
Photos placed in
horizontal position
with even amount

of white space
 between photos

and header

Photos placed in horizontal
position

with even amount of white
space

 between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Kokkos Update for
Trilinos Developers

Trilinos Developers; June 5, 2014

SAND2014-4545P (Unlimited Release)

Increasingly Complex Heterogeneous Future
¿ Performance Portable and Future Proof Codes?

1

PIM DDR

L2*

NVRAM

PIM

L1
*

Te
x

Scr

L1
*

Te
x

Scr

L1
*

Te
x

Scr

NIC L3

Memory Spaces
 - Bulk non-volatile (Flash?)
 - Standard DDR (DDR4)
 - Fast memory (HBM/HMC)
 - (Segmented) scratch-pad on die

Execution Spaces
 - Throughput cores (GPU)
 - Latency optimized cores (CPU)
 - Processing in memory

Special Hardware
 - Non caching loads
 - Read only cache
 - Atomics

Programming
models
 - GPU: CUDA-ish
 - CPU: OpenMP
 - PIM: ??

Vision for Managing Heterogeneous Future
 “MPI + X” Programming Model, separate concerns
 Inter-node: MPI and domain specific libraries layered on MPI
 Intra-node: Kokkos and domain specific libraries layered on Kokkos

 Intra-node parallelism, heterogeneity & diversity concerns
 Execution spaces’ (CPU, GPU, PIM, ...) diverse performance requirements
 Memory spaces’ diverse capabilities and performance characteristics
 Vendors’ diverse programming models for optimal utilization of hardware

 Desire standardized performance portable programming model
 Via vendors’ (slow) negotiations: OpenMP, OpenACC, OpenCL, C++17
 Vendors’ (biased) solutions: C++AMP, Thrust, CilkPlus, TBB, ArrayFire, ...
 Researchers’ solutions: HPX, StarPU, Bolt, Charm++, ...

 Necessary condition: address execution & memory space diversity
 SNL Computing Research Center’s Kokkos (C++ library) solution
 Engagement with ISO C++ Standard committee to influence C++17

2

Programmatics
 ASC/CSSE (FY11 start): Heterogeneous Computing project
 Tight integration with co-design, mini-application, and testbed projects
 Manycore (CPU, GPU, Xeon Phi, ...) performance portable “X” for MPI+X
 Kokkos library is the “X” for fine grain data parallelism

 1.0-1.4 FTE split among ~2 staff + interns (FY14 @ 1.0 FTE)

 ASCR/EASI : Sparse Linear Algebra Kernels on Manycore
 Some portion of this project also working on Kokkos core

 LDRD (FY14 start): Unified Task+Data Manycore Parallelism
 For solver-preconditioners, finite elements, informatics, transport sweeps, ...
 0.9 FTE split among ~4 staff

 Internal/external interests, and resource challenge ahead
 Trilinos, LAMMPS, SIERRA, other ASC codes (SNL, LANL, LLNL), AWE, ...
 ISO C++ standards addressing fine grain parallelism (am a voting member)
 Currently under-resourced for production-growth support

3

Application and Domain Specific Library Layer

4

Kokkos: A Layered Collection of Libraries
 Standard C++, Not a language extension

 In spirit of TBB, Thrust & CUSP, C++AMP, LLNL’s RAJA, ...
 Not a language extension like OpenMP, OpenACC, OpenCL, CUDA, ...

 Uses C++ template meta-programming
 Rely on C++1998 standard (supported everywhere except IBM’s xlC)
 Moving to C++2011 for concise lambda syntax (required by LLNL’s RAJA)

 Vendors slowly catching up to C++2011 language compliance

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ...

Kokkos Sparse Linear Algebra
Kokkos Containers
Kokkos Core

Evaluate Performance Overhead of Abstraction
Kokkos competitive with native programming models

 MiniFE: finite element linear system iterative solver mini-app

 Compare to versions specialized for programming models

 Running on hardware testbeds

5

0
4
8

12
16
20
24

K20X IvyBridge SandyBridge XeonPhi B0 XeonPhi C0 IBM Power7+

MiniFE CG-Solve time for 200 iterations on 200^3 mesh

NVIDIA ELL NVIDIA CuSparse Kokkos OpenMP
MPI-Only OpenCL TBB Cilk+(1 Socket)

Ti
m

e
(s

ec
on

ds
)

Thread-Scalable Fill of Sparse Linear System

6

 MiniFENL: Newton iteration of FEM: 𝒙𝒏+𝟏 = 𝒙𝒏 − 𝑱−𝟏(𝒙𝒏)𝒓(𝒙𝒏�

 Thread-scalable pattern: Scatter-Atomic-Add or Gather-Sum ?
 Scatter-Atomic-Add

+ Simpler
+ Less memory
– Slower HW atomic

 Gather-Sum
+ Bit-wise reproducibility

 Performance win?
 Scatter-atomic-add
 ~equal Xeon PHI
 40% faster Kepler GPU

 Pattern chosen
 Feedback to HW vendors:

performant atomics

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

1E+03 1E+04 1E+05 1E+06 1E+07M
at

rix
 F

ill
: m

ic
ro

se
c/

no
de

Number of finite element nodes

Phi-60 GatherSum
Phi-60 ScatterAtomic
Phi-240 GatherSum
Phi-240 ScatterAtomic
K40X GatherSum
K40X ScatterAtomic

Thread-Scalable Sparse Matrix Construction
 MiniFENL: Construct sparse matrix graph from FEM connectivity
 Thread scalable algorithm for constructing a data structure

1. Parallel-for : fill Kokkos lock-free unordered map with FEM node-node pairs
2. Parallel-scan : sparse matrix rows’ column counts into row offsets
3. Parallel-for : query unordered map to fill sparse matrix column-index array
4. Parallel-for : sort rows’ column-index subarray

7

0

0.5

1

1.5

2

1E+03 1E+04 1E+05 1E+06 1E+07

M
ic

ro
se

c/
no

de

Number of finite element nodes

Phi-60

Phi-240

K40X

 Pattern and tools generally applicable to construction and
dynamic modification of data structures

Tpetra: Domain Specific Library Layer for
Sparse Linear Algebra Solvers

 Funded by ASC/Algorithms and ASCR/EASI
 Tpetra: Sandia’s templated C++ library for sparse linear algebra
 Templated on “scalar” type: float, double, automatic derivatives, UQ, ...
 Incremental refactoring from pure-MPI to MPI+Kokkos

 CUDA UVM (unified virtual memory) codesign success
 Sandia’s early access to CUDA 6.0 via Sandia/NVIDIA collaboration
 Hidden in Kokkos, can neglect memory spaces and maintain correctness
 Enables incremental refactoring and testing

 Early access to UVM a win-win
 Expedited refactoring + early evaluation
 Identified performance issue in driver
 NVIDIA fixed before their release

8

LAMMPS (molecular dynamics application)
Porting to Kokkos has begun

 Funded by LAMMPS’ projects
 Enable thread scalability throughout code
 Replace redundant hardware-specialized manycore parallel packages

 Current release (last week) has optional use of Kokkos
 Data and device management
 Some simple simulations can

now run entirely on device

 Performs as well or better
than original hardware-
specialized packages

9

10

Improvements toward Production-Growth
 Address build (configure, compile, link) complexity
 Especially for Cuda cross-compiling

 Address runtime initialization complexity
 HWLOC not as portable as hoped (IBM, Mac)
 Single Kokkos::initialize(argc , argv) for all configured devices

 Redesign Device abstraction (classes)
 Split into Execution Space and Memory Space abstractions (classes)
 Configure-time default allows this template argument to be omitted

 Enable C++11 Lambda to be used in addition to Functor
 Allow simple kernels to be defined inline for parallel_{for,reduce,scan}
 Prototype available – limited to availability of C++11

 Better compile error messages for user’s template errors
 Documentation and project website
 Path-forward technical review by alpha-users on July 16

11

Task-Data Parallelism: Kokkos/Qthreads LDRD
 Task-DAG where tasks can be data parallel {for,reduce,scan}
 Add course grain task API to Kokkos where a task runs on a team of threads
 Add thread team task scheduling to Qthreads
 Qthreads becomes a new Execution Space for Kokkos

 Support informatics graph data structures and algorithms
 Prototype small subset of Multithreaded Graph Library on Kokkos/Qthreads

 Current API thoughts, in a nutshell
 Self-describing task functor with simple spawn interface:

Future<double> r = spawn(task_functor, dependences);

 Key design challenge: tasks cannot explicitly wait on other tasks
 Some tasks spawn other tasks and need to wait (e.g., task recursion)
 GPU kernels once dispatched must complete, they cannot block / wait
 Solution: executing task respawns (reschedules) itself with new dependences

	Kokkos Update for�Trilinos Developers
	Increasingly Complex Heterogeneous Future�¿ Performance Portable and Future Proof Codes?
	Vision for Managing Heterogeneous Future
	Programmatics
	Kokkos: A Layered Collection of Libraries
	Evaluate Performance Overhead of Abstraction�Kokkos competitive with native programming models
	Thread-Scalable Fill of Sparse Linear System
	Thread-Scalable Sparse Matrix Construction
	Tpetra: Domain Specific Library Layer for�Sparse Linear Algebra Solvers
	LAMMPS (molecular dynamics application)�Porting to Kokkos has begun
	Improvements toward Production-Growth
	Task-Data Parallelism: Kokkos/Qthreads LDRD

