Kokkos Update for
Trilinos Developers

Trilinos Developers; June 5, 2014
SAND2014-4545P (Unlimited Release)

Sandia
National
Laboratories

Exceptional
service

in the
LAty
Fuly U.5. DEPARTMENT OF i ¥ " ‘\Qa‘
-] o
(0JENERGY NS
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

national

interest

Sandia

Increasingly Complex Heterogeneous Future (1.
¢ Performance Portable and Future Proof Codes?

Special Hardware
- Non caching loads
- Read only cache
- Atomics

Programming
models

- GPU: CUDA-ish
- CPU: OpenMP
- PIM: ??

Memory Spaces
- Bulk non-volatile (Flash?)
- Standard DDR (DDR4)
- Fast memory (HBM/HMC)
- (Segmented) scratch-pad on die

Execution Spaces
- Throughput cores (GPU)
- Latency optimized cores (CPU)
- Processing in memory

L3

Vision for Managing Heterogeneous Future (i,

= “MPI + X” Programming Model, separate concerns
= Inter-node: MPI and domain specific libraries layered on MPI
= Intra-node: Kokkos and domain specific libraries layered on Kokkos
" Intra-node parallelism, heterogeneity & diversity concerns
= Execution spaces’ (CPU, GPU, PIM, ...) diverse performance requirements
= Memory spaces’ diverse capabilities and performance characteristics
= Vendors’ diverse programming models for optimal utilization of hardware
= Desire standardized performance portable programming model
= Via vendors’ (slow) negotiations: OpenMP, OpenACC, OpenCL, C++17
= Vendors’ (biased) solutions: C++AMP, Thrust, CilkPlus, TBB, ArrayFire, ...
= Researchers’ solutions: HPX, StarPU, Bolt, Charm++, ...
= Necessary condition: address execution & memory space diversity
= SNL Computing Research Center’s Kokkos (C++ library) solution
= Engagement with ISO C++ Standard committee to influence C++17

Programmatics)

ASC/CSSE (FY11 start): Heterogeneous Computing project
= Tight integration with co-design, mini-application, and testbed projects
= Manycore (CPU, GPU, Xeon Phi, ...) performance portable “X” for MPI+X
= Kokkos library is the “X” for fine grain data parallelism
= 1.0-1.4 FTE split among ~2 staff + interns (FY14 @ 1.0 FTE)

ASCR/EASI : Sparse Linear Algebra Kernels on Manycore

= Some portion of this project also working on Kokkos core

LDRD (FY14 start): Unified Task+Data Manycore Parallelism

= For solver-preconditioners, finite elements, informatics, transport sweeps, ...
= 0.9 FTE split among ~4 staff

= Internal/external interests, and resource challenge ahead
= Trilinos, LAMMPS, SIERRA, other ASC codes (SNL, LANL, LLNL), AWE, ...
= |SO C++ standards addressing fine grain parallelism (am a voting member)
» Currently under-resourced for production-growth support

Kokkos: A Layered Collection of Libraries)

= Standard C++, Not a language extension
= |n spirit of TBB, Thrust & CUSP, C++AMP, LLNL’s RAIA, ...
= Not a language extension like OpenMP, OpenACC, OpenCL, CUDA, ...

= Uses C++ template meta-programming
= Rely on C++1998 standard (supported everywhere except IBM’s xIC)
= Moving to C++2011 for concise lambda syntax (required by LLNL’s RAJA)
Vendors slowly catching up to C++2011 language compliance

Application and Domain Specific Library Layer

Kokkos Sparse Linear Algebra

Kokkos Containers

Kokkos Core

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ...

Evaluate Performance Overhead of Abstraction ()

Laboratories

Kokkos competitive with native programming models

= MiniFE: finite element linear system iterative solver mini-app

= Compare to versions specialized for programming models

= Running on hardware testbeds

Time (seconds)

» MiniFE CG-Solve time for 200 iterations on 200*3 mesh
20
16
12

8

.

0

K20X IvyBridge SandyBridge XeonPhi BO XeonPhi CO IBM Power7+
NVIDIA ELL u NVIDIA CuSparse m Kokkos m OpenMP
m MPI-Only # OpenCL = TBB ¥ Cilk+(1 Socket)

Thread-Scalable Fill of Sparse Linear System

Sandia
National
Laboratories

h

= MiniFENL: Newton iteration of FEM: x,,,; = x,, — J 1(x,)r(x,,)

Scatter-Atomic-Add

+ Simpler

+ Less memory

— Slower HW atomic
Gather-Sum

+ Bit-wise reproducibility
Performance win?

= Scatter-atomic-add

= ~equal Xeon PHI
= 40% faster Kepler GPU
v' Pattern chosen
= Feedback to HW vendors:
performant atomics

Scatter-Atomic-Add

.

" Element \ | f

| Computations |
& Scatter-Add
atomic-add

4 Finite Element Data

Thread-scalable pattern: Scatter-Atomic-Add or Gather-Sum ?

ra

Mapping:

" Mesh -» Sparse Graph)

-~ Element

Na \
Computations

Gather-Sum

Per-Element

\ Sparse Linear System

Coefficients

\Scratch Arrays

0.35

0.25

0.3 ‘W
N

0.2
0.15

R acririeiviried

0.05
0

Matrix Fill: microsec/node

1E+03 1E+04
Number of

1E+05 1E+06 1E+07
finite element nodes

===Phi-60 GatherSum
=#=Phi-60 ScatterAtomic
==Phi-240 GatherSum
=4=Phi-240 ScatterAtomic
==K40X GatherSum
=d=K40X ScatterAtomic

Thread-Scalable Sparse Matrix Construction (i) &

Laboratories

MiniFENL: Construct sparse matrix graph from FEM connectivity
= Thread scalable algorithm for constructing a data structure

1. Parallel-for : fill Kokkos lock-free unordered map with FEM node-node pairs
2. Parallel-scan : sparse matrix rows’ column counts into row offsets
3. Parallel-for : query unordered map to fill sparse matrix column-index array
4. Parallel-for : sort rows’ column-index subarray

0 2

k

9 1.5

b .

o 1 =#-Phi-60

g 0.5 =4=Phi-240

2, | —4-KA0X

1E+03 1E+04 1E+05 1E+06 1E+07
Number of finite element nodes

= Pattern and tools generally applicable to construction and
dynamic modification of data structures

Tpetra: Domain Specific Library Layer for @)
Sparse Linear Algebra Solvers

= Funded by ASC/Algorithms and ASCR/EASI

= Tpetra: Sandia’s templated C++ library for sparse linear algebra
= Templated on “scalar” type: float, double, automatic derivatives, UQ, ...

= Incremental refactoring from pure-MPI to MPI+Kokkos

CUDA UVM (unified virtual memory) codesign success
= Sandia’s early access to CUDA 6.0 via Sandia/NVIDIA collaboration
= Hidden in Kokkos, can neglect memory spaces and maintain correctness

= Enables incremental refactoring and testing
10

= Early access to UVM a win-win
= Expedited refactoring + early evaluation

[= o]
T T T

[=a}
) I

= |dentified performance issue in driver
= NVIDIA fixed before their release

Time in s
.
' |

2
T I

=]

P
SO

2

Q&h A A
00’0 D
- |

LAMMPS (molecular dynamics application) e
Porting to Kokkos has begun

* Funded by LAMMPS’ projects
= Enable thread scalability throughout code

= Replace redundant hardware-specialized manycore parallel packages

= Current release (last week) has optional use of Kokkos

= Data and device management LAMMPS Strongscaling

. . . IM atoms; Standard Lennard Jones
= Some simple simulations can | | | | | |
now run entirely on device

Xeon - Kokkos
Xeon - OpenMP
Xeon Phi - Kokkos
Xeon Phi - OpenMP
Kepler - Kokkos
Kepler - Cuda

1000

= Performs as well or better
than original hardware-
specialized packages

Aggregate Compute Time
S
I

Improvements toward Production-Growth) e

Laboratories

= Address build (configure, compile, link) complexity
= Especially for Cuda cross-compiling
= Address runtime initialization complexity
= HWLOC not as portable as hoped (IBM, Mac)
= Single Kokkos::initialize(argc , argv) for all configured devices
= Redesign Device abstraction (classes)
= Split into Execution Space and Memory Space abstractions (classes)
= Configure-time default allows this template argument to be omitted
= Enable C++11 Lambda to be used in addition to Functor
= Allow simple kernels to be defined inline for parallel_{for,reduce,scan}
= Prototype available — limited to availability of C++11
= Better compile error messages for user’s template errors
= Documentation and project website

= Path-forward technical review by alpha-users on July 16

Task-Data Parallelism: Kokkos/Qthreads LDRD () i

Laboratories

= Task-DAG where tasks can be data parallel {for,reduce,scan}

= Add course grain task APl to Kokkos where a task runs on a team of threads
= Add thread team task scheduling to Qthreads
= Qthreads becomes a new Execution Space for Kokkos

= Support informatics graph data structures and algorithms
= Prototype small subset of Multithreaded Graph Library on Kokkos/Qthreads

= Current API thoughts, in a nutshell

= Self-describing task functor with simple spawn interface:
Future<double> r = spawn(task functor, dependences);

= Key design challenge: tasks cannot explicitly wait on other tasks
= Some tasks spawn other tasks and need to wait (e.g., task recursion)
= GPU kernels once dispatched must complete, they cannot block / wait
= Solution: executing task respawns (reschedules) itself with new dependences

	Kokkos Update for�Trilinos Developers
	Increasingly Complex Heterogeneous Future�¿ Performance Portable and Future Proof Codes?
	Vision for Managing Heterogeneous Future
	Programmatics
	Kokkos: A Layered Collection of Libraries
	Evaluate Performance Overhead of Abstraction�Kokkos competitive with native programming models
	Thread-Scalable Fill of Sparse Linear System
	Thread-Scalable Sparse Matrix Construction
	Tpetra: Domain Specific Library Layer for�Sparse Linear Algebra Solvers
	LAMMPS (molecular dynamics application)�Porting to Kokkos has begun
	Improvements toward Production-Growth
	Task-Data Parallelism: Kokkos/Qthreads LDRD

