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Abstract—Advanced power measurement capabilities are be-
coming available on large scale High Performance Computing
(HPC) deployments. There exist several approaches to providing
power measurements today, primarily through in-band (e.g.
RAPL) and out-of-band measurements (e.g. power meters). Both
types of measurement can be augmented with application-level
profiling, however it can be difficult to assess the type and detail
of measurement needed to obtain insight from the application
power profile. This paper presents a taxonomy for classifying
power profiling techniques on modern HPC platforms. Three
HPC mini-applications are analyzed across three production HPC
systems to examine the level of detail, scope, and complexity
of these power profiles. We demonstrate that a combination
of out-of-band measurement with in-band application region
profiling can provide an accurate, detailed view of power usage
without introducing overhead. This work also provides a set of
recommendations for how to best profile HPC workloads.

I. INTRODUCTION

As extreme-scale High Performance Computing (HPC) plat-
forms grow, so do the power requirements to operate such
expansive computing systems. Current leadership-class HPC
facilities are now built with power envelopes on the order
of Megawatts, with current US Department of Energy (DOE)
Exascale projections in the 20-40MW range. Practical power
delivery issues at the facility level mean that managing power
consumption of these systems is important. However, power
measurement capabilities on large scale HPC systems have
historically been very limited or non-existent, limiting the
ability to understand and manage large system power usage.
Furthermore, the power consumption of bulk synchronous
parallel application workloads that run on these HPC resources
can be difficult to understand without detailed workload energy
consumption and power profiles.

Emerging systems are now capable of managing power
measurements of some individual components, whole nodes
and even the entire system. One class of methods are in-band
measurement techniques, including reading CPU counters like

*Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC.,
a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under
contract DE-NA0003525.

Intel’s Running Average Power Limit (RAPL). In contrast, out-
of-band measurements from dedicated hardware are capable
of measuring and reporting data without the intervention or
involvement of the compute resources on the board. In addition
to the mechanisms used to gather power consumption data,
in-line code instrumentation methods can be used to directly
annotate application code to identify code regions of interest
and correlate them with power measurements.

Power measurement and characterization of HPC appli-
cations is a well established field. We will show that a
compilation of techniques can lead to insight that was not
otherwise possible. While the individual techniques described
herein have been used and studied previously, we demonstrate
a combination of techniques now available on cutting edge
systems provides greater profiling detail than any single tech-
nique, leading to better insight. This work presents a detailed
power profiling study of in-band, out-of-band, and application
profiling not collectively examined in previous work.

This paper makes the following contributions:

• We present a taxonomy for classifying the power profiling
techniques available on modern HPC platforms. This
framework is useful to HPC practitioners to understand
and discuss power profiling studies of HPC workloads.

• Through analysis of three example mini-applications, we
demonstrate how power profiling accuracy and overhead
differ among the available techniques on multiple recent
platforms. In particular, we show how the common prac-
tice of relying on only aggregate job-wide information
such as total energy consumed can be misleading.

• We demonstrate a unique combination of out-of-band
power profiling together with in-band application region
profiling, which produces an accurate view of application
power usage behavior with negligible runtime perfor-
mance overhead on production HPC platforms.

• Finally, we provide a set of recommendations and best
practices for performing power profiling of HPC work-
loads, taking into account our experience.

The rest of the paper is as follows. First, it provides some
background on the power profiling capabilities that exist on
HPC systems. Next, it defines our detailed taxonomy of mea-
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surement and application evaluation strategies to guide readers
through the complexity, advantages, and trade-offs of different
power profiling techniques. Then, three mini-applications are
evaluated across three different HPC systems to illustrate the
measurement taxonomy by sampling simple aggregate runtime
data, expanding detail with application profiling, and then
correlating in-band and out-of-band data measurements using
a P-state sweep and CPU architecture comparisons as case
studies. The paper concludes with recommendations based on
the insight desired, the target platform’s capabilities, and the
amount of effort required.

II. BACKGROUND

Power measurement of system components is a topic that
has been studied for many years. Accurate power measure-
ments are essential when energy budgets are regulated and
finite, such as in mobile devices. Energy usage is important
in real-time applications to identify opportunities to reduce
energy usage while satisfying required deadlines. Commercial
services such as cloud providers focus on overall system
efficiency for cost optimization. Power usage is also of interest
to sites hosting HPC platforms, as such sites must meet
statutory regulations governing energy efficiency and seek to
minimize electricity costs. However, US DOE HPC facilities
are often more concerned with limitations that constrain the
amount of power that can be provided to a given platform.

Approaches to power measurement are varied, and provide
different types and rates of data. Out-of-band measurement is
the easiest approach to understand. It uses equipment external
to the compute resource to measure power consumption with-
out perturbing computational performance. Classic examples
of out-of-band measurement include devices like WattsUp! [1],
WattProf [2], PowerInsight [3], and integrated devices like
IBM’s power measurement capabilities [4]. Out-of-band mea-
surements avoid perturbing the ongoing computation, but they
may not provide easily accessible information to the running
processes. Since these devices are necessarily not part of the
CPU, they must be interrogated over external device buses
for data instead. Historically, simple out-of-band measurement
techniques have had relatively low sampling rates, however
new integrated designs have greatly improved sampling rate.

In-band measurement uses device-level integrated measure-
ment capabilities, such as Intel’s Running Average Power
Limit (RAPL), or AMD’s Advanced Power Management
(APM). They provide real or estimated measurements of
energy consumption through device-level interfaces. RAPL
and APM use CPU counters to express energy usage, and can
provide separate core, package and DRAM measurements. In-
band measurements require active participation of the compute
cores in a system to gather data on a regular basis. Therefore,
point-in-time samples require frequent intervention to record
the values in counters on the device. This corresponds to a read
of a CPU register on both Intel’s and AMD’s solutions. If only
total energy consumption of the whole application is needed,
rather than point-in-time samples, then in-band measurement
can have very little impact on computational performance.
Point in time samples require several reads per second if the
device’s maximum sampling rate is used.

In-band measurement through CPU counters can often
provide both CPU and memory subsystem energy measure-
ment [5], [6]. This is not always possible with out-of-band
measurement, depending on where the external measurement
hardware is placed and its capabilities. Out-of-band measure-
ment can capture whole node energy profiles more easily,
while this is generally not possible for in-band measurement
that relies on CPU counters. Whole node energy can be useful
when other components such as network or motherboard chip
set consume a large amount of the power budget for a node.

Application instrumentation and profiling can take multiple
forms. Timestamping is a common practice amongst applica-
tion developers to understand the performance characteristics
of their code. Other more in depth profiling techniques and
tools such as Intel’s Vtune [7] or Cray’s CrayPat [8] allow
deeper inspection into program behavior through call-graph
traces and CPU performance monitoring counter data. The
Power API [9] can provide a portable solution to application
level power measurement when application region hints are
integrated with power measurement through the framework.

III. TAXONOMY OF POWER MEASUREMENT

Modern large-scale HPC platforms have incorporated sev-
eral forms of power measurement and energy accounting that
expand the possibilities of gathering key data. However, it is
often difficult to know where to start or, in many cases, difficult
to access the information that is available. In this section, we
describe a framework for understanding these capabilities and
discuss the potential insight they can provide.

A. Level 1: Job-wide Aggregate Information

Many platforms track coarse-grained power and energy
usage continuously, such as total energy usage by each appli-
cation executed. It may be broken down by component, e.g.,
separate CPU and memory energy values, but the information
is usually aggregated over an entire application run rather than
point-in-time samples or per-node information. The informa-
tion collected may be available to users in a post-job report.

Job-wide energy information helps to understand how
energy-to-solution changes for different application optimiza-
tions, algorithm choices, or run configurations. It can also
be useful for performance tuning. High power usage levels
(e.g., as a percent of the peak available budget) often indicate
a well tuned application, whereas low power usage levels
may indicate room for further optimization. A downside to
this technique is that it only provides insight into energy
usage behavior in aggregate, not the varying rates of energy
consumption throughout an application’s execution.

B. Level 2: Periodic Sampling

Finer-grained detail is provided by periodically sampling
power levels and energy usage over time. This is often how
level 1 information is derived. Sampling may be implemented
in-band or out-of band. With in-band, compute node resources
are used to perform the sampling, reducing the resources
available for application execution. With out-of-band, the



platform’s control system infrastructure is used to implement
the sampling without using compute node resources. Many
platforms store a short time window of power and energy
samples in a database for use by administrators and workload
managers. The information may be accessible to users, but
obtaining access often requires administrator action.

This information can be used to plot power usage versus
time. It is often possible to identify different application
regions by looking for changes in power level. Activities such
as idle periods, network polling, and I/O phases can sometimes
be identified and used to diagnose load imbalance issues within
an application. A downside to this technique is the potentially
large volume of point-in-time sample information that must be
retained and the difficulty of analyzing it.

A concern with in-band sampling is the performance degra-
dation of the application itself due to frequent interruption
of the CPU to read the hardware counters. This interruption
not only pauses compute tasks but can also pollute the CPU
cache, which may also impact total energy consumption and
effect time measurements. While it may seem a small impact
overall, previous experience with OS system noise shows that
even minor interruptions can induce larger slowdowns when
processes must synchronize across the application [10].

C. Level 3: Application Instrumentation

While the first two levels treat the application as a black
box, or as a gray box when application knowledge is used to
interpret the recorded information, white box analysis is useful
to understand an application’s internal behavior at a finer
level of detail. One can modify an application to instrument
code regions of interest. The instrumentation points can then
be used to record in-band power and energy samples during
execution. This information can be analyzed to characterize
each instrumented region’s power and energy usage behavior.
The potential downsides of this technique are that it requires
application modifications and may reduce performance due
to instrumentation overhead. The effort needed to instrument
an application can be reduced by using automated tools or
amortized by leveraging the instrumentation points for other
purposes, such as for input to an introspective runtime system.

Overheads from application instrumentation depend greatly
on two different factors. The first is the complexity of the
instrumentation in terms of the data that must be gathered.
Some low overhead methods simply use time stamp and region
tuples [11]. Timing has been used for a long time in HPC
applications, especially using MPI [12] timing functions to
instrument code regions of interest. Some instrumentation also
incorporates information from sources like performance moni-
toring counters [13], which can even be used to estimate power
consumption without hardware measurement support [14].

The second factor that impacts overhead is sampling fre-
quency. Even with lightweight sampling, for short regions the
timestamp can be called so often that it begins to impact
performance. If a region is only 1000 cycles with 50 cycles
to read and record the data then 5% overhead is incurred. Our
evaluation uses regions long enough to amortize overheads
for simple sampling like timestamp-region tuples. However,

the cost must be taken into account when instrumenting
applications to avoid high levels of overhead.

D. Level 4: Multi-Level Correlation

Finally, information gathered from previous levels can be
cross-correlated and used to derive information that is not
otherwise available, or would be too costly to obtain using
a single level in isolation. For example, if the overhead
of application instrumentation (level 3) is too high, power
measurement at instrumentation points could be disabled with
only timestamps kept. The timestamps could then be correlated
with out-of-band periodic power samples (level 2) to obtain
similar insight with less application overhead. As another
example, if a particular application run experienced an un-
explained performance degradation (e.g., a “slow run”), level
1 information could be inspected to look for anomalous power
or energy usage behavior. To probe deeper, the level 1 job start
and end timestamps could then be used to generate a power
versus time plot from level 2 information. The plot may reveal
clues to the reason for the slowdown, such as a concentrated
idle period (e.g., a system I/O issue or network quiesce event).

Aligning application instrumentation timestamps with in-
band and out-of-band periodic sampling measurements can be
difficult. In-band measurements are typically the easier of the
two to align as they can use the same timestamp as the appli-
cation instrumentation (region timestamping). In this approach
one can use system timestamps and reasonably expect them to
line up with relative ease. Out-of-band measurements can be
much more complex to align with region timestamps. Because
the measurement hardware is separate and distinct from the
CPU, absolute timestamps from measurements, applications
timestamps, and hardware power samples are needed. To align
these time samples, the user must find the minimum timestamp
for both the application region profile output and the out-of-
band measurements. Using this minimum, one can establish an
offset for the individual timestamps and based on a common
start point t = 0. From there timestamps can be lined up and
produce useful data for analysis.

IV. EXPERIMENTAL RESULTS

A. Test Platforms

We evaluated power/energy measurement techniques on
three different Cray platforms. One platform, Volta, was a
standalone Cray XC30 testbed system with dual socket Ivy-
Bridge E5-2695v2 CPUs and 64GB RAM and a max node
power draw of 350W. The IvyBridge CPU has a frequency
range of 1.2 - 2.4 Ghz with a turbo frequency of 3.2 Ghz.
The other two systems are different implementations of a
Cray XC40 system, the first comprising a traditional dual
socket Haswell E5-2698v3 CPUs and 128GB RAM, and the
second consisting of a single socket Knights Landing (KNL)
Xeon Phi 7260 with 96GB RAM and 16GB MCDRAM. The
Haswell XC40 has a max power draw of 415W per node and
a CPU frequency range of 1.2 - 2.3 Ghz with max turbo of
3.6 Ghz, whereas the KNL Phi has a max power draw of
345W per node and a frequency range of 1.0 - 1.4 Ghz, with
1.6 Ghz turbo frequency. All three systems utilize the same



Cray Aries Interconnect. Here, the XC40 systems represent a
small system that is identical to the hardware and software of
the Trinity supercomputer, currently the tenth fastest computer
on the Top500 list [15]. The three test platforms provide
similar power measurement capabilities. Level 1 information
is provided by Cray’s RUR (Resource Utilization Reporting)
tool [16], which records various aggregate statistics about each
job, including start time, end time, and total energy consumed.

Level 2 information is provided by Cray’s out-of-band
power monitoring infrastructure and Power Management
Database (PMDB). Per-node power is sampled at 5 Hz and
stored in the PMDB PostgresSQL database, with a rolling 4
hour window of samples kept for each system. Each compute
node contains a power measurement device with accuracy of
+/- 3% that is internally sampled at a rate higher than 5 Hz. For
the Trinity platforms, each 5 Hz power sample is the average of
the internal samples since the previous 5 Hz sample. The XC30
(Volta) runs an older Cray management software release that
does not perform this averaging, so the 5 Hz value recorded
represents the most recent internal sample available.

Level 3 application instrumentation for this study uses the
KokkosP runtime profiling interface [17], part of the Kokkos
C++ performance portability library1. KokkosP provides low-
overhead profiling and instrumentation of applications. We
have used KokkosP exclusively to denote application region
entry/exit with timestamps, as described later. We also devel-
oped a Power API plugin for KokkosP to collect in-band power
and energy measurements. Some but not all applications in
the study use the Kokkos programming model, demonstrating
that the KokkosP lightweight profiling library can be used
independently or in conjunction with Kokkos-based code.

B. Workloads

We used three different miniapplications to conduct our
experiments, MiniMD, LULESH and MiniFE.

• MiniMD 2 - A molecular dynamics (MD) miniapplication
representing the LAMMPS [18] full featured MD simu-
lator. While MiniMD supports only Lennard-Jones (LJ)
pair interactions, its behavior is essentially equivalent to
LAMMPS for the LJ liquid simulation it performs.

• LULESH 3 - An unstructured mesh Lagrangian explicit
shock hydrodynamics miniapplication [19], representing
DOE hydrodynamics applications, especially ALE3D.

• MiniFE 4 - An implicit finite element (FE) conduction
simulation using a conjugate gradient (CG) solver on a
rectangular shaped problem. To represent a broad class of
FE applications, its CG solver is simple and generic [20].

These workloads were run on 32 nodes of each platform
using all cores on each node. The same input problem was
used across test platforms, enabling cross architecture compar-
isons. Input problems were chosen by consulting with subject
matter experts to determine realistic configurations that would
produce high performance across the three platforms studied.

1https://github.com/kokkos
2https://github.com/Mantevo/miniMD
3https://codesign.llnl.gov/lulesh.php
4https://github.com/Mantevo/miniFE

C. Job-wide Aggregate Information
Aggregate counts of total energy consumed or average

wattage over a sampling period are obtained using hardware
registers that are polled for values only at the beginning and
end of an application execution. This is technically in-band
as the commands are issued to read the hardware counters
from the CPUs executing the simulation code. Reading these
counters can be done with negligible overhead, as the code
reads the counter before and after the application execution,
avoiding any interference while running the simulation.

To demonstrate the initial utility of HPC job aggregate
information, we look at a common case study where a P-state
sweep is performed to try to determine a configuration for the
highest performing, the lowest overall power consumption, or
the least total energy consumed per Figure of Merit (FOM) 5.
Given 3 architectures and turbo-boost frequencies, we also
use the 1.2 GHz frequency results to compare different CPU
architecture types at an identical clock speed. Results from
this study are shown in Table I. These results demonstrate
trends that are predictable: The fastest clock speeds are al-
most universally the most performant mode of operation for
all architectures. The exception is Haswell running MiniFE,
where non-turbo max frequency is slightly better than turbo
but within the margin of error. In terms of FOM per watt, the
results are less straightforward. The Ivy Bridge system should
be run in non-turbo highest frequency for power efficiency and
performance, but for the Haswell and KNL systems the ideal
frequency varies based on the architecture and application.
The KNL and Xeon core architectures are vastly different
x86 implementations. The results show that the many Intel
Atom-based cores in the KNL architecture are better for both
MiniMD and MiniFE. For the memory-intensive LULESH
code, however, the high bandwidth, low latency memory
subsystem in the Xeon allows it to slightly outperform KNL.

Unfortunately, this case study also illustrates the limitations
of aggregate job information. First, this aggregated data cannot
tell us which particular phase of an application is of concern
or how energy is consumed throughout execution. Other
techniques are necessary to answer these questions. Perhaps
more alarmingly, the total job energy consumption may lead
us to false conclusions about optimizing FOM per watt. With
MiniFE, the Trinity Haswell portion shows 1.2Ghz to be the
best FOM per watt. However, as we find later when application
code regions are instrumented, MiniFE’s FOM is based on
a single region that is a small portion of the total runtime,
effectively leading to a false conclusion regarding selecting
an optimal P-state FOM per Watt.

D. Application Instrumentation
Compared to simplistic aggregate job data, application

profiling requires significantly more effort and knowledge of
the applications under study than aggregate counter or out-of-
band power measurement. It can yield more insight into the
power and energy characteristics of applications. However, the
detail and frequency at which application instrumentation is
implemented can have cascading impacts and considerations.

5FOM is a measure of application performance, e.g., elements/second.



TABLE I
POWER AND ENERGY EFFICIENCY CALCULATED FROM CRAY RUR AGGREGATE INFORMATION

Figure of Merit Per Node Average Watts Per Node Figure of Merit Per Watt

Volta Trinity Trinity Volta Trinity Trinity Volta Trinity Trinity
Ivy Bridge Haswell Phi KNL Ivy Bridge Haswell Phi KNL Ivy Bridge Haswell Phi KNL

MiniMD
Turbo 2.08e7 3.01e7 5.92e7 269 334 246 7.73e4 9.01e4 2.41e5
No Turbo 1.84e7 2.56e7 5.66e7 213 236 228 8.64e4 1.08e5 2.48e5
1.2 GHz 9.45e6 1.39e7 4.93e7 138 142 194 6.85e4 9.79e4 2.54e5

LULESH
Turbo 1.36e4 1.85e4 1.51e4 291 346 218 46.7 53.5 69.3
No Turbo 1.24e4 1.75e4 1.43e4 236 295 208 52.5 59.3 68.8
1.2 GHz 6.75e3 1.09e4 1.25e4 156 175 180 43.3 62.3 69.4

MiniFE
Turbo 1.24e4 1.42e4 3.00e4 185 212 138 67.0 67.0 217
No Turbo 1.23e4 1.43e4 2.93e4 145 152 133 84.8 94.1 220
1.2 GHz 8.37e3 1.41e4 2.76e4 104 104 127 80.5 136 217

For more insight into application behavior we need to
understand the phases of the applications themselves. Table II
shows the region breakdown for each of the three applications
operating with the KNL turbo P-state. The number of occur-
rences of each region are identical across architectures and
only the region timings vary. MiniMD has 5 main regions. Not
all of these regions occur in every timestep of the simulation.
For example, NeighborBuild is only run every 20 timesteps.
However, when it does occur it is a significant portion of the
execution time for that timestep. Like MiniMD, LULESH also
has 5 regions in its main solve. Regions 2 and 5 are the most
significant in terms of time, while region 3 is very short. Like
Exchange or Communicate regions for MiniMD, region 3 is
very difficult to profile. This is because the region is so short
that measurement may not be possible inside of the region.
For MiniFE, we have only instrumented the assembly and
CG solves as regions. Since both regions are large, the power
profile clearly differentiates these two regions in Figure 1c.

TABLE II
APPLICATION PROFILING REGION DURATIONS FOR TRINITY KNL

Region Durations (seconds)

Region Name Count Mean SD MIN MAX

MiniMD

Exchange 1632 0.005 0.002 0.003 0.025
CommBorders 1632 0.010 0.009 0.006 0.085
Communicate 30400 0.003 0.003 0.002 0.032
Force 32000 0.039 0.009 0.036 0.155
NeighborBuild 1600 0.600 0.002 0.595 0.624

LULESH

IntegrateStress 25600 0.011 0.000 0.010 0.035
HourglassControl 25600 0.039 0.001 0.038 0.067
VelocityForNodes 25600 0.002 0.000 0.001 0.002
LagrangeElements 25600 0.018 0.001 0.017 0.066
MonotonicQ 25600 0.031 0.005 0.023 0.063

MiniFE Assemble 32 135.243 5.465 125.582 149.543
CGSolve 32 14.209 0.000 14.208 14.210

Power/energy profiling can be done inline in the application
directly through in-band measurement, such as calling the
PowerAPI or interfacing with RAPL directly. However, the
overhead of in-band measurement can be significant when
sampling at high frequency. To quantify the potential over-
head of inline application profiling, multiple experiments with

both power/energy readings and timestamps, as well as with
only timestamps enabled, are shown in Table III. Our initial
investigation for KNL yielded significant overheads of in-band
sampling with region profiling for MiniMD and LULESH,
ranging form 4-8%, whereas MiniFE in-band sampling was
negligible compared to no sampling. These overheads are
significant even at a small scale. Given prior knowledge of how
asynchronous noise in parallel applications can have cascading
effects at a large scale, these overheads could increase when
moving to an extreme scale such as the Trinity supercomputer.

TABLE III
OVERHEAD OF APPLICATION PROFILING FOR TRINITY KNL

Power + Energy Timestamps
Region Profiling Only

MiniMD

Turbo 6.84% -0.08%
1.4 GHz 7.49% -0.08%
1.2 GHz 7.71% 0.08%
1.0 GHz 8.15% 0.07%

LULESH

Turbo 4.84% 0.24%
1.4 GHz 4.94% 0.35%
1.2 GHz 5.23% 0.22%
1.0 GHz 4.73% -0.08%

MiniFE

Turbo -1.22% 0.15%
1.4 GHz -0.59% -0.95%
1.2 GHz -1.50% -1.42%
1.0 GHz -1.26% -1.96%

When we disable profiling and use only timestamping,
the performance overheads become essentially non-observable
when accounting for normal application runtime variance in
measurement. Timestamping is currently the best way to
couple application profiling with out-of-band power samples.
Since out-of-band samples are detached from the application
or compute infrastructure entirely, the use of timestamps
within the application becomes the only feasible way to couple
out-of-band data. While it requires significant additional effort
and synchronized clocks, the result is a near complete lack of
perturbation or added overhead due to profiling.

E. Out-of-band Periodic Sampling
Out-of-band power sampling can provide detailed infor-

mation about application phases and the impact of varying



clock frequency on the CPU. Continuing with the case study
detailed in Table I, we next look at P-states across the KNL
system. In Figure 1, the power versus time plots include level
2 power samples taken at 5 Hz for each of the 32 nodes for the
respective run, with a solid horizontal line added to visualize
the job-wide average power calculated from level 1 informa-
tion. MiniMD’s out-of-band measurements in Figure 1a show
expected behavior in the main solve of the application. The
periodic power consumption corresponds with known solver
phases, and each P-state shows the expected number of phases.
Using a slower CPU frequency lengthens the phases but does
not alter any observable power consumption trends.

LULESH’s power consumption with varying CPU fre-
quency for the KNL is shown in Figure 1b. Its power consump-
tion is much less periodic than MiniMD but shows similar
patterns of lowered power consumption and lengthened run-
times with different P-states. Unlike MiniMD, where phases
are obvious in the power consumption graph, LULESH has
5 phases, but all of them are similar in power consumption,
even though the time periods of the individual phases are not
equal (some are very short, others are longer than average).

MiniFE shows multiple different phases throughout ex-
ecution in Figure 1c. The first long, low-power phase is
the assembly phase while the increased power consumption
regions are the problem solve (CG). We can observe that power
usage throughout the assembly phase is slightly improved
by lowering the CPU frequency. However, the difference is
not as large as the power savings during the main CG solve
region. This will impact the performance per watt of the lower
frequency results as the assembly phase is the longest phase.

In addition to an analysis of P-states on KNL only, we
can also directly compare all three of our platforms with
out-of-band measurement. The results for MiniMD, shown in
Figure 2, illustrate some differences between the out-of-band
measurement techniques across the 3 system platforms. The
out-of-band measurement capabilities between these systems
are very similar, except that the Ivy Bridge system reports
only point-in-time power samples, while the Haswell and KNL
systems average results between sampling reading points. This
leads to a much less noisy power profile for the newer systems,
avoiding spurious data not significant to the analysis of the
power consumption of the system.

The results can be significant for identifying periodic power
behavior in an application. In Figure 2 we observe that the
KNL system shows clear periodic behavior that we can relate
back to known phases of the application and timesteps in the
simulation itself. Such results on the Ivy Bridge system yield a
noisy signal, and the periodicity of the underlying code regions
was lost. This is not the case when we have intra-sample
averaging like on the KNL/Haswell system. While LULESH
(not pictured) does not have the same region periodicity, the
noise from LULESH running on IvyBridge was even greater,
to the point of obscuring useful data.

F. Combining Out-of-band Periodic Sampling and Application
Instrumentation

Region profiling with timestamps and in-band power/energy
profiling paired with the collection of out-of-band data allows

(a) MiniMD

(b) LULESH

(c) MiniFE

Fig. 1. Out-of-band power sampling for workloads running on Trinity Knights
Landing at different CPU frequencies.

Fig. 2. Out-of-band power sampling for MiniMD running on 3 different test
platforms.

significantly more insight than any one technique. Specifically,
the method of power data paired with profiling may have dras-
tically different resolutions that effect the perceived accuracy
of the interpreted results.

Looking at MiniMD in Figure 3, the results show an issue
of resolution that can be introduced by power/energy profiling
only at region entry and exit. The Figure shows that all of
the periodic data with timesteps (in black) of the application



Fig. 3. MiniMD correlating out-of-band power sampling with in-band
application region profiling.

are not observable in comparison to in-band measurements
(in red), which are taken along region boundaries. The out-
of-band measurements capture this periodic behavior and,
when combined with timestamps, application profiling clearly
illustrates which regions correspond to the periodic behavior.
While the in-band measurement does accurately report the
total energy usage, the rate of usage throughout the region is
incorrect as it is treated as a uniform power/energy draw. Ef-
fectively, this in-band approximation does not match the fine-
grained out-of-band measurements or the higher frequency
periodic behaviors observed. Other studies have validated in-
band measurements using out-of-band measurement [21], so
while in-band measurements are accurate, it is the lack of the
resolution with sampling rate that fails to properly illustrate
the application’s true power profile.

In-band sampling resolution could be increased by interrupt-
ing the application to query the energy counters throughout
the execution. One could also define finer-grained regions
if appropriate for the code under study, however as seen in
Table III, doing so would also add overhead and potential
perturbation to the application itself. Furthermore, for course-
grained application regions like MiniFE, the assumed behavior
throughout the region is very different than the out-of-band
sampling throughout the region. This illustrates a key issue
with in-band measurement sampling only between regions: the
behavior within a region is not guaranteed to be uniform.

V. RELATED WORK

The concept of investigating energy and power consumption
of large-scale HPC resources is not a new one. In the literature,
most related work has addressed power measurement using
solely out-of-band [22]–[24] or in-band [25]–[27] techniques.
Some work has also sought to validate in-band measurements
using out-of-band measurements at the same time to determine
the overall accuracy of the measurements or integrated power
model [6]. Previous work has used application instrumenta-
tion with power measurements to estimate energy usage to
within 10% of actual consumption [14]. Several works have
used estimated power values to determine the system energy
consumption [28]–[30]. Other work uses power measurements
to illustrate methods for operating power constrained systems
[31], [32]. Several power estimation frameworks/simulators
exist as well such as WATTCH [33], and SST [34]. However,
these simulators rely on estimations of energy consumption

and therefore have high margins of error, particularly for
architectures that are not the explicit target of the simulation.
APIs have addressed the topic of gathering power and energy
data from systems including the Power API [35], Redfish [36],
CapMC [37] and AMESTER [38].

Previous work has been limited by the measurement capa-
bilities available on extreme-scale HPC platforms used. For
example, Leon et al. [11] used out-of-band measurement and
application region marking. Additional work used in-line per-
formance measurement counters (not power counters) to better
understand the behavior of individual regions [39]. However,
this work did not explore the capabilities nor trade-offs of
in-band measurement, and used only traditional multicore
CPUs but on a variety of architectures. The work described
herein is the first known to address both in-band and out-of-
band measurement techniques together on the same hardware
and coupled with application profiling for each measurement.
Furthermore, this work also contributes a detailed taxonomy
to detail how, when, and why HPC application developers can
accurately evaluate power consumption.

VI. RECOMMENDATIONS AND DISCUSSION

The key lessons learned from our study can help to guide
HPC application profiling for measuring power and energy.
One must first decide what level scope is necessary when
conducting power profiling. The taxonomy given in Section III
assists in determining the level of detail desired, the amount
of data available, and the amount of effort required.

If only total energy usage or average power for an appli-
cation are needed but not phase data or periodic consumption
rates, aggregate data collection is the best initial option. This
is also the first approach to use when detailed application
information is not available, such as in-depth knowledge of
code regions. Aggregate data has low overhead and requires
less storage space and analysis time than the other studied
measurement techniques. If application code knowledge is
limited, out-of-band data collection or timed in-band periodic
counter polling are the best next options. Out-of-band data is
the preferred collection method but is often not available since
it requires specialized out-of-band hardware like that of the
Cray platforms. Moreover, out-of-band data may be available
only to administrators, an active policy issue to be resolved
at HPC facilities. Time-averaging of samples, if supported
in the measurement system, is helpful to discover trends in
the application. Phases are more easily discernible if adjacent
regions of code do not have similar power profiles.

If detailed information on application code regions is nec-
essary and sufficient knowledge of the application is given,
then in-line application profiling should follow. Application
profiling can be aligned to in-band data through measure-
ment tools like RAPL to sample values surrounding code
regions. However, in-band application instrumentation may
significantly perturb performance, especially for short regions.
Therefore, the best form of measurement for the most in depth
understanding is to combine code regions with timestamps and
correlate with out-of-band measurements. This method pro-
vides low-overhead, fine-grained data over the entire execution



to enable useful observations that would not be visible other-
wise. However, this approach requires the greatest amount of
effort and knowledge of both the system and application, as
well as specialized out-of-band hardware support that is still
not yet commonplace. Automating this process is difficult, and
the proprietary nature of out-of-band hardware can be limiting.
This situation motivates standardization efforts, such as the
Power API [9], that can provide a common interface for both
application instrumentation timings and out-of-band data.

In conclusion, we have demonstrated that no single con-
temporary measurement technique is sufficient to gather power
measurements for all HPC use cases. Instead, the measurement
taxonomy introduced in this paper can be applied to determine
the appropriate level of detail and effort, as demonstrated by
our thorough investigation of multiple proxy HPC applica-
tions across multiple production platforms using both in-band
and out-of-band data. In particular, we that show that the
combination of application region profiling and out-of-band
power measurement provides an accurate view of application
power profiles with negligible overhead. Our recommendations
provide actionable guidance for HPC application profiling to
better understand power and energy usage on HPC systems.
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