
Photos placed in
horizontal position
with even amount

of white space
 between photos

and header

Photos placed in horizontal
position

with even amount of white
space

 between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Portable Manycore Sparse Linear
System Assembly Algorithms and

Performance Tradeoffs

H. Carter Edwards, Daniel Sunderland,
and Christian Trott

SIAM Parallel Processing
February 19, 2014
SAND2014-0748C

1

Kokkos: C++ Library / Programming Model
for Manycore Performance Portability
 Portable to Advanced Manycore Architectures

 Multicore CPU, NVidia GPU, Intel Xeon Phi (potential: AMD Fusion)
 Maximize amount of user (application/library) code that can be compiled

without modification and run on these architectures
 Minimize amount of architecture-specific knowledge that a user is

required to have
 Allow architecture-specific tuning to easily co-exist
 Only require C++1998 standard compliant

 Performant
 Portable user code performs as well as architecture-specific code
 Thread scalable – not just thread safety (no locking!)

 Usable
 Small, straight-forward application programmer interface (API)
 Constraint: don’t compromise portability and performance

2

Kokkos: Collection of Libraries
 Core – lowest level portability layer

 Portable data-parallel dispatch: parallel_for, parallel_reduce, parallel_scan
 Multidimensional arrays with device-polymorphic layout for transparent

and device-optimal memory access patterns

 Containers – built on core arrays
 UnorderedMap – fast find and thread scalable insertion
 Vector – subset of std::vector functionality to ease porting
 Compress Row Storage (CRS) graph

 Linear Algebra
 Sparse matrices and linear algebra operations
 Wrappers to vendors’ libraries
 Portability layer for Trilinos manycore solvers

 Examples – where the code for this presentation resides
 MiniFENL: finite element solution of non-linear system of equations

3

MiniFENL: Mini (proxy) Application

 Finite element method to solve of nonlinear problem via
Newton iteration
 Simple scalar nonlinear equation : −𝒌 ∆𝑻 + 𝑻𝟐 = 𝟎
 3D domain: simple XYZ box
 Restrict geometry and boundary conditions to obtain analytic solution

 to verify correctness
 Linear hexahedral finite elements: 2x2x2 numerical integration

 Non-affine mapping of vertices for non-uniform element geometries
 Compute residual and Jacobian (sparse matrix)
 Solve linear system via simple conjugate gradient iterative solver

 Focus: Construction and fill of sparse linear system
 Thread safe, thread scalable, and performant algorithms
 Evaluate thread-parallel capabilities and programming models

4

MiniFENL: Parallel Computational Steps
 Construct finite element mesh

 Simple unstructured finite element mesh data structure
 Hexahedral elements, element-node connectivity array

 Construct maps sparse linear system
 Sparse linear system graph : node-node map
 Element-graph map for scatter-atomic-add assembly algorithm
o Graph-element map for gather-sum assembly algorithm

 Compute nonlinear residual and Jacobian
 Iterate elements to compute per-element residual and Jacobian

 Scatter-atomic-add values into linear system
o Save values in gather-sum scratch array

o Iterate rows, gather data from scratch array, sum into linear system

 Solve linear system for Newton iteration

Gather-Sum Pattern

Scatter-Atomic-Add vs. Gather-Sum

5

Finite Element Data

Scratch Arrays

Sparse Linear System
Coefficients

Map: Mesh → Sparse Graph

Element
Computations
+ Scatter-Add

Element
Computations

Gather-Sum

atomic_add
add

Scatter-Atomic-
Add Pattern

6

Scatter-Atomic-Add Overview
 Compute element nonlinear residual and Jacobian
 Parallel-for iteration of elements
 Computational in element-local arrays, with element-local numbering
 ElemRes(i) = element residual for local node #i
 ElemJac(i,j) = element Jacobian for local nodes #i , #j

 Add values into sparse linear system
 Res(I) = Residual for row I
 Jac(K) = Jacobian value for row I column J in the sparse linear system
 atomic_add(Res(node_map(e,i)) , ElemRes(i))
 atomic_add(Jac(elem_graph_map(e,i,j)) , ElemJac(i,j))

 Precompute elem_graph_map
 Composition of element-node map and node-node map
 Compute once and re-use in the nonlinear Newton iteration loop
 Valid as long as the mesh and graph don’t change

7

Gather-Sum Overview
 Compute element nonlinear residual and Jacobian
 Parallel-for iteration of elements
 Computational in element-local arrays, with element-local numbering
 ElemRes(i) = element residual for local node #i
 ElemJac(i,j) = element Jacobian for local nodes #i , #j

 Save values in scratch arrays (large scratch space)
 ScrRes(e,i) = ElemRes(i) ; ScrJac(e,i,j) = ElemJac(i,j)

 Gather-sum from scratch array into sparse linear system
 Parallel-for iteration of rows, each thread has exclusive access to its row ‘I’
 Iterate elements ‘e’ with node ‘i’ mapping to row ‘I’
 (e,i) ∈ row_elem_map(I) ; uses a CRS graph data structure

 Res(I) += ScrRes(e,i)
 Jac(elem_graph_map(e,i,j)) += ScrJac(e,i,j) element-local nodes (i,j)

 Precompute elem_graph_map and row_elem_map

8

Scatter-Atomic-Add vs. Gather-Sum
 Both are thread-safe and thread-scalable
 Scatter-Atomic-Add

+ Simple implementation
+ Fewer global memory reads and writes
- Atomic operations much slower than corresponding regular operation
- Non-deterministic order of additions – floating point round off variability
- Double precision atomic add is a looped compare-and-swap (CAS)

 Gather-Sum
+ Deterministic order of additions – no round off variability
- Extra scratch arrays for element residuals and Jacobians
- Additional parallel-for

 Performance comparison – execution time
 Neglecting the time to pre-compute mapping(s), assuming re-use
 Cost of atomic-add vs. additional parallel-for for the gather-sum

9

Performance Comparison
 Single “Device” Performance Tests
 NVidia Kepler K40 (Atlas), 12Gbytes
 Intel Xeon Phi (Knights Corner) COES2, 61 cores, 1.2 GHz, 16Gbytes
 Limit use to 60 cores, 4 hyperthreads/core

 MiniFENL – portable source code via Kokkos
 Kokkos chooses multidimensional array layouts to match device
 NVidia : coalesced memory access
 Intel : caching and vectorization

 Scale problem size (number of nodes)
 Small problem size – parallel dispatch overhead dominate
 Large problem size – computations dominate

 Measure total time-to-fill normalized by problem size
 Element Computation + (Scatter-Atomic | Gather-Sum)
 Double precision data and computations

10

Performance Comparison: Element+Fill

 Phi: ScatterAtomicAdd ~equal to GatherSum
 ~2.1x speed up from 1 to 4 threads/core – hyperthreading

 Kepler: ScatterAtomicAdd ~40% faster than GatherSum
 Performant double precision atomic-add via compare-and-swap algorithm
 Fewer global memory writes and reads

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4

1E+03 1E+04 1E+05 1E+06 1E+07

 M
at

rix
 F

ill
 :

m
ic

ro
se

c/
no

de

Number of finite element nodes

Phi-60 GatherSum
Phi-60 ScatterAtomic
Phi-240 GatherSum
Phi-240 ScatterAtomic
Kepler GatherSum
Kepler ScatterAtomic

11

Performance Overhead of Atomic Add

 Performance analysis: replace atomic-add with “ y += x ; ”
 Numerical errors due to thread unsafe race condition
 Approx. performance of “perfect” atomics or coloring algorithm

 Kepler: Large overhead for double precision “CAS loop” atomic
 Phi: Small overhead versus element computation

0

0.05

0.1

0.15

0.2

0.25

1E+03 1E+04 1E+05 1E+06 1E+07 M
at

rix
 F

ill
 :

m
ic

ro
se

c/
no

de

Number of finite element nodes

Phi-240 ScatterAtomic

Phi-240 ScatterAdd (with errors)

Kepler ScatterAtomic

Kepler ScatterAdd (with errors)

Thread Scalable
Graph and Map Construction Algorithm
1. Fill unordered map with elements’ (row-node, column-node)
 Parallel-for of elements, iterate node-node pairs
 Successful insert to node-node unordered map denotes a unique entry
 Column count = count unique entries for each row-node

2. Construct (row-node, column-node) sparse graph
 Parallel-scan of row-node column counts
 This is now the CRS row-offset array

 Allocate CRS column-index array
 Parallel-for on node-node unordered map to fill CRS column-index array
 Parallel-for on CRS graph rows to sort each row’s column-indices

3. Construct elem_graph_map
 Parallel-for of elements
 For each element (row-node, column-node) search CRS graph row for

column-index entry

13

Performance: Graph and Map Construction

 Graph construction ~5x longer than Element+Fill
 Multiple parallel kernels performing random-access queries and updates
 Recall finite element computation is

 Linearized hexahedron finite element for: −𝒌 ∆𝑻 + 𝑻𝟐 = 𝟎
 3D spatial Jacobian with 2x2x2 point numerical integration

0

0.5

1

1.5

2

2.5

1E+03 1E+04 1E+05 1E+06 1E+07

G
ra

ph
 C

on
st

ru
ct

io
n

:
m

ic
ro

se
c/

no
de

Number of finite element nodes

Phi-60
Phi-240
Kepler

14

Performance: Graph Construction on Phi-240

 Performance for each phase of construction
 “Hot spot” is fill of node-node unordered map (hash map)

 Dominated by memory access and integer atomic operations
 Extensive analysis and optimizing has been done here ...
 Performance very sensitive to hash map capacity, must be < 75% full

0
0.2
0.4
0.6
0.8

1
1.2

Ph
i-2

40
: m

ic
ro

se
c/

no
de

Number of finite element nodes

Fill Map: Elem -> CRS Graph

Sort CRS Row Columns

Fill CRS Graph Entries

Scan Row Column Counts

Fill Node-Node Map + Count
Row Columns

15

Performance: Graph Construction on Kepler

 Performance for each phase of construction
 No single “hot spot”
 Opportunity to improve parallelism for sort of CRS row columns:

change from serial to parallel sorting within a row

0
0.2
0.4
0.6
0.8

1
1.2

K
ep

le
r:

 m
ic

ro
se

c/
no

de

Number of finite element nodes

Fill Map: Elem -> CRS Graph

Sort CRS Row Columns

Fill CRS Graph Entries

Scan Row Column Counts

Fill Node-Node Map + Count
Row Columns

16

Conclusions : Sparse Linear System Assembly
 Scatter-atomic-add is the winning pattern

+ Less memory consumed, faster with performant atomics
- If you can tolerate floating point round off variability / nondeterminism

 CRS graph construction can be thread scalable
 Pattern
 Parallel count array lengths
 Allocate arrays
 Parallel fill arrays
 Parallel post-process arrays (e.g., sort CRS rows’ column indices)

 Essential tools
 Parallel-for, parallel-scan, and atomics
 Thread scalable unordered map

 Graph construction time > sparse linear system fill time
 Separate graph construction from sparse linear system fill
 Reuse graph whenever possible

A little more about Kokkos
 Core abstractions

 Dispatch parallel kernels to a manycore device
 Parallel for, parallel reduce, parallel scan

 Device-polymorphic layout of multidimensional arrays in device memory
 Choose layout for optimal memory access patterns
 Layout changes are transparent to user code

 A Library using Standard C++, not a Language extension
 In spirit of Intel’s TBB, NVIDIA’s Thrust & CUSP, MS C++AMP, ...
 Not a language extension: OpenMP, OpenACC, OpenCL, CUDA

 Via C++ template meta-programming
 Compile-time polymorphism for devices and array layouts
 C++1998 standard; would be nice to require C++2011 ...

A little more about Kokkos
 Recent capabilities

 Parallel scan using arbitrary user-supplied kernels
 Unordered map container

 Thread scalable insert and erase
 Use NVidia texture fetch for random access queries

 League of thread teams
 Team shared scratch memory and synchronization functions

 Here at SIAM PP14
 MS7 – Embedded UQ on manycore architectures
 MS33 – Overview and use in other miniapplications
 MS70 – Research on unified task-data manycore parallelism
 MS73 – DSL layered on Kokkos

	Portable Manycore Sparse Linear System Assembly Algorithms and Performance Tradeoffs
	Kokkos: C++ Library / Programming Model�for Manycore Performance Portability
	Kokkos: Collection of Libraries
	MiniFENL: Mini (proxy) Application
	MiniFENL: Parallel Computational Steps
	Scatter-Atomic-Add vs. Gather-Sum
	Scatter-Atomic-Add Overview
	Gather-Sum Overview
	Scatter-Atomic-Add vs. Gather-Sum
	Performance Comparison
	Performance Comparison: Element+Fill
	Performance Overhead of Atomic Add
	Thread Scalable�Graph and Map Construction Algorithm
	Performance: Graph and Map Construction
	Performance: Graph Construction on Phi-240
	Performance: Graph Construction on Kepler
	Conclusions : Sparse Linear System Assembly
	A little more about Kokkos
	A little more about Kokkos

