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Z Science with ALEGRA
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1. Using DFT models to produce 
material properties for ALEGRA in 
conjunction with appropriate circuit 
coupled magnetohydrodynamic 
(MHD) models, predictive design of Z 
dynamic materials experiments was 
enabled.

2. This was a clear demonstration that 
multiscale physics modeling could be 
extremely effective.

3. In the warm dense matter regime 
ALEGRA is a powerful tool for 
simulating MHD physics
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However, Low Density Regions Matter
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“Eddy” experiment on stagnation:  
the current flow in low density 
regions affects the dynamics

Source: Peterson & Mattson

• Current density and forces in low density regions have 
significant effects on the physics.

• To make ALEGRA work in low density regions we 
presently require many “knobs”

• i.e. density and conductivity floors, Lorentz force ceilings, etc
which have to be chosen by an analysist to produce reasonable 
results

• How do we know the results are reasonable if expert judgement 
is necessary to assign values?

• The standard MHD model has issues…

• We have MHD and EM propagation behavior.  We 
need a better set of equation options.



Computational Problems Issues with MHD

 Operator splitting requires an 
ideal MHD step

 Ideal MHD step requires a 
positive density
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 Magnetic diffusion step 
requires a positive conductivity 
even in “void”

 We care about resolving 
physics in low density regions.

 We have an explicit 
Lagrangian step which 
depends on fast magnetosonic
speeds!
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To push beyond the warm dense 
region we will require more physics! 

Maxwell-Ampere and Generalized 
Ohm’s Law



The Physicist’s Answer: Add More Physics

 Stagnation experiments for MagLif do not capture torsion 
at stagnation caused by the Hall Effect.

 MHD assumptions don’t hold in low density regions so 
maybe we shouldn’t assume them.

 Do not neglect displacement currents

• Generalized Ohm’s Law starts from change of variables 
of the from the Two Fluid system 

• Without additional assumptions the system is equivalent 
to the two fluid system.

• People often assume at least 

» and quasi neutrality
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The Eulerian DG code PERSEUS (Seyler of Cornell, Martin of SNL, et al.) 
has very promising results using these physics.



An incremental increase in complexity
 Instead of considering the full generalized 

Ohm’s law to begin with we started slightly 
simpler.

 Some people refer to the system as a single 
fluid plasma.

 We have been floating the name Maxwell 
Hydrodynamics or Full Maxwell 
Hydrodynamics

 Does not neglect displacement currents

 Assumes classical Ohm’s law.
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Attracted to the system because of desirable 
characteristic and dispersive properties for the 
linearization



Deriving a Lagrangian Internal Energy Balance Law for Maxwell Hydro

Kinetic Energy:
Kinetic energy can be found by dotting the momentum 
equation with v, integrating, and add scaling of mass 
equation.

Electromagnetic Energy:
Start with the frame invariant Poynting theorem

Integrate and expand terms very carefully.
This is not as easy as it looks.

Internal Energy:
We assume its balance law cancels all remaining internal 
contributions (Joule heating and mechanical work) This work extends a similar calculation by Robinson 

for Ideal/Resistive MHD but the application to Full 
Maxwell systems is new



Deriving a Lagrangian Internal Energy Balance Law for Maxwell Hydro

Mechanical Work

Kinetic Energy:
Kinetic energy can be found by dotting the momentum 
equation with v, integrating, and add scaling of mass 
equation.

Electromagnetic Energy:
Start with the frame invariant Poynting theorem

Integrate and expand terms very carefully.
This is not as easy as it looks.

Internal Energy:
We assume its balance law cancels all remaining internal 
contributions (Joule heating and mechanical work) This work extends a similar calculation by Robinson 

for Ideal/Resistive MHD but the application to Full 
Maxwell systems is new



Deriving a Lagrangian Internal Energy Balance Law for Maxwell Hydro

Lorentz Force Work Mechanical Work

Kinetic Energy:
Kinetic energy can be found by dotting the momentum 
equation with v, integrating, and add scaling of mass 
equation.

Electromagnetic Energy:
Start with the frame invariant Poynting theorem

Integrate and expand terms very carefully.
This is not as easy as it looks.

Internal Energy:
We assume its balance law cancels all remaining internal 
contributions (Joule heating and mechanical work) This work extends a similar calculation by Robinson 

for Ideal/Resistive MHD but the application to Full 
Maxwell systems is new



Deriving a Lagrangian Internal Energy Balance Law for Maxwell Hydro

Lorentz Force Work Mechanical Work

Joule Heating

Kinetic Energy:
Kinetic energy can be found by dotting the momentum 
equation with v, integrating, and add scaling of mass 
equation.

Electromagnetic Energy:
Start with the frame invariant Poynting theorem

Integrate and expand terms very carefully.
This is not as easy as it looks.

Internal Energy:
We assume its balance law cancels all remaining internal 
contributions (Joule heating and mechanical work) This work extends a similar calculation by Robinson 

for Ideal/Resistive MHD but the application to Full 
Maxwell systems is new



ALEGRA’s Resistive MHD Time integration
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1. Predictor Corrector for Hydrodynamics/Ideal MHD
2. Split out diffusion solves and joule heating

• We discretize mass, magnetic flux, and energy using Reynold’s Transport
• This is the equivalent Eulerian system



1D, Linear, Time Discrete stability analysis
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Stability Analysis
1. Linearize the system
2. Reduce to 1 dimension
3. Fourier Transforms in space

4. Rewrite as matrix equations

5. Spectral radius of          less than 1 implies stability
6. Largest wave number supported lowest order FEM is 

This  reproduces and extends the analysis found Love, Rider, and Scovazzi, J. Comput. Phys. 228.20 (2009): 7543-7564.



Stability of Predictor Corrector
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Note similar stability  bounds involving the speed of sound and fast 
magnetosonic speed for predictor corrector.



Magnetic Diffusion
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1. Compatible discretization, E on edges and B on faces
2. Implicit Euler and solve for E
3. Update B using the strong compatible curl

4. Most of this problem really boils down to preconditioning the matrix 
system

5. When 
�

�� 
≪ 1 large null space makes the system very ill 

conditioned but this large null space is necessary!



Predictor Corrector for Maxwell Hydrodyanmics
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• Operator splitting a la 
ALEGRA MHD leads to an 
unstable system.

• An implicit field solve in the 
Lagrangian step recovers 
hydro stability limit!

• Requires two fields solves 
on the Lagrangian Mesh!

• Electric Displacement flux 
is the Galilean Invariant. 
Simplest approach requires 
discrete Hodge Starr.

Seems very similar to IMEX (e.g. SSP(2,2,2))
2D von Neumann analysis seems prudent



new
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2-Form remap
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New electric displacement flux is the oriented sum of swept edge contributions 
which do not change the charge plus swept volume contributions which do.  
This is simply the divergence theorem (generalized Stoke’s theorem).

3
S

old
S
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Face Element Remap Results
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• A high order volume remap contribution for face 
element has been implemented.

• The volume contribution is associated with the 
through-face flux rather than the flux passing 
through the swept-edge faces in the standard div 
free CT algorithm.

• Below comparison of low and high order remap 
of charge density.  Note much reduced charge 
diffusion for high order algorithms.

Harmonic 
Minmod
Donor – Low Order



Discrete Maxwell’s Equations with a Hodge Star
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Electric Displacement (D) is really the frame invariant of the system for Galilean invariant Maxwell.
We have preconditioners for  (M + curl curl) systems:

Is this method asymptotic preserving? Does it converge to a solution of Resistive diffusion?
Simple Verification test for sanity: 



Results of Verification Problem: Errors and rates at final time
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h Δt RL∞ Rate RL1 Rate RL2 Rate

0.1000 1.00e-1 4.96e-01 -- 3.53e-01 -- 3.82e-01 --

0.0500 0.25e-1 1.53e-01 1.69 1.08e-01 1.70 1.16e-01 1.70

0.0025 6.25e-2 4.06e-02 1.91 2.88e-02 1.91 3.10e-02 1.91

0.0125 1.56e-2 1.03e-02 1.97 7.31e-03 1.97 7.87e-03 1.97

h Δt RL∞ Rate RL1 Rate RL2 Rate

0.1000 1.00e-1 4.23e-01 -- 3.73e-01 -- 3.78e-01 --

0.0500 0.25e-1 1.33e-01 1.66 1.18e-01 1.65 1.19e-01 1.67

0.0025 6.25e-2 3.56e-02 1.90 3.17e-02 1.89 3.18e-02 1.90

0.0125 1.56e-2 9.10e-03 1.98 8.07e-03 1.97 7.87e-03 1.97

Magnetic Flux Density

Electric Displacement



Synthesis: 1D Flyer Plates
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• Prototype for a pulsed power Dynamic Materials 
Experiment.

• Traditionally solved with ALEGRA MHD
• Initial configuration of Aluminum (Tabular EOS and 

LMD conductivities) is accelerated by magnetic 
field push.

• Joule heating ablates the back surface and causes 
a stream of lower density plasma behind the flyer.

• Alfvén velocity eats your lunch and the time 
step crashes if you do nothing

• Previously could be circumvented by capping 
the Alfvén velocity and reducing forces

Fast Speed Limiting is 
Evident

Remap CFL control kicks 
in at faster velocities

Fast speed impacts 
calculation

time step



Preliminary Results : The bad news
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The answers on our very first test problem are not the same.

FMHD is essentially a research capability needs extensive V&V and more testing



Preliminary Results : The good news
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Predictor Corrector for FMHD is stable at hydrodynamic time steps

Despite requiring 2 ML solves and 2 CG solves results in an order of magnitude speed up compared to 
operator split resistive MHD.



Closure
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1. ALEGRA needs additional physics to meet 
the demands of next generation pulsed 
power systems (Z-Next)

2. Generalized Ohm’s Law can be formulated 
in a frame invariant setting and is thus 
amenable to an ALE approach

3. Working with Maxwell Hydrodynamics we 
were able to eliminate Fast-Alfvén time step 
restrictions for more traditional Resistive 
MHD problems

4. Eliminating variables may make your 
equations harder to solve.

Next Steps:
1. Fix the current implementation and run 

a large number of ALEGRA-MHD 
calculations using FMHD.

2. How many low density kludges can be 
removed by using FMHD?

3. Can we modify SSP(2,2,2) for 
Lagrangian step to gain second order 
accuracy in time for no additional 
solves?

4. Once we’re confident in FMHD’s 
implementation we will introduce a GOL 
and begin iterating again
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