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Personal Background

• Ph.D., Computational and Applied Mathematics, NC State
– mathematics, statistics, computer science, immunologyp gy
– nondeterministic model calibration (HIV)

• SNL, Albuquerque since 2005:
– went for optimization focus; diversified into UQ
– mix of algorithm development, production software
– agent-based disease simulations, power grid optimization, g p g p

research in mixed integer surrogates

• Algorithms discussed today publicly available in DAKOTA
– Many science/engineering application customers; their unmet 

needs drive research and software

O i k ith H INL ORNL i DOE N l• Ongoing work with Hany, INL, ORNL in DOE Nuclear 
Energy Advanced Modeling and Simulation (NEAMS)



Outline: 
UQ Algorithms for Credible Simulation

GOAL: Demonstrate how a mix of statistics, nonlinear 
optimization, numerical integration, and surrogate (meta-) 
modeling enables robust and efficient UQ methods.

• Motivation for credible simulation (computational models)( p )
• Characterizations and propagation of uncertainty
• Uncertainty quantification algorithms

Sampling based– Sampling-based
– Reliability
– Stochastic expansion

Interval estimation– Interval estimation
• UQ research challenges and directions



Insight from Computational Simulation 

Systems of systems 
analysis: multi-scale, 
multi-phenomenon

Mi l t h i lMicro-electro-mechanical 
systems (MEMS): quasi-

static nonlinear elasticity, 
process modeling

Joint mechanics: system-level 
FEA for component 

assessment

Electrical circuits: networks, 
PDEs, differential algebraic 

equations (DAEs), E&M

d
Hurricane Katrina: weather, 

logistics, economics, 
human behaviorEarth penetrator: nonlinear 

PDEs with contact, transient 
analysis, material modeling



Credible Simulation

• Historically: primary focus on modeling fidelity 
(with enormous investments)
C t i i l ( h ld) d d f f ll• Customers increasingly (should) demand proof of overall 
analysis pedigree in the data and/or extrapolation domain.

Bill Oberkampf



Inclusion of Nondeterministic 
Element (early 1970’s)

Bill Oberkampf



Formal V&V, UQ, and Model Fidelity
Support Credible Simulation

Ultimate purpose (arguably): insight, prediction, and risk-informed 
decision-making  need credibility for intended application

Bill Oberkampf



Verification & Validation

• Verification: “Are we solving the equations correctly?”
– mathematics/computer science issue:  Is our mathematical formulation 

and software implementation of the physics model correct?and software implementation of the physics model correct?
– code verification (software correctness)
– solution verification (e.g., exhibits proper order of convergence)

V lid ti “A l i th i ht ti ?”• Validation – “Are we solving the right equations?”
– a disciplinary science issue:  is the science (physics, biology, etc.) 

model sufficient for the intended application? Involves data and metrics.

• Ideally: code verification  solution verification  validation then follow-on 
optimization/calibration/uncertainty quantification

Supporting concepts:pp g p
• Sensitivity Analysis (SA): both local and global

– How do code outputs vary with respect to changes in code inputs?
• Uncertainty Quantification (UQ):

– What are the probability distributions on code outputs, given the probability 
di t ib ti d i t ? U k i t di t ib ti ?distributions on my code inputs?  Unknown input distributions?

• Quantification of margins and uncertainties (QMU):
– How “close” are my code output predictions (incl. UQ) to the system’s 

required performance level?



Uncertainties in 
Simulation and Validation

• physics/science parameters
A few uncertainties affecting computational model output/results:

physics/science parameters
• statistical variation, inherent randomness
• model form / accuracy

ti i t i t f• operating environment, interference
• initial, boundary conditions; forcing
• geometry / structure / connectivity
• material properties
• manufacturing quality
• experimental error (measurement error, measurement bias)experimental error (measurement error, measurement bias)
• numerical accuracy (mesh, solvers); approximation error
• human reliability, subjective judgment, linguistic imprecision

The effect of these on model outputs should be integral to an 
analyst’s deliverable: best estimate PLUS uncertainty!



Uncertainty Quantification

• A single optimal design or nominal performance 
prediction is often insufficient for 
– decision making / trade-off assessment
– quantification of margins and uncertainties (QMU):  

How close are my uncertainty-aware code predictions to 
required performance expectations or limits?required performance expectations or limits?

• GOAL: risk-informed 
decisions, based on effects F in a l T e m p e ra tu re  V a lu e s

of uncertainty on model 
output (forward propagation)
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intended application?



Quantitative Comparison with 
Experiment: Validation Metrics

Verification to estimate numerical error; uncertainty quantification 
to assess effect of unknowns or natural variability
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Categories of Uncertainty

• Aleatory (think probability density function; sufficient data)

Often useful algorithmic distinctions, but not always a clear division

• Aleatory (think probability density function; sufficient data)
– Inherent variability (e.g., in a population), type-A, stochastic
– Irreducible uncertainty – can’t reduce it by further knowledge

simulation
code

Input
Random
Variables

Output
Metric
StatisticsVariables Statistics



Categories of Uncertainty

• Aleatory (think probability density function; sufficient data)

Often useful algorithmic distinctions, but not always a clear division

• Aleatory (think probability density function; sufficient data)
– Inherent variability (e.g., in a population), type-A, stochastic
– Irreducible uncertainty – can’t reduce it by further knowledge

• Epistemic (think bounded intervals)
– Subjective, type-B, state of knowledge uncertainty

R l t d t h t d ’t k– Related to what we don’t know
– Reducible:  If you had more data or more information, you 

could make your uncertainty estimation more precise

simulation
code
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Uncertainty Quantification
Forward propagation: quantify the effect that uncertain 
(nondeterministic) input variables have on model output

I t V i blInput Variables u
(physics parameters, 
geometry,  initial and 
boundary conditions)

Computational
Model

Variable 
Performance
Measures f(u)

• based on uncertain inputs, determine 
variance of outputs and probabilities

Potential Goals:
(possibly given distributions)

Output 
Distributions

N samples
variance of outputs and probabilities 
of failure (reliability metrics)

• identify parameter correlations/local 
sensitivities, robust optima

Distributions

measure 1Model
u1

, p
• identify inputs whose variances 

contribute most to output variance 
(global sensitivity analysis)

measure 2

u2

u3

• quantify uncertainty when using 
calibrated model to predict

Typical method: Monte Carlo Sampling



Thermal Uncertainty Quantification

• Device subject to heating (experiment or 
computational simulation)

• Uncertainty in composition/• Uncertainty in composition/ 
environment (thermal conductivity, 
density, boundary), parameterized by 
u1, …, uN

• Response temperature f(u)=T(u1, …, uN)
calculated by heat transfer code

Given distributions of u1,…,uN, 
UQ methods calculateUQ methods calculate 
statistical info on outputs:
• Mean(T), StdDev(T), 
Probability(T ≥ T iti l)

Final Temperature Values
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Challenges for Simulation-based UQ

• Engineering application: propagate variability through a computer 
model.

• Need statistics of response function f, e.g., µf, f, Prob[ f > fcritical]
• Typical characteristics: • input parameters specified by 

probability density functions

f(x1, x2)

• no explicit function for f(x1,x2)
• expensive to evaluate f(x1,x2) and 

may fail to calculate
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• limited number of samples
• noisy / non-smooth

Is it better to:
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UQ: Sampling Methods

Given distributions of u1,…,uN, sampling-based methods calculate 
sample statistics, e.g., on temperature T(u1,…,uN):

• sample mean
Output 

Distributions
N samples 
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• Monte Carlo sampling
• Quasi-Monte Carlo
• Centroidal Voroni Tessalation (CVT)
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• Latin Hypercube sampling
Robust, but slow convergence: O(N-

1/2)



Latin Hypercube Sampling (LHS)

• Specialized Monte Carlo (MC) sampling technique: 
workhorse method in DAKOTA / at Sandia

• Stratified random sampling among equal probability bins for

 

• Stratified random sampling among equal probability bins for 
all 1-D projections of an n-dimensional set of samples.

• McKay and Conover (early), restricted pairing by Iman
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Calculating Probability of Failure

• Given uncertainty in materials, geometry, and 
environment, determine likelihood of failure 
Probability(T ≥ T )Probability(T ≥ Tcritical)

Final Temperature Values • Could perform 10,000 LHS 
samples and count how
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samples and count how 
many exceed threshold…

• …or MV: make a linearity 
(and possibly normality) 
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 B assumption and project… 
• or directly determine input 

variables which give rise to 
failure behaviors by solving30 36 42 48 54 60 66 72 78 84

Temeprature [deg C]

failure behaviors by solving 
an optimization problem.

By combining optimization, uncertainty analysis methods, and surrogateBy combining optimization, uncertainty analysis methods, and surrogate 
(meta-) modeling in a single framework, DAKOTA enables more efficient UQ.



Analytic Reliability: MPP Search

Perform optimization in uncertain variable space to determine Most 
Probable Point (of response or failure occurring) for G(u) = T(u).

Reliability Index Approach (RIA)

Region of u 
values where 
T ≥ T map Tcritical to a T ≥ Tcritical

p critical
probability

G(u)



Reliability: Algorithmic Variations

• Limit state linearizations:  use a local surrogate for the limit state G(u) during 
optimization in u-space (or x-space):

Many variations possible to improve efficiency, including in DAKOTA… 

optimization in u space (or x space):

• Integrations (in u-space to determine probabilities): may need higher order

(could use analytic, finite difference, or quasi-Newton (BFGS, SR1) Hessians in 
approximation/optimization – results here mostly use SR1 quasi-Hessians.)

• Integrations (in u-space to determine probabilities): may need higher order 
for nonlinear limit states

1st-order: 2nd-order:

• MPP search algorithm: Sequential Quadratic Prog. (SQP) vs. Nonlinear Interior Point 
(NIP)

• Warm starting (for linearizations initial iterate for MPP searches): speeds

curvature correction

• Warm starting (for linearizations, initial iterate for MPP searches): speeds 
convergence when increments made in: approximation, statistics requested, design 
variables



Efficient Global Reliability Analysis

• EGRA (B.J. Bichon) performs reliability analysis with 
– EGO Gaussian Process surrogate with NCSU DIRECT optimizer
– multimodal adaptive importance sampling for probability calculation

• Created to address nonlinear and/or multi-modal limit states in MPP 
searches. 

• In EGO: expected improvement is 
large near promising minima, or in

GP surrogate

g g
regions of high uncertainty True fn

Expectedp
Improvemen
t

From Jones, Schonlau, Welch, 1998



Efficient Global Reliability Analysis

• Apply an EGO-like method to the equality-constrained optimization problem
• In EGRA, an expected feasibility function balances exploration with local 

search near the failure boundary to refine the GPsearch near the failure boundary to refine the GP
• Cost competitive with best MPP search methods, yet better probability of 

failure estimates
Gaussian process model of reliability limit state withGaussian process model of reliability limit state with

10 samples 28 samples

exploit

lexplore



Stochastic Expansions

• Create polynomial approximation to response function
• Polynomial chaos expansions (PCE): known basis, compute 

coefficients

• (Lagrange) Stochastic collocation (SC): known coefficients, 
form interpolant

• Form basis, then sample, calculate moments, probabilities, etc.
T il i  fi i d l ith i t l• Tailoring  fine-grained algorithmic control:
– Synchronize PCE form with numerical integration
– Optimal basis & Gauss pts/wts for arbitrary input PDFs
– Anisotropic approaches: emphasize key dimensions 

• h/p-adaptive collocation (FY10-12)



Generalized 
Polynomial Chaos Expansions (PCE)

Approximate response stochasticity with Galerkin projection using
multivariate orthogonal polynomial basis functions defined over standard
random variablesrandom variables

e.g. using

R(ξ) ≈ f(u)
• Intrusive
• Nonintrusive: estimate response coefficients using sampling (expectation), 
quadrature/cubature (num integration), point collocation (regression)
Wi A k G li d PCE ith d ti it

R(ξ)  f(u)

Wiener-Askey Generalized PCE with adaptivity
• Tailor basis: optimal basis selection leads to exponential convergence



Efficient Integration



Stochastic Collocation
(based on Lagrange interpolation)

Instead of estimating coeffs for known basis fns, 
form interpolants for known coefficients

F i t l t i S f t d t ( f i id)

R

Form sparse interpolant using S of tensor products (same as forming sparse grid)

Key is use of same Gauss points/weights from the orthogonal polynomials 
for specified input PDFs  same exponential convergence rates

Simpler than PCE, and:
• Adapts to integration approach / collocation pt set: 

doesn’t over-/under-integrate a (nonsynchronized) 
expansion

• Estimating moments of any order is easy: E[Rk] = S rk
j wj

Disadvantages relative to PCE:
• Requires structured data sets: quadrature/sparse grid 

(cubature?), no random sets
• Expansion variance not guaranteed positive, no analytic VBD



Fast Convergence

Hermite basis, lognormal distributions

CDF



Fast Convergence

Hermite basis, lognormal distributions

CDF



Dempster-Shafer Theory

Intervals on the inputs are 
propagated to calculate 

• Belief: a lower bound on a probability value that is consistent 
with the evidence

• Plausibility: an upper bound on a probability value that is 
consistent with the evidence.
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“Second-Order” Probability

• Nested sampling technique which combines epistemic and aleatory
uncertainty, e.g., UQ with bounds on the mean of a normal distribution

• Frequently used in UQ studies and regulatory analyses (e.g. WIPP)Frequently used in UQ studies and regulatory analyses (e.g. WIPP)
• For each outer loop sample of epistemic (interval) variables, run an inner 

loop UQ study over aleatory (probability) variables; potentially costly
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New Interval Estimation Approach

• Outer loop:  determine interval on a moment 
(e.g., mean or variance)

l b l ti i ti bl fi d / i f t ti ti f– global optimization problem:  find max/min of statistic of 
interest, given bound constrained interval variables

– use EGO to solve 2 optimization problems with 
ti ll G i tessentially one Gaussian process surrogate

• Inner loop:  Use stochastic expansion methods (PCE) to 
d t i th CDF t ith t t thdetermine the CDFs or moments with respect to the 
aleatory variables

)|(min uuf )|(max uuf)|(min

UBELB

EASTATu
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Sandia Research Interests

GOAL: Advanced efficient, robust, accurate UQ methods for 
validation, extrapolation, risk-informed decisions

• Efficient, adaptive polynomial chaos techniques
• UQ and surrogate approaches for mixed-integer higher-UQ and surrogate approaches for mixed-integer, higher-

order moments, tail statistics
• Multi-level (system and hierachical) UQ
• How to allocate margin across a system• How to allocate margin across a system
• Stochastic processes and random fields
• Epistemic UQ approaches and alternative frames
• Adaptive UQ in multi-fidelity/hierarchical contexts

Thank you for your attention!a you o you atte t o

briadam@sandia.gov



EXTRA SLIDESEXTRA SLIDES



Code Verification: 
ASC Software Quality Plan Practices

Project Management
• Integrated Teaming

Software Engineering
• Technical Solution

Verification: “Are we solving the equations correctly?”

Integrated Teaming
• Graded Level of Formality
• Measurement & Analysis
• Requirements Development 

and Management

• Technical Solution
• Software Development
• Configuration Management
• Product Integration

Deployment and Lifecycleand Management
• Risk Management
• Project Planning & Oversight

• Deployment and Lifecycle
Support

Software Verification
• Verification Plan
• Technical Reviews
• Testing (incl regression)

Training
• Team Professional

development
• Track Training: prove

• Implementation of software quality practices is tailored to the stated 

• Testing (incl. regression)
• Acceptance Criteria

• Track Training: prove 
team qualification 

p q y p
level of risk (formality) in using the particular code

• Software projects are routinely assessed to these practices 
(internal and external review)



Solution Verification: 
Is the solution behaving as expected?

• Do we correctly solve problems with analytic and/or known solutions?
• Do we realize the expected order of accuracy in space and/or time?

Verification: “Are we solving the equations correctly?”

Do we realize the expected order of accuracy in space and/or time?  
• Relevant methods:

– Method of manufactured solutions (MMS)
– Grid convergence studies / Richardson extrapolation
– SIERRA Encore: Online verification through MMS, adjoint-based error estimation, 

and adaptivity:

Application of the new error estimator in Encore 
t l t ti 3D t t l t i blto a large rotation 3D structural torsion problem 

solved using the SIERRA Mechanics code 
Adagio. The mesh adaptivity is driven by the 

errors in the displacement gradients.

A verification problem for coupled conduction and thermal 
radiation using the Encore/MMS capability in SIERRA 
Mechanics Temperature contours are shown on the left andMechanics. Temperature contours are shown on the left, and 
convergence rates are shown on the right. Encore has 
quantified that the simulation has the expected 
accuracy, providing evidence that the numerical 
algorithms have been implemented correctly.



Algorithms for Computational
Modeling & Simulation

System Design Physics

Are you sure you don’t need verification?!

Geometric Modeling

Meshing

Model Equations

Discretization

Partitioning and Mapping

Time integrationAd
Optimization

Nonlinear solve

Linear solve

Time integrationAdapt
p
and UQ

Linear solve

Information Analysis & ValidationInformation Analysis & Validation

Improved design and understanding


