 3: Introduce Hierarchical Parallelism as needed
= When simple [0..N) parallel execution policy is insufficient for performance
= Optimize those computations with “Thread Team” execution policy

= Example sparse matrix vector multiply has nested loops

= Kokkos simple parallel version:
parallel for(nrow , KOKKOS LAMBDA(int i) {
for (int j = irow[i] ; J < irow[i+l1l] ; ++3j)
y[i] += A[j] * x[jcol[]j] 1:
})

= Kokkos hierarchical parallel version (#Teams x #Threads/team)
parallel for(TeamPolicy(nrow),
KOKKOS LAMBDA (TeamPolicy: :member type const & member) {

double result = 0 ;

const int i = member.league rank();

parallel reduce(TeamThreadRange (member,irow[i] ,irow[i+l]),
[&](int j , double & val) { val += A[j] * x[jcol[jl]:},
result) ;

if (member.team rank() == 0) y[i] = result ;

});
= Step 4: Tune multidimensional array data layout as needed

Key Research, Development, and Support [

= Evolve back-ends for new & changing node architectures
= Stable abstractions to access new hardware capabilities (e.g., KNL HBM)
= R&D, co-design, collaborate to measure and optimize back-ends

= Extend patterns, policies, spaces, layout
= Dynamic scheduling (work stealing) execution policies
Multidimensional range policies (parallel “loop collapse”)
Tiling and other specialized layout mappings
Dynamically resizable arrays - thread-scalable within parallel operations

Mature and harden internal R&D prototype
Remote execution and memory spaces

= R&D for portable embedded performance instrumentation

= Application developer support, is a resource concern...

= Tutorials (SC'15, GTC'16), documentation, interactions, feature requests, .
= Teaching & consulting for thread-scalable algorithmic patterns & practices

Directed acyclic graph (DAG) of “fine grain” tasks execution pattern/policy

Sandia
National _
Laboratories

Conclusion R

Integral to SNL / ASC plans for NGP performance portability

Application developer support is a resource concern
= ASC program elements, DOE labs, universities, other HPC research labs

Compared to other programming models
= They fail to address layout and thus limit performance portability

Sandia
National _
Laboratories

= Extensibility (future-proofing) via library extensions vs. compiler extensions

Strategic collaborations
= Vendors FastForward, DesignForward, co-design, NGP testbeds
= PSAAPII Universities
= |SO/C++: 2020 standard fully addresses heterogeneous node parallelism
Voting block of HPC advocates: SNL, ANL, LANL, LLNL, LBL, ...

Productivity Assessment: FY15 Co-Design L2 Milestone

= No harder than OpenMP to adopt; easier to portably optimize performance

