
Scatter-Atomic-Add Gather-Sum
Evaluate Sparse Linear System Fill Algorithm Strategies

MiniFENL: Fully Hybrid Parallel and Performance Portable

Nonlinear Finite Element Mini-application using MPI+Kokkos

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
SAND No. 2011-XXXXP

• Finite element solution of a simple nonlinear equation: 𝑹 𝑻 = −𝒌∆𝑻 + 𝑻𝟐 = 𝟎
– Restrict geometry, coefficient, and boundary conditions to obtain analytic solution for verification
– 3D Cartesian domain with specified number of linear or quadratic hexahedral finite elements along each axis
– Use non-uniform element sizes to force non-uniform element computations

• Solve via Newton’s method: 𝑻𝒊+𝟏 = 𝑻𝒊 − 𝑱−𝟏 𝑻𝒊 × 𝑹 𝑻𝒊 ; 𝑱 𝑻 = 𝝏
𝝏𝑻
𝑹 𝑻

– Form linearized Residual and Jacobian for the nonlinear equation
– Solve sparse linear system with simple conjugate gradient solver

• Research thread parallel algorithms and their performance
– In-situ generation of domain-decomposed finite element mesh
– Construction of sparse linear system graph from mesh connectivity
– Computation of per-element contributions to Residual and Jacobian
– Assembly of element contributions into sparse linear system
– Solve sparse linear system with sufficient accuracy for Newton step

• Kokkos C++ library enables performance portable implementation across manycore architectures
– Currently supported devices: multicore CPU with NUMA, Intel Xeon Phi, NVIDIA GPU (Kepler for best performance)
– Thread-parallel execution of application kernels via parallel-for, parallel-reduce, and parallel-scan patterns
– Multidimensional arrays with polymorphic data layout for device-appropriate memory access patterns

Kokkos is publically available through the Trilinos project at trilinos.sandia.gov
Development team: H. Carter Edwards (PI), Daniel Sunderland, and Christian Trott
Thanks to our alpha users: Jonathan Berry, Erik Bowman, Matthew Bettencourt,
Irina Demeshko, Kenneth Franko, Glen Hansen, Mark Hoemmen, Greg Mackey,
Roger Pawlowski, Eric Phipps, Siva Rajamanickam

Element
Computations
& Scatter-Add

Element
Computations

Gather-Sum
atomic-add

+=

Finite Element Data

Mapping:
Mesh → Sparse Graph

Sparse Linear System
Coefficients

Per-Element
Scratch Arrays

• Both strategies are thread-scalable
• Scatter-Atomic-Add strategy

+ Single, simple kernel applied via parallel-for over finite elements
– Atomic-add is slower than regular add operation (+=)
– Non-deterministic order of summation with floating point round-off

• Gather-Sum strategy
+ Deterministic order of summation for bit-wise reproducibility
– Large per-element Residual and Jacobian scratch arrays
– Kernel #1: parallel-for over finite elements and fill scratch arrays
– Kernel #2: parallel-for over matrix rows and “mine” scratch arrays

Sparse Linear System Fill Performance Comparison

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

1E+03 1E+05 1E+07

 F
ill

 :
m

ic
ro

se
c/

no
de

Number of finite element nodes

Phi-60 GatherSum

Phi-60 ScatterAtomic

Phi-240 GatherSum

Phi-240 ScatterAtomic

Kepler GatherSum

Kepler ScatterAtomic

• Devices
– NVIDIA Kepler K40 (Atlas) 12 GB
– Intel Xeon Phi COES2, 61 cores, 1.2 GHz, 16 GB

using only 60 cores with 1 or 4 hyperthreads per core

• Scale problem size: number of nodes (and elements)
– Small problem size: parallel startup time dominates
– Large problem size: computation time dominates

• Scatter-atomic-add is the winning strategy
– If you can tolerate loss of bit-wise reproducibility
– Avoids per-element Residual and Jacobian scratch arrays
– Atomic-add is performant compared gather-sum operation

• Potential performance improvements
– Hardware support for double precision atomic-add instead

of 64bit CAS (compare-and-swap) implementation
– Threaded element coloring algorithm allow scatter-add

strategy to use += instead of atomic-add

SAND2014-3724P

	Slide Number 1

