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Kokkos: C++ Library / Programming Model 
for Manycore Performance Portability 
 Portable to Advanced Manycore Architectures 

 Multicore CPU, NVidia GPU, Intel Xeon Phi (potential: AMD Fusion) 
 Maximize amount of user (application/library) code that can be compiled 

without modification and run on these architectures 
 Minimize amount of architecture-specific knowledge that a user is 

required to have 
 Allow architecture-specific tuning to easily co-exist 
 Only require C++1998 standard compliant 

 Performant 
 Portable user code performs as well as architecture-specific code 
 Thread scalable – not just thread safety (no locking!) 

 Usable 
 Small, straight-forward application programmer interface (API) 
 Constraint: don’t compromise portability and performance 
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Kokkos: Collection of Libraries 
 Core – lowest level portability layer 

 Portable data-parallel dispatch: parallel_for, parallel_reduce, parallel_scan  
 Multidimensional arrays with device-polymorphic layout for transparent 

and device-optimal memory access patterns 

 Containers – built on core arrays 
 UnorderedMap – fast find and thread scalable insertion 
 Vector – subset of std::vector functionality to ease porting 
 Compress Row Storage (CRS) graph 

 Linear Algebra 
 Sparse matrices and linear algebra operations 
 Wrappers to vendors’ libraries  
 Portability layer for Trilinos manycore solvers 

 Examples – where the code for this presentation resides 
 MiniFENL: finite element solution of non-linear system of equations 
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MiniFENL: Mini (proxy) Application 

 Finite element method to solve of nonlinear problem via 
Newton iteration 
 Simple scalar nonlinear equation : −𝒌 ∆𝑻 + 𝑻𝟐 = 𝟎 
 3D domain: simple XYZ box 
 Restrict geometry and boundary conditions to obtain analytic solution 

 to verify correctness 
 Linear hexahedral finite elements: 2x2x2 numerical integration 

 Non-affine mapping of vertices for non-uniform element geometries 
 Compute residual and Jacobian (sparse matrix) 
 Solve linear system via simple conjugate gradient iterative solver 

  Focus: Construction and fill of sparse linear system 
 Thread safe, thread scalable, and performant algorithms  
 Evaluate thread-parallel capabilities and programming models 
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MiniFENL: Parallel Computational Steps 
 Construct finite element mesh 

 Simple unstructured finite element mesh data structure 
 Hexahedral elements, element-node connectivity array 

 Construct maps sparse linear system 
 Sparse linear system graph : node-node map 
 Element-graph map for scatter-atomic-add assembly algorithm 
o Graph-element map for gather-sum assembly algorithm  

 Compute nonlinear residual and Jacobian 
 Iterate elements to compute per-element residual and Jacobian 

 Scatter-atomic-add values into linear system 
o Save values in gather-sum scratch array 

o Iterate rows, gather data from scratch array, sum into linear system 

 Solve linear system for Newton iteration 
 

 



Gather-Sum Pattern 

Scatter-Atomic-Add vs. Gather-Sum 
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Scatter-Atomic-Add Overview 
 Compute element nonlinear residual and Jacobian 
 Parallel-for iteration of elements 
 Computational in element-local arrays, with element-local numbering 
 ElemRes(i) = element residual for local node #i 
 ElemJac(i,j) = element Jacobian for local nodes #i , #j 

 Add values into sparse linear system 
 Res(I) = Residual for row I 
 Jac(K) = Jacobian value for row I column J in the sparse linear system 
 atomic_add( Res( node_map(e,i) ) , ElemRes(i) ) 
 atomic_add( Jac( elem_graph_map(e,i,j) ) , ElemJac(i,j) ) 

 Precompute elem_graph_map 
 Composition of element-node map and node-node map 
 Compute once and re-use in the nonlinear Newton iteration loop 
 Valid as long as the mesh and graph don’t change 
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Gather-Sum Overview 
 Compute element nonlinear residual and Jacobian 
 Parallel-for iteration of elements 
 Computational in element-local arrays, with element-local numbering 
 ElemRes(i) = element residual for local node #i 
 ElemJac(i,j) = element Jacobian for local nodes #i , #j 

 Save values in scratch arrays (large scratch space) 
 ScrRes(e,i) = ElemRes(i)  ;   ScrJac(e,i,j) = ElemJac(i,j) 

 Gather-sum from scratch array into sparse linear system 
 Parallel-for iteration of rows, each thread has exclusive access to its row ‘I’ 
 Iterate elements ‘e’ with node ‘i’ mapping to row ‘I’ 
 (e,i) ∈ row_elem_map(I) ; uses a CRS graph data structure 

 Res(I) += ScrRes(e,i) 
 Jac( elem_graph_map(e,i,j) ) += ScrJac(e,i,j)    element-local nodes (i,j) 

 Precompute elem_graph_map and row_elem_map 
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Scatter-Atomic-Add vs. Gather-Sum 
 Both are thread-safe and thread-scalable 
 Scatter-Atomic-Add 

+ Simple implementation 
+ Fewer global memory reads and writes 
- Atomic operations much slower than corresponding regular operation 
- Non-deterministic order of additions – floating point round off variability 
- Double precision atomic add is a looped compare-and-swap (CAS) 

 Gather-Sum 
+ Deterministic order of additions – no round off variability 
- Extra scratch arrays for element residuals and Jacobians 
- Additional parallel-for 

 Performance comparison – execution time 
 Neglecting the time to pre-compute mapping(s), assuming re-use 
 Cost of atomic-add vs. additional parallel-for for the gather-sum 
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Performance Comparison 
 Single “Device” Performance Tests 
 NVidia Kepler K40 (Atlas), 12Gbytes 
 Intel Xeon Phi (Knights Corner) COES2, 61 cores, 1.2 GHz, 16Gbytes 
 Limit use to 60 cores, 4 hyperthreads/core 

 MiniFENL – portable source code via Kokkos  
 Kokkos chooses multidimensional array layouts to match device 
 NVidia : coalesced memory access 
 Intel : caching and vectorization 

 Scale problem size (number of nodes)  
 Small problem size – parallel dispatch overhead dominate 
 Large problem size – computations dominate 

 Measure total time-to-fill normalized by problem size 
 Element Computation + ( Scatter-Atomic | Gather-Sum )  
 Double precision data and computations 
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Performance Comparison: Element+Fill 

 Phi: ScatterAtomicAdd ~equal to GatherSum 
 ~2.1x speed up from 1 to 4 threads/core – hyperthreading  

 Kepler: ScatterAtomicAdd ~40% faster than GatherSum 
 Performant double precision atomic-add via compare-and-swap algorithm 
 Fewer global memory writes and reads 
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Performance Overhead of Atomic Add 

 Performance analysis: replace atomic-add with “ y += x ; ” 
 Numerical errors due to thread unsafe race condition 
 Approx. performance of “perfect” atomics or coloring algorithm 

 Kepler: Large overhead for double precision “CAS loop” atomic 
 Phi: Small overhead versus element computation 
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Thread Scalable 
Graph and Map Construction Algorithm 
1. Fill unordered map with elements’ (row-node, column-node) 
 Parallel-for of elements, iterate node-node pairs 
 Successful insert to node-node unordered map denotes a unique entry 
 Column count = count unique entries for each row-node 

2. Construct (row-node, column-node) sparse graph 
 Parallel-scan of row-node column counts 
 This is now the CRS row-offset array 

 Allocate CRS column-index array 
 Parallel-for on node-node unordered map to fill CRS column-index array 
 Parallel-for on CRS graph rows to sort each row’s column-indices 

3. Construct elem_graph_map 
 Parallel-for of elements 
 For each element (row-node, column-node) search CRS graph row for 

column-index entry 
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Performance: Graph and Map Construction 

 Graph construction ~5x longer than Element+Fill 
 Multiple parallel kernels performing random-access queries and updates 
 Recall finite element computation is 

 Linearized hexahedron finite element for: −𝒌 ∆𝑻 + 𝑻𝟐 = 𝟎 
 3D spatial Jacobian with 2x2x2 point numerical integration 
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Performance: Graph Construction on Phi-240 

 Performance for each phase of construction 
 “Hot spot” is fill of node-node unordered map (hash map) 

 Dominated by memory access and integer atomic operations 
 Extensive analysis and optimizing has been done here ... 
 Performance very sensitive to hash map capacity, must be < 75% full 
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Performance: Graph Construction on Kepler 

 Performance for each phase of construction 
 No single “hot spot”  
 Opportunity to improve parallelism for sort of CRS row columns: 

change from serial to parallel sorting within a row 
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Conclusions : Sparse Linear System Assembly 
 Scatter-atomic-add is the winning pattern 

+ Less memory consumed, faster with performant atomics 
- If you can tolerate floating point round off variability / nondeterminism 

 CRS graph construction can be thread scalable 
 Pattern 
 Parallel count array lengths 
 Allocate arrays 
 Parallel fill arrays 
 Parallel post-process arrays (e.g., sort CRS rows’ column indices) 

 Essential tools 
 Parallel-for, parallel-scan, and atomics 
 Thread scalable unordered map 

 Graph construction time > sparse linear system fill time 
 Separate graph construction from sparse linear system fill 
 Reuse graph whenever possible 

 
 



A little more about Kokkos 
 Core abstractions 

 Dispatch parallel kernels to a manycore device 
 Parallel for, parallel reduce, parallel scan 

 Device-polymorphic layout of multidimensional arrays in device memory 
 Choose layout for optimal memory access patterns 
 Layout changes are transparent to user code 

 A Library using Standard C++, not a Language extension 
 In spirit of Intel’s TBB, NVIDIA’s Thrust & CUSP, MS C++AMP, ... 
 Not a language extension: OpenMP, OpenACC, OpenCL, CUDA 

 Via C++ template meta-programming 
 Compile-time polymorphism for devices and array layouts  
 C++1998 standard; would be nice to require C++2011 ... 

 



A little more about Kokkos 
 Recent capabilities 

 Parallel scan using arbitrary user-supplied kernels 
 Unordered map container 

 Thread scalable insert and erase 
 Use NVidia texture fetch for random access queries 

 League of thread teams 
 Team shared scratch memory and synchronization functions   

 Here at SIAM PP14 
 MS7 – Embedded UQ on manycore architectures 
 MS33 – Overview and use in other miniapplications 
 MS70 – Research on unified task-data manycore parallelism 
 MS73 – DSL layered on Kokkos 


	Portable Manycore Sparse Linear System Assembly Algorithms and Performance Tradeoffs 
	Kokkos: C++ Library / Programming Model�for Manycore Performance Portability
	Kokkos: Collection of Libraries
	MiniFENL: Mini (proxy) Application
	MiniFENL: Parallel Computational Steps
	Scatter-Atomic-Add vs. Gather-Sum
	Scatter-Atomic-Add Overview
	Gather-Sum Overview
	Scatter-Atomic-Add vs. Gather-Sum
	Performance Comparison
	Performance Comparison: Element+Fill
	Performance Overhead of Atomic Add
	Thread Scalable�Graph and Map Construction Algorithm
	Performance: Graph and Map Construction
	Performance: Graph Construction on Phi-240
	Performance: Graph Construction on Kepler
	Conclusions : Sparse Linear System Assembly
	A little more about Kokkos
	A little more about Kokkos

