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Kokkos: C++ Library / Programming Model 
for Manycore Performance Portability 
 Portable to Advanced Manycore Architectures 

 Multicore CPU, NVidia GPU, Intel Xeon Phi (potential: AMD Fusion) 
 Maximize amount of user (application/library) code that can be compiled 

without modification and run on these architectures 
 Minimize amount of architecture-specific knowledge that a user is 

required to have 
 Allow architecture-specific tuning to easily co-exist 
 Only require C++1998 standard compliant 

 Performant 
 Portable user code performs as well as architecture-specific code 
 Thread scalable – not just thread safety (no locking!) 

 Usable 
 Small, straight-forward application programmer interface (API) 
 Constraint: don’t compromise portability and performance 

 



2 

Kokkos: Collection of Libraries 
 Core – lowest level portability layer 

 Portable data-parallel dispatch: parallel_for, parallel_reduce, parallel_scan  
 Multidimensional arrays with device-polymorphic layout for transparent 

and device-optimal memory access patterns 

 Containers – built on core arrays 
 UnorderedMap – fast find and thread scalable insertion 
 Vector – subset of std::vector functionality to ease porting 
 Compress Row Storage (CRS) graph 

 Linear Algebra 
 Sparse matrices and linear algebra operations 
 Wrappers to vendors’ libraries  
 Portability layer for Trilinos manycore solvers 

 Examples – where the code for this presentation resides 
 MiniFENL: finite element solution of non-linear system of equations 
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MiniFENL: Mini (proxy) Application 

 Finite element method to solve of nonlinear problem via 
Newton iteration 
 Simple scalar nonlinear equation : −𝒌 ∆𝑻 + 𝑻𝟐 = 𝟎 
 3D domain: simple XYZ box 
 Restrict geometry and boundary conditions to obtain analytic solution 

 to verify correctness 
 Linear hexahedral finite elements: 2x2x2 numerical integration 

 Non-affine mapping of vertices for non-uniform element geometries 
 Compute residual and Jacobian (sparse matrix) 
 Solve linear system via simple conjugate gradient iterative solver 

  Focus: Construction and fill of sparse linear system 
 Thread safe, thread scalable, and performant algorithms  
 Evaluate thread-parallel capabilities and programming models 
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MiniFENL: Parallel Computational Steps 
 Construct finite element mesh 

 Simple unstructured finite element mesh data structure 
 Hexahedral elements, element-node connectivity array 

 Construct maps sparse linear system 
 Sparse linear system graph : node-node map 
 Element-graph map for scatter-atomic-add assembly algorithm 
o Graph-element map for gather-sum assembly algorithm  

 Compute nonlinear residual and Jacobian 
 Iterate elements to compute per-element residual and Jacobian 

 Scatter-atomic-add values into linear system 
o Save values in gather-sum scratch array 

o Iterate rows, gather data from scratch array, sum into linear system 

 Solve linear system for Newton iteration 
 

 



Gather-Sum Pattern 

Scatter-Atomic-Add vs. Gather-Sum 
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Finite Element Data 

Scratch Arrays 

Sparse Linear System 
Coefficients 

Map: Mesh → Sparse Graph 

Element 
Computations 
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Element 
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add 

Scatter-Atomic-
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Scatter-Atomic-Add Overview 
 Compute element nonlinear residual and Jacobian 
 Parallel-for iteration of elements 
 Computational in element-local arrays, with element-local numbering 
 ElemRes(i) = element residual for local node #i 
 ElemJac(i,j) = element Jacobian for local nodes #i , #j 

 Add values into sparse linear system 
 Res(I) = Residual for row I 
 Jac(K) = Jacobian value for row I column J in the sparse linear system 
 atomic_add( Res( node_map(e,i) ) , ElemRes(i) ) 
 atomic_add( Jac( elem_graph_map(e,i,j) ) , ElemJac(i,j) ) 

 Precompute elem_graph_map 
 Composition of element-node map and node-node map 
 Compute once and re-use in the nonlinear Newton iteration loop 
 Valid as long as the mesh and graph don’t change 
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Gather-Sum Overview 
 Compute element nonlinear residual and Jacobian 
 Parallel-for iteration of elements 
 Computational in element-local arrays, with element-local numbering 
 ElemRes(i) = element residual for local node #i 
 ElemJac(i,j) = element Jacobian for local nodes #i , #j 

 Save values in scratch arrays (large scratch space) 
 ScrRes(e,i) = ElemRes(i)  ;   ScrJac(e,i,j) = ElemJac(i,j) 

 Gather-sum from scratch array into sparse linear system 
 Parallel-for iteration of rows, each thread has exclusive access to its row ‘I’ 
 Iterate elements ‘e’ with node ‘i’ mapping to row ‘I’ 
 (e,i) ∈ row_elem_map(I) ; uses a CRS graph data structure 

 Res(I) += ScrRes(e,i) 
 Jac( elem_graph_map(e,i,j) ) += ScrJac(e,i,j)    element-local nodes (i,j) 

 Precompute elem_graph_map and row_elem_map 
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Scatter-Atomic-Add vs. Gather-Sum 
 Both are thread-safe and thread-scalable 
 Scatter-Atomic-Add 

+ Simple implementation 
+ Fewer global memory reads and writes 
- Atomic operations much slower than corresponding regular operation 
- Non-deterministic order of additions – floating point round off variability 
- Double precision atomic add is a looped compare-and-swap (CAS) 

 Gather-Sum 
+ Deterministic order of additions – no round off variability 
- Extra scratch arrays for element residuals and Jacobians 
- Additional parallel-for 

 Performance comparison – execution time 
 Neglecting the time to pre-compute mapping(s), assuming re-use 
 Cost of atomic-add vs. additional parallel-for for the gather-sum 
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Performance Comparison 
 Single “Device” Performance Tests 
 NVidia Kepler K40 (Atlas), 12Gbytes 
 Intel Xeon Phi (Knights Corner) COES2, 61 cores, 1.2 GHz, 16Gbytes 
 Limit use to 60 cores, 4 hyperthreads/core 

 MiniFENL – portable source code via Kokkos  
 Kokkos chooses multidimensional array layouts to match device 
 NVidia : coalesced memory access 
 Intel : caching and vectorization 

 Scale problem size (number of nodes)  
 Small problem size – parallel dispatch overhead dominate 
 Large problem size – computations dominate 

 Measure total time-to-fill normalized by problem size 
 Element Computation + ( Scatter-Atomic | Gather-Sum )  
 Double precision data and computations 
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Performance Comparison: Element+Fill 

 Phi: ScatterAtomicAdd ~equal to GatherSum 
 ~2.1x speed up from 1 to 4 threads/core – hyperthreading  

 Kepler: ScatterAtomicAdd ~40% faster than GatherSum 
 Performant double precision atomic-add via compare-and-swap algorithm 
 Fewer global memory writes and reads 
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Performance Overhead of Atomic Add 

 Performance analysis: replace atomic-add with “ y += x ; ” 
 Numerical errors due to thread unsafe race condition 
 Approx. performance of “perfect” atomics or coloring algorithm 

 Kepler: Large overhead for double precision “CAS loop” atomic 
 Phi: Small overhead versus element computation 
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Thread Scalable 
Graph and Map Construction Algorithm 
1. Fill unordered map with elements’ (row-node, column-node) 
 Parallel-for of elements, iterate node-node pairs 
 Successful insert to node-node unordered map denotes a unique entry 
 Column count = count unique entries for each row-node 

2. Construct (row-node, column-node) sparse graph 
 Parallel-scan of row-node column counts 
 This is now the CRS row-offset array 

 Allocate CRS column-index array 
 Parallel-for on node-node unordered map to fill CRS column-index array 
 Parallel-for on CRS graph rows to sort each row’s column-indices 

3. Construct elem_graph_map 
 Parallel-for of elements 
 For each element (row-node, column-node) search CRS graph row for 

column-index entry 
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Performance: Graph and Map Construction 

 Graph construction ~5x longer than Element+Fill 
 Multiple parallel kernels performing random-access queries and updates 
 Recall finite element computation is 

 Linearized hexahedron finite element for: −𝒌 ∆𝑻 + 𝑻𝟐 = 𝟎 
 3D spatial Jacobian with 2x2x2 point numerical integration 
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Performance: Graph Construction on Phi-240 

 Performance for each phase of construction 
 “Hot spot” is fill of node-node unordered map (hash map) 

 Dominated by memory access and integer atomic operations 
 Extensive analysis and optimizing has been done here ... 
 Performance very sensitive to hash map capacity, must be < 75% full 
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Performance: Graph Construction on Kepler 

 Performance for each phase of construction 
 No single “hot spot”  
 Opportunity to improve parallelism for sort of CRS row columns: 

change from serial to parallel sorting within a row 
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Conclusions : Sparse Linear System Assembly 
 Scatter-atomic-add is the winning pattern 

+ Less memory consumed, faster with performant atomics 
- If you can tolerate floating point round off variability / nondeterminism 

 CRS graph construction can be thread scalable 
 Pattern 
 Parallel count array lengths 
 Allocate arrays 
 Parallel fill arrays 
 Parallel post-process arrays (e.g., sort CRS rows’ column indices) 

 Essential tools 
 Parallel-for, parallel-scan, and atomics 
 Thread scalable unordered map 

 Graph construction time > sparse linear system fill time 
 Separate graph construction from sparse linear system fill 
 Reuse graph whenever possible 

 
 



A little more about Kokkos 
 Core abstractions 

 Dispatch parallel kernels to a manycore device 
 Parallel for, parallel reduce, parallel scan 

 Device-polymorphic layout of multidimensional arrays in device memory 
 Choose layout for optimal memory access patterns 
 Layout changes are transparent to user code 

 A Library using Standard C++, not a Language extension 
 In spirit of Intel’s TBB, NVIDIA’s Thrust & CUSP, MS C++AMP, ... 
 Not a language extension: OpenMP, OpenACC, OpenCL, CUDA 

 Via C++ template meta-programming 
 Compile-time polymorphism for devices and array layouts  
 C++1998 standard; would be nice to require C++2011 ... 

 



A little more about Kokkos 
 Recent capabilities 

 Parallel scan using arbitrary user-supplied kernels 
 Unordered map container 

 Thread scalable insert and erase 
 Use NVidia texture fetch for random access queries 

 League of thread teams 
 Team shared scratch memory and synchronization functions   

 Here at SIAM PP14 
 MS7 – Embedded UQ on manycore architectures 
 MS33 – Overview and use in other miniapplications 
 MS70 – Research on unified task-data manycore parallelism 
 MS73 – DSL layered on Kokkos 
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