
Photos placed in
horizontal position
with even amount

of white space
 between photos

and header

Photos placed in horizontal
position

with even amount of white
space

 between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Portable Manycore Sparse Linear
System Assembly Algorithms and

Performance Tradeoffs

H. Carter Edwards, Daniel Sunderland,
and Christian Trott

SIAM Parallel Processing
February 19, 2014
SAND2014-0748C

1

Kokkos: C++ Library / Programming Model
for Manycore Performance Portability
 Portable to Advanced Manycore Architectures

 Multicore CPU, NVidia GPU, Intel Xeon Phi (potential: AMD Fusion)
 Maximize amount of user (application/library) code that can be compiled

without modification and run on these architectures
 Minimize amount of architecture-specific knowledge that a user is

required to have
 Allow architecture-specific tuning to easily co-exist
 Only require C++1998 standard compliant

 Performant
 Portable user code performs as well as architecture-specific code
 Thread scalable – not just thread safety (no locking!)

 Usable
 Small, straight-forward application programmer interface (API)
 Constraint: don’t compromise portability and performance

2

Kokkos: Collection of Libraries
 Core – lowest level portability layer

 Portable data-parallel dispatch: parallel_for, parallel_reduce, parallel_scan
 Multidimensional arrays with device-polymorphic layout for transparent

and device-optimal memory access patterns

 Containers – built on core arrays
 UnorderedMap – fast find and thread scalable insertion
 Vector – subset of std::vector functionality to ease porting
 Compress Row Storage (CRS) graph

 Linear Algebra
 Sparse matrices and linear algebra operations
 Wrappers to vendors’ libraries
 Portability layer for Trilinos manycore solvers

 Examples – where the code for this presentation resides
 MiniFENL: finite element solution of non-linear system of equations

3

MiniFENL: Mini (proxy) Application

 Finite element method to solve of nonlinear problem via
Newton iteration
 Simple scalar nonlinear equation : −𝒌 ∆𝑻 + 𝑻𝟐 = 𝟎
 3D domain: simple XYZ box
 Restrict geometry and boundary conditions to obtain analytic solution

 to verify correctness
 Linear hexahedral finite elements: 2x2x2 numerical integration

 Non-affine mapping of vertices for non-uniform element geometries
 Compute residual and Jacobian (sparse matrix)
 Solve linear system via simple conjugate gradient iterative solver

 Focus: Construction and fill of sparse linear system
 Thread safe, thread scalable, and performant algorithms
 Evaluate thread-parallel capabilities and programming models

4

MiniFENL: Parallel Computational Steps
 Construct finite element mesh

 Simple unstructured finite element mesh data structure
 Hexahedral elements, element-node connectivity array

 Construct maps sparse linear system
 Sparse linear system graph : node-node map
 Element-graph map for scatter-atomic-add assembly algorithm
o Graph-element map for gather-sum assembly algorithm

 Compute nonlinear residual and Jacobian
 Iterate elements to compute per-element residual and Jacobian

 Scatter-atomic-add values into linear system
o Save values in gather-sum scratch array

o Iterate rows, gather data from scratch array, sum into linear system

 Solve linear system for Newton iteration

Gather-Sum Pattern

Scatter-Atomic-Add vs. Gather-Sum

5

Finite Element Data

Scratch Arrays

Sparse Linear System
Coefficients

Map: Mesh → Sparse Graph

Element
Computations
+ Scatter-Add

Element
Computations

Gather-Sum

atomic_add
add

Scatter-Atomic-
Add Pattern

6

Scatter-Atomic-Add Overview
 Compute element nonlinear residual and Jacobian
 Parallel-for iteration of elements
 Computational in element-local arrays, with element-local numbering
 ElemRes(i) = element residual for local node #i
 ElemJac(i,j) = element Jacobian for local nodes #i , #j

 Add values into sparse linear system
 Res(I) = Residual for row I
 Jac(K) = Jacobian value for row I column J in the sparse linear system
 atomic_add(Res(node_map(e,i)) , ElemRes(i))
 atomic_add(Jac(elem_graph_map(e,i,j)) , ElemJac(i,j))

 Precompute elem_graph_map
 Composition of element-node map and node-node map
 Compute once and re-use in the nonlinear Newton iteration loop
 Valid as long as the mesh and graph don’t change

7

Gather-Sum Overview
 Compute element nonlinear residual and Jacobian
 Parallel-for iteration of elements
 Computational in element-local arrays, with element-local numbering
 ElemRes(i) = element residual for local node #i
 ElemJac(i,j) = element Jacobian for local nodes #i , #j

 Save values in scratch arrays (large scratch space)
 ScrRes(e,i) = ElemRes(i) ; ScrJac(e,i,j) = ElemJac(i,j)

 Gather-sum from scratch array into sparse linear system
 Parallel-for iteration of rows, each thread has exclusive access to its row ‘I’
 Iterate elements ‘e’ with node ‘i’ mapping to row ‘I’
 (e,i) ∈ row_elem_map(I) ; uses a CRS graph data structure

 Res(I) += ScrRes(e,i)
 Jac(elem_graph_map(e,i,j)) += ScrJac(e,i,j) element-local nodes (i,j)

 Precompute elem_graph_map and row_elem_map

8

Scatter-Atomic-Add vs. Gather-Sum
 Both are thread-safe and thread-scalable
 Scatter-Atomic-Add

+ Simple implementation
+ Fewer global memory reads and writes
- Atomic operations much slower than corresponding regular operation
- Non-deterministic order of additions – floating point round off variability
- Double precision atomic add is a looped compare-and-swap (CAS)

 Gather-Sum
+ Deterministic order of additions – no round off variability
- Extra scratch arrays for element residuals and Jacobians
- Additional parallel-for

 Performance comparison – execution time
 Neglecting the time to pre-compute mapping(s), assuming re-use
 Cost of atomic-add vs. additional parallel-for for the gather-sum

9

Performance Comparison
 Single “Device” Performance Tests
 NVidia Kepler K40 (Atlas), 12Gbytes
 Intel Xeon Phi (Knights Corner) COES2, 61 cores, 1.2 GHz, 16Gbytes
 Limit use to 60 cores, 4 hyperthreads/core

 MiniFENL – portable source code via Kokkos
 Kokkos chooses multidimensional array layouts to match device
 NVidia : coalesced memory access
 Intel : caching and vectorization

 Scale problem size (number of nodes)
 Small problem size – parallel dispatch overhead dominate
 Large problem size – computations dominate

 Measure total time-to-fill normalized by problem size
 Element Computation + (Scatter-Atomic | Gather-Sum)
 Double precision data and computations

10

Performance Comparison: Element+Fill

 Phi: ScatterAtomicAdd ~equal to GatherSum
 ~2.1x speed up from 1 to 4 threads/core – hyperthreading

 Kepler: ScatterAtomicAdd ~40% faster than GatherSum
 Performant double precision atomic-add via compare-and-swap algorithm
 Fewer global memory writes and reads

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4

1E+03 1E+04 1E+05 1E+06 1E+07

 M
at

rix
 F

ill
 :

m
ic

ro
se

c/
no

de

Number of finite element nodes

Phi-60 GatherSum
Phi-60 ScatterAtomic
Phi-240 GatherSum
Phi-240 ScatterAtomic
Kepler GatherSum
Kepler ScatterAtomic

11

Performance Overhead of Atomic Add

 Performance analysis: replace atomic-add with “ y += x ; ”
 Numerical errors due to thread unsafe race condition
 Approx. performance of “perfect” atomics or coloring algorithm

 Kepler: Large overhead for double precision “CAS loop” atomic
 Phi: Small overhead versus element computation

0

0.05

0.1

0.15

0.2

0.25

1E+03 1E+04 1E+05 1E+06 1E+07 M
at

rix
 F

ill
 :

m
ic

ro
se

c/
no

de

Number of finite element nodes

Phi-240 ScatterAtomic

Phi-240 ScatterAdd (with errors)

Kepler ScatterAtomic

Kepler ScatterAdd (with errors)

Thread Scalable
Graph and Map Construction Algorithm
1. Fill unordered map with elements’ (row-node, column-node)
 Parallel-for of elements, iterate node-node pairs
 Successful insert to node-node unordered map denotes a unique entry
 Column count = count unique entries for each row-node

2. Construct (row-node, column-node) sparse graph
 Parallel-scan of row-node column counts
 This is now the CRS row-offset array

 Allocate CRS column-index array
 Parallel-for on node-node unordered map to fill CRS column-index array
 Parallel-for on CRS graph rows to sort each row’s column-indices

3. Construct elem_graph_map
 Parallel-for of elements
 For each element (row-node, column-node) search CRS graph row for

column-index entry

13

Performance: Graph and Map Construction

 Graph construction ~5x longer than Element+Fill
 Multiple parallel kernels performing random-access queries and updates
 Recall finite element computation is

 Linearized hexahedron finite element for: −𝒌 ∆𝑻 + 𝑻𝟐 = 𝟎
 3D spatial Jacobian with 2x2x2 point numerical integration

0

0.5

1

1.5

2

2.5

1E+03 1E+04 1E+05 1E+06 1E+07

G
ra

ph
 C

on
st

ru
ct

io
n

:
m

ic
ro

se
c/

no
de

Number of finite element nodes

Phi-60
Phi-240
Kepler

14

Performance: Graph Construction on Phi-240

 Performance for each phase of construction
 “Hot spot” is fill of node-node unordered map (hash map)

 Dominated by memory access and integer atomic operations
 Extensive analysis and optimizing has been done here ...
 Performance very sensitive to hash map capacity, must be < 75% full

0
0.2
0.4
0.6
0.8

1
1.2

Ph
i-2

40
: m

ic
ro

se
c/

no
de

Number of finite element nodes

Fill Map: Elem -> CRS Graph

Sort CRS Row Columns

Fill CRS Graph Entries

Scan Row Column Counts

Fill Node-Node Map + Count
Row Columns

15

Performance: Graph Construction on Kepler

 Performance for each phase of construction
 No single “hot spot”
 Opportunity to improve parallelism for sort of CRS row columns:

change from serial to parallel sorting within a row

0
0.2
0.4
0.6
0.8

1
1.2

K
ep

le
r:

 m
ic

ro
se

c/
no

de

Number of finite element nodes

Fill Map: Elem -> CRS Graph

Sort CRS Row Columns

Fill CRS Graph Entries

Scan Row Column Counts

Fill Node-Node Map + Count
Row Columns

16

Conclusions : Sparse Linear System Assembly
 Scatter-atomic-add is the winning pattern

+ Less memory consumed, faster with performant atomics
- If you can tolerate floating point round off variability / nondeterminism

 CRS graph construction can be thread scalable
 Pattern
 Parallel count array lengths
 Allocate arrays
 Parallel fill arrays
 Parallel post-process arrays (e.g., sort CRS rows’ column indices)

 Essential tools
 Parallel-for, parallel-scan, and atomics
 Thread scalable unordered map

 Graph construction time > sparse linear system fill time
 Separate graph construction from sparse linear system fill
 Reuse graph whenever possible

A little more about Kokkos
 Core abstractions

 Dispatch parallel kernels to a manycore device
 Parallel for, parallel reduce, parallel scan

 Device-polymorphic layout of multidimensional arrays in device memory
 Choose layout for optimal memory access patterns
 Layout changes are transparent to user code

 A Library using Standard C++, not a Language extension
 In spirit of Intel’s TBB, NVIDIA’s Thrust & CUSP, MS C++AMP, ...
 Not a language extension: OpenMP, OpenACC, OpenCL, CUDA

 Via C++ template meta-programming
 Compile-time polymorphism for devices and array layouts
 C++1998 standard; would be nice to require C++2011 ...

A little more about Kokkos
 Recent capabilities

 Parallel scan using arbitrary user-supplied kernels
 Unordered map container

 Thread scalable insert and erase
 Use NVidia texture fetch for random access queries

 League of thread teams
 Team shared scratch memory and synchronization functions

 Here at SIAM PP14
 MS7 – Embedded UQ on manycore architectures
 MS33 – Overview and use in other miniapplications
 MS70 – Research on unified task-data manycore parallelism
 MS73 – DSL layered on Kokkos

	Portable Manycore Sparse Linear System Assembly Algorithms and Performance Tradeoffs
	Kokkos: C++ Library / Programming Model�for Manycore Performance Portability
	Kokkos: Collection of Libraries
	MiniFENL: Mini (proxy) Application
	MiniFENL: Parallel Computational Steps
	Scatter-Atomic-Add vs. Gather-Sum
	Scatter-Atomic-Add Overview
	Gather-Sum Overview
	Scatter-Atomic-Add vs. Gather-Sum
	Performance Comparison
	Performance Comparison: Element+Fill
	Performance Overhead of Atomic Add
	Thread Scalable�Graph and Map Construction Algorithm
	Performance: Graph and Map Construction
	Performance: Graph Construction on Phi-240
	Performance: Graph Construction on Kepler
	Conclusions : Sparse Linear System Assembly
	A little more about Kokkos
	A little more about Kokkos

