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Increasingly Complex Heterogeneous Future 
¿ Performance Portable and Future Proof Codes? 
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Memory Spaces 
  - Bulk non-volatile (Flash?) 
  - Standard DDR (DDR4) 
  - Fast memory (HBM/HMC) 
  - (Segmented) scratch-pad on die 
 
Execution Spaces 
  - Throughput cores (GPU) 
  - Latency optimized cores (CPU) 
  - Processing in memory  
 

Special Hardware 
  - Non caching loads 
  - Read only cache 
  - Atomics 

Programming 
models 
  - GPU: CUDA-ish 
  - CPU: OpenMP 
  - PIM: ?? 



Vision for Managing Heterogeneous Future 
 “MPI + X” Programming Model, separate concerns 
 Inter-node: MPI and domain specific libraries layered on MPI 
 Intra-node: Kokkos and domain specific libraries layered on Kokkos 

 Intra-node parallelism, heterogeneity & diversity concerns 
 Execution spaces’ (CPU, GPU, PIM, ...) diverse performance requirements 
 Memory spaces’ diverse capabilities and performance characteristics 
 Vendors’ diverse programming models for optimal utilization of hardware 

 Desire standardized performance portable programming model 
 Via vendors’ (slow) negotiations: OpenMP, OpenACC, OpenCL, C++17 
 Vendors’ (biased) solutions: C++AMP, Thrust, CilkPlus, TBB, ArrayFire, ... 
 Researchers’ solutions: HPX, StarPU, Bolt, Charm++, ... 

 Necessary condition: address execution & memory space diversity 
 SNL Computing Research Center’s Kokkos (C++ library) solution 
 Engagement with ISO C++ Standard committee to influence C++17 
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Programmatics 
 ASC/CSSE (FY11 start): Heterogeneous Computing project 
 Tight integration with co-design, mini-application, and testbed projects 
 Manycore (CPU, GPU, Xeon Phi, ...) performance portable “X” for MPI+X 
 Kokkos library is the “X” for fine grain data parallelism 

 1.0-1.4 FTE split among ~2 staff + interns (FY14 @ 1.0 FTE) 

 ASCR/EASI : Sparse Linear Algebra Kernels on Manycore 
 Some portion of this project also working on Kokkos core 

 LDRD (FY14 start): Unified Task+Data Manycore Parallelism 
 For solver-preconditioners, finite elements, informatics, transport sweeps, ...  
 0.9 FTE split among ~4 staff 

 Internal/external interests, and resource challenge ahead 
 Trilinos, LAMMPS, SIERRA, other ASC codes (SNL, LANL, LLNL), AWE, ... 
 ISO C++ standards addressing fine grain parallelism (am a voting member) 
 Currently under-resourced for production-growth support 
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Application and Domain Specific Library Layer 
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Kokkos: A Layered Collection of Libraries 
 Standard C++, Not a language extension 

 In spirit of TBB, Thrust & CUSP, C++AMP, LLNL’s RAJA, ... 
 Not a language extension like OpenMP, OpenACC, OpenCL, CUDA, ... 

 Uses C++ template meta-programming 
 Rely on C++1998 standard (supported everywhere except IBM’s xlC) 
 Moving to C++2011 for concise lambda syntax (required by LLNL’s RAJA) 

 Vendors slowly catching up to C++2011 language compliance 

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ... 

Kokkos Sparse Linear Algebra 
Kokkos Containers 
Kokkos Core 



Evaluate Performance Overhead of Abstraction 
Kokkos competitive with native programming models 

 MiniFE: finite element linear system iterative solver mini-app 

 Compare to versions specialized for programming models 

 Running on hardware testbeds 
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Thread-Scalable Fill of Sparse Linear System 
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 MiniFENL: Newton iteration of FEM: 𝒙𝒏+𝟏 = 𝒙𝒏 − 𝑱−𝟏(𝒙𝒏)𝒓(𝒙𝒏� 

 Thread-scalable pattern: Scatter-Atomic-Add or Gather-Sum ? 
 Scatter-Atomic-Add 

+ Simpler 
+ Less memory 
– Slower HW atomic 

 Gather-Sum 
+ Bit-wise reproducibility 

 Performance win? 
 Scatter-atomic-add 
 ~equal Xeon PHI 
 40% faster Kepler GPU 

 Pattern chosen 
 Feedback to HW vendors: 

performant atomics 
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Thread-Scalable Sparse Matrix Construction 
 MiniFENL: Construct sparse matrix graph from FEM connectivity 
 Thread scalable algorithm for constructing a data structure 

1. Parallel-for : fill Kokkos lock-free unordered map with FEM node-node pairs 
2. Parallel-scan : sparse matrix rows’ column counts into row offsets 
3. Parallel-for : query unordered map to fill sparse matrix column-index array 
4. Parallel-for : sort rows’ column-index subarray 
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 Pattern and tools generally applicable to construction and 
dynamic modification of data structures  

 



Tpetra: Domain Specific Library Layer for 
Sparse Linear Algebra Solvers 

 Funded by ASC/Algorithms and ASCR/EASI  
 Tpetra: Sandia’s templated C++ library for sparse linear algebra 
 Templated on “scalar” type: float, double, automatic derivatives, UQ, ... 
 Incremental refactoring from pure-MPI to MPI+Kokkos 

 CUDA UVM (unified virtual memory) codesign success 
 Sandia’s early access to CUDA 6.0 via Sandia/NVIDIA collaboration 
 Hidden in Kokkos, can neglect memory spaces and maintain correctness 
 Enables incremental refactoring and testing 

 Early access to UVM a win-win 
 Expedited refactoring + early evaluation 
 Identified performance issue in driver 
 NVIDIA fixed before their release 
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LAMMPS (molecular dynamics application) 
Porting to Kokkos has begun 

 Funded by LAMMPS’ projects  
 Enable thread scalability throughout code 
 Replace redundant hardware-specialized manycore parallel packages 

 Current release (last week) has optional use of Kokkos 
 Data and device management 
 Some simple simulations can  

now run entirely on device 

 Performs as well or better 
than original hardware- 
specialized packages 
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Improvements toward Production-Growth 
 Address build (configure, compile, link) complexity 
 Especially for Cuda cross-compiling 

 Address runtime initialization complexity 
 HWLOC not as portable as hoped (IBM, Mac) 
 Single Kokkos::initialize( argc , argv ) for all configured devices 

 Redesign Device abstraction (classes) 
 Split into Execution Space and Memory Space abstractions (classes) 
 Configure-time default allows this template argument to be omitted 

 Enable C++11 Lambda to be used in addition to Functor 
 Allow simple kernels to be defined inline for parallel_{for,reduce,scan} 
 Prototype available – limited to availability of C++11 

 Better compile error messages for user’s template errors 
 Documentation and project website 
 Path-forward technical review by alpha-users on July 16 
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Task-Data Parallelism: Kokkos/Qthreads LDRD 
 Task-DAG where tasks can be data parallel {for,reduce,scan} 
 Add course grain task API to Kokkos where a task runs on a team of threads 
 Add thread team task scheduling to Qthreads 
 Qthreads becomes a new Execution Space for Kokkos 

 Support informatics graph data structures and algorithms 
 Prototype small subset of Multithreaded Graph Library on Kokkos/Qthreads  

 Current API thoughts, in a nutshell 
 Self-describing task functor with simple spawn interface: 

Future<double> r = spawn( task_functor, dependences ); 

 
 Key design challenge: tasks cannot explicitly wait on other tasks 
 Some tasks spawn other tasks and need to wait (e.g., task recursion) 
 GPU kernels once dispatched must complete, they cannot block / wait 
 Solution: executing task respawns (reschedules) itself with new dependences 
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