
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

Manycore Performance Portability
through

Mapped Multidimensional Arrays

H. Carter Edwards
Sandia National Laboratories

SIAM Computational Science & Engineering 2013
February 24 – March 1, 2013

Boston Massachusetts

SAND2013-1025C (Unlimited Release)

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000. 1

Outline

• Two Fundamental Concepts

• KokkosArray Application Programmer Interface (API)
– Making it look easy to the user

• Performance-Portability Testing

– Hybrid parallel (MPI+KokkosArray) proxy-applications
– CrayXK6 with NVIDIA Kepler K20X
– Cluster of Intel Xeon Phi (MIC) Knights Corner (KNC) cards

• Pre-production hardware

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000. 2

Challenge: Manycore
Portability with Performance

• Multicore CPU
– Increasing core counts and decreasing global memory / core
– Hierarchy of shared memory (memory controllers and caches)
– Resulting in non-uniform memory access (NUMA)
– Increasing vector unit lengths
Memory access patterns critical for best performance

• Manycore GPU
– Physically separate memory with data-transfer overhead
– Work-dispatch interaction between host and device
– Memory controller optimized for thread-gang (warp) based access
Memory access patterns critical for acceptable performance

Its all about Memory Access Patterns …

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000. 3

Challenge: Device-Dependent
Memory Access Patterns

• Memory Access Patterns are Critical
– Correctness – no race conditions
– Performance – proper placement, blocking, striding, …

• CPU with NUMA and vector units
– Core-affinity placement (a.k.a. first touch)
– Blocking for cache
– Alignment for cache-lines and vector units

• GPU Coalesced Access
– Alignment for cache-lines

• “Array of Structures” vs. “Structure of Arrays” ?
Wrong question

Right question: Abstractions for Performance-Portability ?

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000. 4

Programming Model Concept
Just two foundational ideas

• Manycore Device
– Separate memory space (physically or logically)
– Dispatch work : computation + data on the device

• Classic Multidimensional Arrays, with a twist

– Map multi-index (i,j,k,...) ↔ memory location on the device
• Efficient : computation and memory used

– Map is derived from a Layout
Choose Layout for device-specific memory access pattern
– Make layout changes transparent to the user code;
 IF the user code honors the simple API: a(i,j,k,...)

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000. 5

KokkosArray Library
Just arrays and parallel dispatch

• Standard C++ Library, not a Language extension
– In spirit of Intel’s TBB, NVIDIA’s Thrust & CUSP, MS C++AMP, ...
– Not a language extension; e.g., OpenMP, OpenACC, OpenCL, CUDA

• Using C++ template meta-programming
– Device-specialized, polymorphic array layout
– C++1998 standard (would really be nice to require C++2011)

• KokkosArray is not:
– A linear algebra library
– A mesh or grid library
– A discretization library

Intent: Build such libraries on top of KokkosArray

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000. 6

API : Allocation, Access, and Layout

• Basic : allocate array and access members
class View< double * * [3][8] , Device > a(“a”,N,M);

• Dimensioned as [N][M][3][8] (two runtime, two compile-time)
• Aligned memory allocated in Device memory space

– a(i,j,k,l) : access data member via multi-index
• According to Device-specific array layout

• Advanced : choose your own array layout
class View<double**[3][8], Layout , Device> a(“a”,N,M);
Multi-index access API is unchanged for user code
– Override Device’s default layout

• E.g., force row-major or column-major
– Layout is an extension point for blocking, tiling, etc.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000. 7

API : View Semantics

• Basic : view (reference counting) semantics
typedef class View<double**,Device> MyMatrixType ;
MyMatrixType a(“a”,N,M); // allocate array
MyMatrixType b = a ; // A new view to the same data
– Reference counting is internal to avoid cluttering user-code

• Advanced : turn off reference counting
class View<const double**,Layout,Device,Unmanaged> c = a ;
– Faster to construct, assign, and destroy; however,
User-code assumes responsibility to destroy ‘c’ before ‘a’
– Can only allocate managed views

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000. 8

API : Deep Copy
NEVER have a hidden, expensive deep-copy

• ONLY deep-copy when explicitly instructed by user code
• Basic : mirror the layout in Host memory space

– Avoid transpose or permutation of data: simple, fast deep-copy
typedef class View<...,Device> MyViewType ;
MyViewType a(“a”,...);
MyViewType::HostMirror a_host = create_mirror(a);
deep_copy(a , a_host); deep_copy(a_host , a);

• Advanced : avoid unecessary deep-copy
MyViewType::HostMirror a_host = create_mirror_view(a);
– If Device uses host memory then ‘a_host’ is simply a view of ‘a’
– deep_copy becomes a no-op

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000. 9

API : Parallel Dispatch
parallel_for(nwork , functor)

• Functor : Function + its calling arguments
template< class DeviceType > // allows for partial-specialization
struct AXPY {
 void operator()(int iw) const { y(iw) += a * x(iw); } // function
 typedef DeviceType device_type ; // run on this device
 AXPY(…) … { parallel_for(nwork , *this); }
 const double a ;
 const View<const double*,device_type> x ;
 const View< double*,device_type> y ;
};

– Functor is shared and called by NP threads (NP ≤ nwork)
– Thread parallel call to ‘operator()(iw)’ : iw ∈ [0,nwork)
– Access array data with ‘iw’ to avoid race conditions

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000. 10

Parallel Dispatch via Functor

• Thread-Work-Layout Affinity → Data Access Pattern
– Assume parallel work index is the array’s leading index
– CPU : thread ↔ contiguous indices for NUMA & vectorization
– GPU : thread ↔ strided indices for coalesced access

• Why Functor Pattern ?

– Standard C++ and Portable
– Flexible: as many argument-members as you need

• Why not Function + Argument List ?
Requires language / compiler extensions
– Impedes device-specific specializations

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000. 11

API : Parallel Dispatch
parallel_reduce(nwork , functor , result)

• Similar to parallel_for, with Reduction Argument
template< class DeviceType >
struct DOT {
 typedef DeviceType device_type ;
 typedef double value_type ; // type of the reduction argument
 void operator()(int iw , value_type & contrib) const
 { contrib += y(iw) * x(iw); }
 const View<const double*,device_type> x , y ;
 DOT(…) … { parallel_reduce(nwork , *this, result); }
 // ... to be continued ...
};
– Value type can be a ‘struct’, static array, or dynamic array
– Result is a value or View to a value on the device

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000. 12

API : Parallel Dispatch
parallel_reduce(nwork , functor , result)

• Initialize and join threads’ individual contributions
struct DOT { // ... continued ...
 static void init(value_type & contrib) { contrib = 0 ; }
 static void join(volatile value_type & contrib ,
 const volatile value_type & input)
 { contrib = contrib + input ; }
};
– Join threads’ contrib via commutative Functor::join
– ‘volatile’ to force memory read & write among threads and

prevent compiler from optimizing join to a ‘no op’
• Deterministic result

– Given the same device and # threads
– Aligned memory insures vectorization produces the same result

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000. 13

Ongoing R&D Within KokkosArray

• Array Layouts
– Tiled Rank-2 Arrays (e.g., matrices)
– Blocked, variable-blocked

• Embedded “Scalar-like” Data Types
– E.g., View< Type **[3][8], device >
– Where Type supports

• Automatic differentiation
• Stochastic variables

• Multi-Functor Dispatch
– Heterogeneous functors operating concurrently

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

Performance-Portability Tests
Same source code compiled to devices *

• Modified Gram-Schmidt algorithm
– Sequence of Level-1 BLAS: dot, scale, axpy
– Limited by memory bandwidth and reduction synchronization

• Explicit dynamics proxy-application
– Finite element stress and internal forces (computationally intense)
– Assemble forces to vertices (random access), enforce boundary

conditions, and integrate motion
– “Halo exchange” communication of vertices’ motion

• Nonlinear thermal conduction proxy-application
– Finite element residual & Jacobian assembled into sparse system
– Newton iteration w/nested conjugate-gradient (CG) linear solve

* On GPU using ‘cusparseDcsrmv’ within the CG solve
– CG iterations have “neighbor exchange” communication

14

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

Performance-Portability Tests
Same source code compiled to devices *

• ‘Curie’ testbed at Sandia
– Cray XK6 with 50 compute nodes:

• AMD Opteron 6200 (2x8 cores)
• NVIDIA K20X

– GPU Direct capability not available
• ‘Compton’ testbed at Sandia

– Intel Xeon Phi (MIC) co-processor cards: pre-production hardware
– Cluster containing 64 Knights Corner (KNC) cards
– Our KNCs: 57 cores x 4 hyperthreads (reserve one core for OS)
– Hyperthreading necessary for latency hiding
– Running in “KNC only” mode – direct inter-card communication

15

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

Performance Evaluation:
Modified Gram-Schmidt Algorithm

16

4

16

64

256

1E+05 1E+06 1E+07 1E+08

R
W

 B
an

dw
id

th
 (G

B
/s

ec
)

Vector Length (x 16 vectors)

Modified Gram-Schmidt
RW Bandwidth / device

5 Cray XK6 Compute Nodes

Kepler

2-MPI x
8-threads
16-MPI

1

4

16

64

256

1E+05 1E+07 1E+09

R
W

 B
an

dw
id

th
 (G

B
/s

ec
)

Vector Length (x 16 vectors)

Modified Gram-Schmidt
RW Bandwidth / device

50 CrayXK6 Compute Nodes

Kepler

2-MPI x
8-threads
16-MPI

• CrayXK6 compute nodes
‒ AMD Opteron 6200 (2x8 cores), ~51 GB/sec theoretical peak
‒ NVIDIA K20X, ~250 GB/sec theoretical peak

• RW performance at “large enough” problem size
‒ Opteron: achieved ~51% of peak
‒ K20X: achieved ~65% of peak

fa
st

er

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

Performance Evaluation on KNC:
Modified Gram-Schmidt Algorithm

17

• Hyperthreading
• Threads-on-hyperthreads improves

performance
• MPI-on-hyperthreads degrades

performance

• RW performance at “large enough”
problem size

‒ ~200 GB/sec “achievable” peak
(pre-production hardware)

‒ Full threading utilization achieved
~23% of “achievable” peak

‒ MPI-per-core achieved ~13% of
“achievable” peak

0
5

10
15
20
25
30
35
40
45

1E+05 1E+06 1E+07 1E+08

R
W

 B
an

dw
id

th
 (G

B
/s

ec
)

Vector length (x 16 vectors)

Modified Gram-Schmidt
RW Bandwidth / device

Using 4 KNC cards

224 threads 112 threads
56 MPI 112 MPI
56 threads

fa
st

er

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

Performance Evaluation on XK6:
Explicit Dynamics ProxyApp

18

0.001

0.01

0.1

5E+03 5E+04 5E+05 5E+06

El
em

en
t C

om
p.

 T
im

e
(m

ic
ro

se
c)

Problem Size (element count)

Explicit Dynamics Element
Computation Time / Element

5 CrayXK6 Nodes

GPU 2mpi X 8threads 16mpi X 1thread

0.01

0.1

5E+03 5E+04 5E+05 5E+06N
od

e
U

pd
at

e
Ti

m
e

(m
ic

ro
se

c)

Problem Size (node count count)

Explicit Dynamics Node
Update Time / Node
5 CrayXK6 Nodes

GPU 2mpi X 8threads 16mpi X 1thread

• Element computation time / element
‒ High computational intensity (operations / memory accesses)

• Node update time / node
‒ High random-memory-access intensity
‒ Benefit from GPU texture cache? – TBD enhancement to View

faster

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

Performance Evaluation on KNC:
Explicit Dynamics ProxyApp

19

0.015

0.03

0.06

0.12

0.24

5E+03 5E+04 5E+05

El
em

en
t C

om
p.

 T
im

e
/ E

le
m

 (m
ic

ro
se

co
nd

s)

Element Count

Explicit Dynamics ProxyApp
Element Comp. Time / Elem

Using 4 KNC Cards

224 MPI 56 MPI
224 Threads 56 Threads

• Computationally intense
– and NO communication

• Hyperthreads:
– 56x{1-4} MPI processes / card
– 56x{1-4} Threads / card

• Threads consistently
outperform MPI processes
– Using more KNC cards only

exacerbates this difference

faster

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

Performance Evaluation on KNC:
Explicit Dynamics ProxyApp

20

• Threads outperform MPI
processes
– Even with NO communication

• More MPI processes cause
large slowdown
– Processes on hyperthreads

competing for memory
• More threads cause slight

slowdown
– Threads on hyperthreads

attempt to cooperate for
memory access

0.01

0.1

1

10

5E+03 5E+04 5E+05

N
od

e
U

pd
at

e
Ti

m
e

/
N

od
e

(m
ic

ro
se

co
nd

s)

Node Count

Explicit Dynamics ProxyApp
Node Update Time / Node

Using 4 KNC Cards

224 MPI

168 MPI

112 MPI

56 MPI

224 Threads

168 Threads

112 Threads

56 Threads

faster

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

Performance Evaluation on KNC:
Explicit Dynamics ProxyApp

21

• More MPI processes cause
drastic slowdown
– Does not scale !

• More threads cause slight
slowdown

• Threads significantly
outperform MPI processes

• Consider 512 KNC cards
– 114,688 MPI ranks

OR
– 512 MPI ranks x 224 threads

0

5000

10000

15000

20000

25000

5E+03 5E+04 5E+05

N
od

e
Co

m
m

 T
im

e
(m

ic
ro

se
co

nd
s)

Node Count

Explicit Dynamics ProxyApp
Node Comm Time
Using 4 KNC Cards

224 MPI

168 MPI

112 MPI

56 MPI

224 Threads

168 Threads

112 Threads

56 Threads

faster

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

Performance Evaluation on KNC:
Nonlinear Thermal Conduction ProxyApp

22

• Nonlinear quadratic elem.
– Compute contributions to

residual and Jacobian
– Computationally intensive
– No communication

• Threads outperform MPI
processes (again)

1

2

4

8

16

5E+03 5E+04 5E+05El
em

en
t C

om
p.

 T
im

e
/ E

le
m

 (m
ic

ro
se

c)

Elements

Nonlinear Quadratic
Element Comp. Time / Elem

Using 4 KNC cards

56 MPI 112 MPI
224 MPI 56 threads
112 threads 224 threads

faster

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

Performance Evaluation on KNC:
Nonlinear Thermal Conduction ProxyApp

23

• Hyperthreads share core’s L1 cache : NUMA-like effect
– Sparse mat-vec and matrix-assembly have random access
– Domain decomposition improves cache utilization for MPI
– Threads needed a similar domain decomposition / ordering

faster

0.005

0.05

0.5

4E+04 4E+05 4E+06

C
G

 T
im

e
/ I

te
r /

 R
ow

 (m
ic

ro
se

c)

Rows

Sparse System
CG Time / Iteration / Row

Using 4 KNC cards

224 MPI
112 MPI
56 MPI
224 threads
112 threads
56 threads 0.01

0.015
0.02

0.025
0.03

0.035
0.04

0.045
0.05

4E+04 4E+05 4E+06As
se

m
bl

y
Ti

m
e

/ R
ow

 (m
ic

ro
se

c)

Rows

Sparse System
Assembly Time / Row

Using 4 KNC cards

56 threads
56 MPI
112 threads
112 MPI
224 threads
224 MPI

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

Performance Evaluation:
Nonlinear Thermal Conduction ProxyApp

24

0.002

0.003

0.004

0.005

0.006

5E+04 5E+05 5E+06

As
se

m
bl

y
Ti

m
e

/ R
ow

 (m
ic

ro
se

c)

Rows

Sparse System
Assembly Time per Row

50 CrayXK6 Nodes

16 MPI 2 MPI x 8 Threads Kepler

0.001

0.002

0.004

0.008

0.016

0.032

5E+04 5E+05 5E+06C
G

 T
im

e
/ I

te
ra

tio
n

/ R
ow

(m

ic
ro

se
c)

Rows

CG Time / Iteration / Row
50 CrayXK6 Nodes

16 MPI 2 MPI x 8 Threads Kepler

• Assembly Time per Row
‒ Again, high random-memory-access intensity

• CG Time / Iteration / Row
‒ Sparse-matvec random access and communication
‒ Need GPU Direct to speed up communication

	Manycore Performance Portability�through�Mapped Multidimensional Arrays
	Outline
	Challenge: Manycore�Portability with Performance
	Challenge: Device-Dependent�Memory Access Patterns
	Programming Model Concept�Just two foundational ideas
	KokkosArray Library�Just arrays and parallel dispatch
	API : Allocation, Access, and Layout
	API : View Semantics
	API : Deep Copy�NEVER have a hidden, expensive deep-copy
	API : Parallel Dispatch�parallel_for(nwork , functor)
	Parallel Dispatch via Functor
	API : Parallel Dispatch�parallel_reduce(nwork , functor , result)
	API : Parallel Dispatch�parallel_reduce(nwork , functor , result)
	Ongoing R&D Within KokkosArray
	Performance-Portability Tests�Same source code compiled to devices *
	Performance-Portability Tests�Same source code compiled to devices *
	Performance Evaluation:�Modified Gram-Schmidt Algorithm
	Performance Evaluation on KNC:�Modified Gram-Schmidt Algorithm
	Performance Evaluation on XK6:�Explicit Dynamics ProxyApp
	Performance Evaluation on KNC:�Explicit Dynamics ProxyApp
	Performance Evaluation on KNC:�Explicit Dynamics ProxyApp
	Performance Evaluation on KNC:�Explicit Dynamics ProxyApp
	Performance Evaluation on KNC:�Nonlinear Thermal Conduction ProxyApp
	Performance Evaluation on KNC:�Nonlinear Thermal Conduction ProxyApp
	Performance Evaluation:�Nonlinear Thermal Conduction ProxyApp

