Sandia
National
Laboratories

Exceptional
service

in the

national

interest

Kokkos Update

Programming Models and Apps Workshop
August 5, 2014

SAND2014-16477PE (Unlimited Release)

%"{,-‘ U.5. DEPARTMENT OF

Y, ENERGY

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Sandia

Increasingly Complex Heterogeneous Future (1.
¢ Performance Portable and Future Proof Codes?

Special Hardware
- Non caching loads
- Read only cache
- Atomics

Programming
models

- GPU: CUDA-ish
- CPU: OpenMP
- PIM: ??

Memory Spaces
- Bulk non-volatile (Flash?)
- Standard DDR (DDR4)
- Fast memory (HBM/HMC)
- (Segmented) scratch-pad on die

Execution Spaces
- Throughput cores (GPU)
- Latency optimized cores (CPU)
- Processing in memory

L3

Vision for Managing Heterogeneous Future (i,

= “MPI + X” Programming Model, separate concerns
= Inter-node: MPI and domain specific libraries layered on MPI
= Intra-node: Kokkos and domain specific libraries layered on Kokkos

" Intra-node parallelism, heterogeneity & diversity concerns
= Execution spaces’ (CPU, GPU, PIM, ...) diverse performance requirements
= Memory spaces’ diverse capabilities and performance characteristics
= Vendors’ diverse programming models for optimal utilization of hardware

= Desire standardized performance portable programming model
= Via vendors’ (slow) negotiations: OpenMP, OpenACC, OpenCL, C++17
= Vendors’ (biased) solutions: C++AMP, Thrust, CilkPlus, TBB, ArrayFire, ...
= Researchers’ solutions: HPX, StarPU, Bolt, Charm++, ...

= Necessary condition: address execution & memory space diversity
= Execution { CPU, Xeon Phi, NVIDIA GPU }, Memory { GDDR, DDR, NVRAM }
= SNL Computing Research Center’s Kokkos (C++ library) solution
= Engagement with ISO C++ Standard committee to influence C++17

Kokkos: A Layered Collection of Libraries)

= Standard C++, Not a language extension
= |n spirit of TBB, Thrust & CUSP, C++AMP, LLNL’s RAIA, ...
= Not a language extension like OpenMP, OpenACC, OpenCL, CUDA, ...

= Uses C++ template meta-programming
= Rely on C++1998 standard (supported everywhere except IBM’s xIC)
= Moving to C++2011 for concise lambda syntax (required by LLNL’s RAJA)
Vendors slowly catching up to C++2011 language compliance

Application and Domain Specific Library Layer

Kokkos Sparse Linear Algebra

Kokkos Containers

Kokkos Core

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ...

Sandia

Performance Portability Challenge: rih) et
Device-Specific Memory Access Patterns are Required

= CPUs (and Xeon Phi)
= Core-data affinity: consistent NUMA access (first touch)
= Hyperthreads’ cooperative use of L1 cache
= Array alignment for cache-lines and vector units

= GPUs
= Thread-data affinity: coalesced access with cache-line alignment
= Temporal locality and special hardware (texture cache)

= ¢ “Array of Structures” vs. “Structure of Arrays” ?
» This has been the wrong question

Right question: Abstractions for Performance Portability ?

Kokkos Performance Portability Answer) o,

* Thread parallel computation
= Dispatched to an execution space
= Operates on data in memory spaces
» Should use device-specific memory access pattern; how to portably?

= Multidimensional Arrays, with a twist
= Layout mapping: multi-index (i,j,k,...) <> memory location
» Choose layout to satisfy device-specific memory access pattern
= Layout changes are invisible to the user code;
» IF the user code uses Kokkos’ simple array API: a(i,j,k,...)

= Manage device specifics under simple portable API
= Dispatch computation to one or more execution spaces
= Polymorphic multidimensional array layout
= Utilization of special hardware; e.g., GPU texture cache

Sandia
ﬂ‘ National
Laboratories

Recent Publication

Kokkos: Enabling manycore performance portability through
polymorphic memory access patterns, Journal of Parallel and
Distributed Computing, July 2014
http://dx.doi.org/10.1016/].jpdc.2014.07.003

Recent Use and Evaluations

http://dx.doi.org/10.1016/j.jpdc.2014.07.003

Evaluate Performance Impact of Array Layout (i) &
« Molecular dynamics computational kernel in miniMD

Simple Lennard Jones force model: F.= 63[() 2(]
Atom neighbor list to avoid N2 computations "= ! !

pos_ 1 = pos();
for(jjJ = 0; 33 < num_neighbors(i); jj++) {
J = nelghbors(l .J1);
r iJ = pos_1 — pos(j); //random read 3 floats
1T (Jr_ij| < r_cut) .1 += 6*e*((s/r_apH)N7 — 2*(s/r_ij)"13)
+
(i) = f_1i;

Test Problem
o 864k atoms, ~77 neighbors

o 2D neighbor array 150 m correct layout
(with texture)

200

. Different layouts CPU vs GPU |3
« Random read ‘pos’ through 2100 # correct layout
(G] (without texture)
GPU texture cache 50

wrong layout

Large performance loss _— - . (with texture)
with wrong array layout

Xeon Xeon Phi K20x

Evaluate Performance Overhead of Abstraction ()

Laboratories

Kokkos competitive with native programming models

= MiniFE: finite element linear system iterative solver mini-app

= Compare to versions specialized for programming models

= Running on hardware testbeds

Time (seconds)

» MiniFE CG-Solve time for 200 iterations on 200*3 mesh
20
16
12

8

.

0

K20X IvyBridge SandyBridge XeonPhi BO XeonPhi CO IBM Power7+
NVIDIA ELL u NVIDIA CuSparse m Kokkos m OpenMP
m MPI-Only # OpenCL = TBB ¥ Cilk+(1 Socket)

Thread-Scalable Fill of Sparse Linear System

Sandia
National
Laboratories

h

= MiniFENL: Newton iteration of FEM: x,,,; = x,, — J 1(x,)r(x,,)

Scatter-Atomic-Add

+ Simpler

+ Less memory

— Slower HW atomic
Gather-Sum

+ Bit-wise reproducibility
Performance win?

= Scatter-atomic-add

= ~equal Xeon PHI
= 40% faster Kepler GPU
v' Pattern chosen
= Feedback to HW vendors:
performant atomics

Scatter-Atomic-Add

.

" Element \ | f

| Computations |
& Scatter-Add
atomic-add

4 Finite Element Data

Thread-scalable pattern: Scatter-Atomic-Add or Gather-Sum ?

ra

Mapping:

" Mesh -» Sparse Graph)

-~ Element

Na \
Computations

Gather-Sum

Per-Element

\ Sparse Linear System

Coefficients

\Scratch Arrays

0.35

0.25

0.3 ‘W
N

0.2
0.15

R acririeiviried

0.05
0

Matrix Fill: microsec/node

1E+03 1E+04
Number of

1E+05 1E+06 1E+07
finite element nodes

===Phi-60 GatherSum
=#=Phi-60 ScatterAtomic
==Phi-240 GatherSum
=4=Phi-240 ScatterAtomic
==K40X GatherSum
=d=K40X ScatterAtomic

Thread-Scalable Sparse Matrix Construction (i) &

Laboratories

MiniFENL: Construct sparse matrix graph from FEM connectivity
= Thread scalable algorithm for constructing a data structure

1. Parallel-for : fill Kokkos lock-free unordered map with FEM node-node pairs
2. Parallel-scan : sparse matrix rows’ column counts into row offsets
3. Parallel-for : query unordered map to fill sparse matrix column-index array
4. Parallel-for : sort rows’ column-index subarray

0 2

k

9 1.5

b .

o 1 =#-Phi-60

g 0.5 =4=Phi-240

2, | —4-KA0X

1E+03 1E+04 1E+05 1E+06 1E+07
Number of finite element nodes

= Pattern and tools generally applicable to construction and
dynamic modification of data structures

Tpetra: Domain Specific Library Layer for @)
Sparse Linear Algebra Solvers

= Funded by ASC/Algorithms and ASCR/EASI

= Tpetra: Sandia’s templated C++ library for sparse linear algebra
= Templated on “scalar” type: float, double, automatic derivatives, UQ, ...

= Incremental refactoring from pure-MPI to MPI+Kokkos

CUDA UVM (unified virtual memory) codesign success
= Sandia’s early access to CUDA 6.0 via Sandia/NVIDIA collaboration
= Hidden in Kokkos, can neglect memory spaces and maintain correctness

= Enables incremental refactoring and testing
10

= Early access to UVM a win-win
= Expedited refactoring + early evaluation

[= o]
T T T

[=a}
) I

= |dentified performance issue in driver
= NVIDIA fixed before their release

Time in s
.
' |

2
T I

=]

P
SO

2

Q&h A A
00’0 D
- |

LAMMPS (molecular dynamics application) e
Porting to Kokkos has begun

* Funded by LAMMPS’ projects
= Enable thread scalability throughout code

= Replace redundant hardware-specialized manycore parallel packages

= Current release has optional use of Kokkos

= Data and device management LAMMPS Strongscaling

. . . IM atoms; Standard Lennard Jones
= Some simple simulations can | | | | | |
now run entirely on device

Xeon - Kokkos
Xeon - OpenMP e
Xeon Phi - Kokkos :
Xeon Phi - OpenMP
Kepler - Kokkos
Kepler - Cuda

1000

= Performs as well or better
than original hardware-
specialized packages

Aggregate Compute Time
S
I

Sandia
"1 National
Laboratories

Recent and In-Progress Enhancements to
Programming Model Abstractions:

Spaces, Policies, Defaults, C++11, and Tasks

Execution Space) e,

Laboratories

= Execution Space Instance
= Hardware resources (e.g., cores, hyperthreads) in which functions execute
= Functions may execute concurrently on those resources
= Concurrently executing functions have coherent view to memory
= Degree of potential concurrency determined at runtime
= Number of execution space instances determined at runtime

= Execution Space Type (CPU, Xeon Phi, CUDA)
= Functions compiled to execute on an instance of a specified type
= Types determined at configure/compile time
= Host Space
= The main process and its functions execute in the Host Space
= One type, one instance, and is serial (potential concurrency == 1)
= Execution Space Default
= Configure/build with one type — it is the default
= |nitialize with one instance — it is the default

Memory Spaces) i
= Memory Space Types (GDDR, DDR, NVRAM, Scratchpad)

= The type of memory is defined with respect to an execution space type

= Anticipated types, identified by their dominant usage
* Primary: (default) space with allocable memory (e.g., can malloc/free)
= Performant : best performing space (e.g., GDDR)

= Capacity : largest capacity space (e.g., DDR)
= Contemporary system: Primary == Performant == Capacity
= Scratch : non-allocable and maximum performance
= Persistent : usage can persist between process executions (e.g., NVRAM)

= Memory Space Instance
= Has relationship with execution space instances (more later)

= Directly addressable by functions in that execution space
= Contiguous range of addresses

= Memory Space Default
= Default execution spaces’ default memory space

Examples of Execution and Memory Spaces) e,

Compute Node

Multicore | primary

Socket .

Laboratories

Attached Accelerator
GPU _
DDR Erlmarz .
shared GDDR
deep_copy

Compute Node /

Multicore | primary

Socket g

DDR

GPU::capacit

<

A

(via pinned)

Attached Acch

GPU

shared

Erlmarx » GDDR

perform

—

GPU::perform
(via UVM)

Execution / Memory Space Relationships) o

Laboratories

= (Execution Space , Memory Space , Memory Access Traits)

= Accessibility : functions can/cannot access memory space
= E.g., Host functions can never access GPU scratch memory
= E.g., GPU functions can access Host capacity memory only if it is pinned
= E.g., Host functions can access GPU performant memory only if it is UVM
= Readable / Writeable
= E.g., GPU performant memory using texture cache is read-only
= Bandwidth : potential rate at which concurrent instructions can read or write
= Capacity for views to (allocable) data

= Memory Access Traits (extension point) potential examples:
= read-only, write-only, volatile/atomic, random, streaming, ...
= Converting between “views” with same space and different traits
> Default is simple readable/writeable — no special traits
= Future opportunity
= Execution space access to remote memory space (similar to MPI 1-sided)

Views, Defaults, and Subviews

h

Sandia
National
Laboratories

= typedef View< ArrayType, Layout , Space, Traits > view_type;

= Omit Traits : no special compile-time defined access traits
= Omit Space : default execution space’s default memory space
= Omit Layout : allocable memory space’s default layout
= default everything: View< ArrayType >
= view_type a(optional_traits , NO, N1, ...);
= optional_traits : a collection of optional runtime defined traits

= |abel trait : string used in error and warning messages, default none

®» jnitialize trait : default parallel_for(NO,[=](int i){ a(i,...) =0 })

= Default uses memory space’s preferred execution space with static scheduling

= Common override is to not initialize after allocating

= dst_view = subview< DestViewType >(src_view, ...args...)

= Subviews of views increasingly important to users
= Growing capability, challenging with polymorphic layout
= C++11 ‘auto’ type would help address this challenge

Execution Policy) i,

Laboratories

= How Potentially Concurrent Functions are Executed
= Where : in what execution space (instance & type)
= Parallel Work: current capabilities [0..N) or (#teams, #thread/team)
= Scheduling : currently static scheduling of data parallel work
= Map work function calls onto resources of the execution space
= E.g., contiguous spans of [0..N) to a CPU thread for contiguous access pattern
= E.g., strided subsets of [0..N) to GPU threads for coalesced access pattern
= Compose Pattern & Policy : parallel_for(policy, functor);
= Policy::execution_space to replace Functor::device_type
= Allows functor to be a C++11 lambda without impeding flexibility
Default Policy and Space for Simple Functors

= Policy ‘size_t N’ is [0..N) with static scheduling and default execution space
E.g., parallel_for(N, [=](inti) {/* lambda-function body */ });

Execution Policies, Patterns, and Defaults) o

Laboratories

= Patterns: parallel_for, parallel_reduce, parallel_scan

= parallel_pattern(policy, functor);
= Execute on policy’s execution space according to policy’s scheduling
= functor APl requirements defined by pattern and policy
= functor APl omissions have defaults

= parallel_reduce functor API requirements and defaults

= functor::init(value_type & update); // { new(& update) value_type(); }

= functor::join(volatile value_type & update,
volatile const value_type & in) const ; // { update +=in; }

= functor::final(value_type & update) const; // {;}
= parallel_scan functor has similar requirements and defaults

Defaults enable C++11 Lambda for Functors) o

Laboratories

= Dot product becomes simple with C++11 lambda with defaults
double dot(View<double*> x , View<double*> y) {
doubled=0;
parallel_reduce(x.dimension_0() , [=](int i, double & v) { v += x(i) * y(i); }, d);
returnd;

}
= Execution Policy — how to execute

= Execution Policy’s Execution Space — where to execution
= Default for a single type and instance

= Parallel reduce and scan defaults
= Reduction type — deduced from lambda’s argument list
= |nitialize — default constructor
= Join — operator +=
= Expect Cuda / nvcc version 7 to support C++11 lambda
= Portability!
= Anecdote: our experienced developers prefer functors

Execution Policy — an extension point i) i

Laboratories

= Policy calls functor’s work function in parallel
= PolicyType<ExecSpace>::member_type // data parallel work item
void Func::operator()(PolicyType<...>::member_type) const ;
= Range policy (existing)
= parallel_for(RangePolicy<ExecSpace>(0,N), functor);
void Func::operator()(integer_type i) const;
= Thread team policy (existing)
= parallel_for(TeamPolicy<ExecSpace>(#teams,thread/team), functor);
void Func::operator()(TeamPolicy<ExecSpace>::member_type team) const ;
= Replaces “device” interface
= Extension point for new policies
= Multi-indices [0..M)x[0..N)
= Dynamic scheduling / work stealing

= Parallel execution over Raja-like index sets is an execution policy

Execution Policy, Functor with multiple ()’) i

Laboratories

= Allow functors to have multiple parallel work functions
= typedef PolicyType< ExecSpace , TagType > policy;
= parallel_pattern(policy(...) , functor);
void FunctorType::operator()(const TagType &, policy::member_type) const;
= Parallel work functions differentiated by ‘TagType’
= TagType used instead of class’ method name

= Motivations
= Algorithm (class) with multiple parallel passes using the same data

= miniFENL sparse matrix graph construction from FEM connectivity
= Common need in LAMMPS
= allow LAMMPS to remove “wrapper functors”

Execution Policy for Task Parallelism) e,

= Kokkos/Qthreads LDRD

= TaskManager< ExecSpace > execution policy
= Policy object shared by potentially concurrent tasks

TaskManager<...> tm(exec_space, ...);
Future<> fa = spawn(tm, task_functor_a); // single-thread task
Future<> fb = spawn(tm, task_functor_b);

= Tasks may be data parallel
Future<> fc = spawn_for(tm.range(0..N), functor_c);
Future<value_type> fd = spawn_reduce(tm.team(N,M), functor_d);
wait(tm); // wait for all tasks to complete

= Destruction of task manager object waits for concurrent tasks to complete

= Task Managers
= Define a scope for a collection of potentially concurrent tasks
= Have configuration options for task management and scheduling
= Manage resources for scheduling queue

Execution Policy for Task Parallelism) e,

Laboratories

= Tasks’ execution dependences
= Start a task only after other specified tasks have completed
Future<> array_of dep[M] = { /* future for other specified tasks */ };
= Single threaded task:
Future<> fx = spawn(tm.depend(M,array_of _dep), task_functor_x);
= Data parallel task:
spawn_for(tm.depend(M,array_of dep).range(0..N), task_functor_y);
= Tasks and dependences define a directed acyclic graph (dag)

= At most one active task manager on an execution space
= Well-defined scope and lifetime for collection of potentially current tasks

= Don’t consume resources when not in use

	Kokkos Update�
	Increasingly Complex Heterogeneous Future�¿ Performance Portable and Future Proof Codes?
	Vision for Managing Heterogeneous Future
	Kokkos: A Layered Collection of Libraries
	Performance Portability Challenge:�Device-Specific Memory Access Patterns are Required
	Kokkos Performance Portability Answer
	Slide Number 7
	Evaluate Performance Impact of Array Layout
	Evaluate Performance Overhead of Abstraction�Kokkos competitive with native programming models
	Thread-Scalable Fill of Sparse Linear System
	Thread-Scalable Sparse Matrix Construction
	Tpetra: Domain Specific Library Layer for�Sparse Linear Algebra Solvers
	LAMMPS (molecular dynamics application)�Porting to Kokkos has begun
	Slide Number 14
	Execution Space
	Memory Spaces
	Examples of Execution and Memory Spaces
	Execution / Memory Space Relationships
	Views, Defaults, and Subviews
	Execution Policy
	Execution Policies, Patterns, and Defaults
	Defaults enable C++11 Lambda for Functors
	Execution Policy – an extension point
	Execution Policy, Functor with multiple ‘()’
	Execution Policy for Task Parallelism
	Execution Policy for Task Parallelism

