Sandia
National
Laboratories

Exceptional
service

in the

national

interest

KokkosArray:
Multidimensional Arrays for

Manycore Performance Portability

H. Carter Edwards and Christian Trott
Sandia National Laboratories

SIAM Annual Meeting
July 10, 2013 | San Diego, California

SAND2013-5312C (Unlimited Release)

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Manycore Performance Portability Challenge (i)
Diversity of devices and associated performance requirements

Device Dependent Memory Access Patterns

= Performance heavily depends upon device specific
requirements for memory placement, blocking, striding, ...

= CPUs with NUMA and vector units

= Core-data affinity: first touch and consistent access
= Alignment for cache-lines and vector units

= GPU Coalesced Access with cache-line alignment

= “Array of Structures” vs. “Structure of Arrays” ?
» This is, and has been, the wrong question

Right question: Abstractions for Performance Portability ?

Programming Model Concept)
two foundational ideas

= Manycore Device
= Distinct execution and memory spaces (physical or logical)
= Dispatch parallel work to device : computation + data

= Classic Multidimensional Arrays, with a twist
= Map multi-index (i,j,k,...) < memory location on the device

= Efficient : index computation and memory use
= Map is derived from an array Layout
» Choose Layout for device-specific memory access pattern
= Make layout changes transparent to the user code;
» IF the user code honors the simple API: a(i,j,k,...)

Separate user’s index space from memory layout

Sandia

KokkosArray Library)

Just arrays and parallel dispatch

= Standard C++ Library, not a Language extension
= |n spirit of Intel’s TBB, NVIDIA’s Thrust & CUSP, MS C++AMP, ...
= Not a language extension: OpenMP, OpenACC, OpenCL, CUDA

= Uses C++ template meta-programming
= Compile-time polymorphism for devices and array layouts
= C++1998 standard; would be nice to require C++2011 ...

= KokkosArray is not:
= A linear algebra library
= A mesh or grid library
= A discretization library

Intent: Build such libraries on top of KokkosArray

3

National

API : Allocation, Access, and Layout) .

= Basic : data allocation and access
class View< double * * [3][8], Device > a(“a”,N,M);

= Dimension [N][M][3][8] ; two runtime, two compile-time
= afi,j,k,1) : access data via multi-index with device-specific map

= Same ‘View’ in both host and device code

= Access Safety
= Compile-time assertion a(i,j,k,l) is used correctly
= Assert device code accesses device memory
= Assert host code accesses host memory
= Runtime array bounds checking —in debug mode
= Capability on the GPU as well

4
I ———————-——

API : Allocation, Access, and Layout) .

= View semantics (shared pointer semantics)
= Multiple view objects for the same array, shared ownership

= Last view deallocates array data

= Advanced : specify array layout
class View<double**[3][8], Layout , Device> a(“a”,N,M);

= QOverride default layout; e.g., force row-major or column-major
» Multi-index access is unchanged in user code
= Layout is an extension point for blocking, tiling, etc.

= Advanced : specify memory access attributes
class View< const double**[3][8], Device, RandomRead > x=a;

= Use special hardware, if available
= E.g., access ‘X’ data through GPU texture cache

5

API : Deep Copy) e
NEVER have a hidden, expensive deep-copy

Laboratories

= Only deep-copy when explicitly instructed by user code

= Basic : mirror the layout in Host memory space

» Avoid transpose or permutation of data: simple, fast deep-copy
typedef class View<...,Device> MyViewType ;

MyViewType a(“a”,...);
MyViewType::HostMirror a_host = create_mirror(a);

deep_copy(a, a_host); deep_copy(a_host, a);

= Advanced : avoid unecessary deep-copy
MyViewType::HostMirror a_host = create_mirror_view(a);
= |f Device uses host memory then ‘a_host’ is simply a view of ‘a’
= deep_copy becomes a no-op

6

API : Parallel Dispatch
parallel_for(nwork, functor)

= Functor : Function + its calling arguments

template< class DeviceType > // template on device type
struct AXPY {

void operator()(int iw) const { y(iw) += a * x(iw); } // shared function
AXPY(...) ... { parallel_for(nwork , *this); } // parallel dispatch
typedef DeviceType device_type ; // run on this device

const double a;

const View<const double*,device_type> x ;
const View< double*,device_type>y;

b
= Functor is shared and called by NP threads (NP < nwork)
= Thread parallel call to ‘operator()(iw)’ : iw € [0,nwork)
= Access array data with ‘iw’ to avoid race conditions

7

Sandia
National
Laboratories

API : Parallel Dispatch) s
parallel_reduce(nwork, functor, result)

= Similar to parallel_for, with Reduction Argument

template< class DeviceType >
struct DOT {

typedef DeviceType device_type;

typedef double value_type ; // reduction value type
void operator()(int iw , value_type & contrib) const

{ contrib += y(iw) * x(iw); } // this thread’s contribution
DOT(...) ... { parallel_reduce(nwork , *this, result); }

const View<const double*,device_type>x,vy;
// ... to be continued ...

b
» Value type can be a ‘struct’, static array, or dynamic array
= Result is a value or View to a value on the device

8

API : Parallel Dispatch) s
parallel_reduce(nwork, functor, result)

= |nitialize and join threads’ individual contributions
struct DOT { // ... continued ...
static void init(value_type & contrib) { contrib=0; }

static void join(volatile value_type & contrib,
const volatile value_type & input)
{ contrib = contrib + input ; }
b

= Join threads’ contrib via commutative Functor::join

= ‘volatile’ to prevent compiler from optimizing away the join

= Deterministic result €& highly desirable
= Given the same device and # threads
= Aligned memory prevents variations from vectorization

9

Performance Test: Modified Gram-Schmidt ()&=,

Simple stress test for bandwidth and reduction efficiency
Intel Xeon: E5-2670 w/HT

Q igg —a—K20x (with ECC) Inte.el _Xeon Phi: 57c @ 1.1GHx

L 160 NVidia K20x

)

O 140

< 120 —+—Xeon 1thread/core Results pregented here are fqr

o pre-production Intel Xeon Phi

% 122 / } ===t co-processors (codenamed

= - —o= X Phi 56 Knights Corner) and pre-

o 60 _.,g:--.--‘---‘--i--A eon Fhi >ocore X production versions of Intel's

= 40 :} 4thread/core Xeon Phi software stack.

& 20) Performance and configuration
0 - . . -4- Xeon Phi 56core x of the co-processors may be
1E+05 1E+06 1E+07 1thread/core different in final production
Double Precision Vector Length (16 vectors) releases.

« Simple sequence of vector-reductions and vector-updates
e To orthonormalize 16 vectors

e Performance for vectors > L3 cache size
* NVDIA K20x : 174 GB/sec = ~78% of theoretical peak
e Intel Xeon . 78 GB/sec = ~71% of theoretical peak
 Intel Xeon Phi . 92 GB/sec = ~46% of achievable peak

10

Performance Test: Molecular Dynamics) i
Lennard Jones force model using atom neighbor list

. Solve Newton’s equations for N particles .
7 1
. Simple Lennard Jones force model: Fi= > 68[(%)‘ 2(%)]
J ’ rij< r-cut IJ IJ

. Use atom neighbor list to avoid N2 computations
pos_i1 = pos(i);
for(C JJ = 0; JjJ < num_neighbors(i); jj++) {
J = neighbors(i,jj);
r_ij = pos_i — pos(j); //random read 3 floats
it C Jr_ij] < r_cut)
i += 6%e*((s/r_ij)"7 — 2*(s/r_ijH)"13)
}

(1) = f_1;

. Moderately compute bound computational kernel

« On average 77 neighbors with 55 inside of the cutoff radius

11

Performance Test: Molecular Dynamics) i
Lennard Jones (LJ) force model using atom neighbor list

« Test Problem (#Atoms = 864k, #Steps = 100, ~77 neighbors/atom)

o Neighbor list array with correct vs. wrong layout
« Different layout between CPU and GPU
« Random read of neighbor coordinate via GPU texture fetch

180 Intel Xeon: E5-2670 w/HT
160 Intel Xeon Phi: 57¢ @ 1.1GHx
140 H correct layout NVidia K20x
. 120 (with texture)
§ 100 |
e 80 7 cc’_rLeCt layout Results presented here are for
60 without texture pre-production Intel Xeon Phi
40 — co-processors (codenamed
20 % - \wrong layout Knights Corner) and pre-
(with texture) . g ,
0 production versions of Intel's
Xeon Xeon Phi K20x Xeon Phi software sta(_:k. _
Performance and configuration
o Large loss in performance with wrong layout | ofihe co-processors may be
different in final production
« Even when using GPU texture fetch releases.

12
-~ ...

MPI+X Performance: MiniMD) s,

Molecular dynamics LJ force + time stepping a

= Comparing X = OpenMPI vs. Kokkos , one MPI process / device

* No native Cuda version to compare
e GPU-direct via MVAPICH2

= Strong scaling test 300 , , , —

- #Atoms = 864k D sl [onmn b i
QI) E— Xecon Ph@ - Kokkos
o #§Steps =100 3200_— pasmsen s sontd i
e ~77 neighbors/atom g I
= Xeon and Xeon Phi élSO_ |
e Kokkos = OpenMP S1007 os=temmaneees]
(e
= Kepler o]
e Portability! 0— 4 g 16 32
of Nodes/Devices

13

MPI+X Performance Test: MiniFE

Sandia
National
Laboratories

Conjugate Gradient Solve of a Finite Element Matrix

= Comparing X = Kokkos, Cuda, OpenMP

= Weak scaling with one MPI process / device
* Except OpenMP on Xeon: process/socket due to NUMA

e GPU-direct via MVAPICH2

= Problem:
e 3D thermal conduction
 Compressed row storage
e 8M elements/device

= Kokkos performance
* 90% or better of “native”
* Improvements ongoing

14

ot
o

[E—
-

Time 1n sec

oo
T T T

- - &—® Xcon - Kokkos
- @& @ Xeon - OpenMP
B8 Xecon Phi - Kokkos ||

- = -m Xeon Phi - OpenMP [
Y e 4—a Kepler - Kokkos
A A Keplef - Cuda
| | | | | | |
I 2 4 8 16 32 o4
of Nodes/Devices

Conclusion) e,
Performance portable manycore programming model

= Solved: “array of structs” vs. “struct of arrays” ?
e By asking the right question: what abstractions are required ?
 Answer: multidimensional arrays with device-polymorphic layout
* and coordinated parallel dispatch of computational kernels

= Kokkos C++ library, not a language extension
* Performance evaluation “unit tests” and mini-applications
e Multicore CPU, NVidia GPU, Intel Xeon Phi coprocessor
* 90% or better of device-specialized “native” implementation

= Plans
e Analysis and improvement of back-end implementations
 Advanced layouts such as tiling and blocking

e Aggregate “scalar” types: automatic differentiation, stochastic variables
e Hierarchical task-data parallelism

* Higher level libraries: linear algebra, tensors, containers, ...

» Map to device optimized libraries via template partial specialization
15

	KokkosArray:�Multidimensional Arrays for�Manycore Performance Portability
	Manycore Performance Portability Challenge�Diversity of devices and associated performance requirements
	Programming Model Concept�two foundational ideas
	KokkosArray Library�Just arrays and parallel dispatch
	API : Allocation, Access, and Layout
	API : Allocation, Access, and Layout
	API : Deep Copy�NEVER have a hidden, expensive deep-copy
	API : Parallel Dispatch�parallel_for(nwork , functor)
	API : Parallel Dispatch�parallel_reduce(nwork , functor , result)
	API : Parallel Dispatch�parallel_reduce(nwork , functor , result)
	Performance Test: Modified Gram-Schmidt�Simple stress test for bandwidth and reduction efficiency
	Performance Test: Molecular Dynamics�Lennard Jones force model using atom neighbor list
	Performance Test: Molecular Dynamics�Lennard Jones (LJ) force model using atom neighbor list
	MPI+X Performance: MiniMD�Molecular dynamics LJ force + time stepping
	MPI+X Performance Test: MiniFE�Conjugate Gradient Solve of a Finite Element Matrix
	Conclusion�Performance portable manycore programming model

