Performance Scaling Variability and Energy Analysis for a Resilient ULFM-based PDE Solver

F. Rizzi†, K. Morris†, B. Cook*, K. Sargsyan†, P. Mycek‡, O. LeMaitre‡, O. Knio‡, K. Dahlgren†, B. Debusschere†

†Sandia National Laboratories, Livermore, CA, USA
‡Duke University, Durham, NC, USA
*LBNL, Berkeley, CA, USA

ScalA 2016, Salt Lake City
– Nov. 2016 –

Supported by the US Department of Energy (DOE)
Advanced Scientific Computing Research (ASCR)

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
Do We Need Resilience?

Resilience:
Collection of techniques to keep applications running to a correct solution in a timely and efficient manner *despite* underlying system faults.

Do We Need Resilience?

Resilience

Collection of techniques to keep applications running to a correct solution in a timely and efficient manner *despite* underlying system faults.

IEEE, Feb. 2016, Al Geist (ORNL)

“As a child, were you ever afraid that a monster lurking in your bedroom would leap out of the dark and get you?”

“Lack of resilience is a similar monster, hiding in the steel cabinets of the supercomputers and threatening to crash the largest computing machines.”
Faults: Broadly Speaking

- Hard: activation is systematically reproducible.
- Soft: activation is not systematically reproducible.
- Active: fault causes an error.
- Dormant: fault does not cause an error. The dormant fault is activated when it causes an error.
- Permanent: presence is continuous in time.
- Transient: presence is temporary.
- Intermittent: fault is transient and reappears.

Addressing Failures in Exascale Computing, Snir et al., 2012.
Challenges & Needs

- *Hypothetically* hardware can take care of most of it...

- ...at the expense of energy consumption, money, and asynchrony.

- Power is a big obstacle towards exascale.

- High tradeoffs between power, resiliency and performance.

 For instance: if an application can tolerate memory bit flips for certain parts of its memory, it can ask the OS to turn off ECC checks for those memory regions and potentially improve power and performance.

- Cross-cutting research needed to explore these areas.
• Ed N. Lorenz, meterologist (1963): simplified model of convection in the earths atmosphere (also found in models of lasers and dynamos).

• System of coupled non-linear differential equations:

\[
\begin{align*}
\frac{dx}{dt} &= \sigma(y - x), \\
\frac{dy}{dt} &= x(\rho - z) - y, \\
\frac{dz}{dt} &= xy - \beta z
\end{align*}
\]

• Lorenz used $\sigma = 10$, $\beta = 8/3$, and $\rho = 28$.

• Systems exhibits chaotic behavior for these (and nearby) values.

• Chaotic means highly sensitive to initial conditions. Small differences in initial conditions (such as those due to rounding errors in numerical computation) yield widely diverging outcomes for such dynamical systems, making long-term prediction impossible.
The Lorenz attractor: effect of Silent Data Corruption (SDCs)

- SDC: data corruption not raising errors/warnings.
- Start from $x_0 = 8$, $y_0 = 5$, $z_0 = 1$. Solve over $0 \leq t \leq 40$.
- Simulate SDC by randomly selecting a bit to flip in x at $t = 12$.

- Small change, but completely different solution for this “simple” test!

Motivation

- Algorithm
- Implementation
- Results
- Power
- Conclusions
Algorithm
Resilient EXtreme Scale Scientific Simulations (REXSSS)

<table>
<thead>
<tr>
<th>What?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain-decomposition-based preconditioner for PDEs.</td>
</tr>
<tr>
<td>• Currently for elliptic equations (1D, 2D).</td>
</tr>
<tr>
<td>• Other PDEs (in progress).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>How?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recasting the original PDE problem as a sampling problem, followed by a resilient data manipulation to achieve the final solution update.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Why?</th>
</tr>
</thead>
<tbody>
<tr>
<td>• We do not characterize all types of system faults that can occur, but focus solely on the information that a simulation provides.</td>
</tr>
<tr>
<td>• Target: silent data corruptions (SDCs) and nodes/cores failing.</td>
</tr>
</tbody>
</table>
1D problem:

\[
\begin{align*}
\mathcal{L} y(x) &= g(x), \quad \text{in } \Omega = (x_-, x_+) \\
 y(x_-) &= y^-, \\
 y(x_+) &= y^+,
\end{align*}
\]

\(\mathcal{L}\) is a **linear**, elliptic operator.

The solution at point \(x_0\) **linearly depends** on the boundary conditions:

\[y(x_0) = a + by^- + cy^+. \]
Algorithm Overview: Domain Decomposition & Boundary Maps

- Grid with current state.
- Partition space with overlapping subdomains.
- Treat subdomains independently.
- Define sampling range for each boundary. Sample and solve PDE locally.
- From samples build maps:
 \[y_1 = f(y_2, y_L) = a + by_2 + cy_L \]
 \[y_2 = g(y_1, y_R) = d + ey_1 + fy_R \]
- Maps link the subdomains.
- \(y_L, y_R \) are known BC.
- Solve, new state: \((y_1^*, y_2^*) \).
- If needed: update range, repeat loop.
- Grid with current state.
- Partition space with overlapping subdomains.
- Treat subdomains independently.
- Define sampling range for each boundary. Sample and solve PDE locally.
- From samples build maps:
 \[y_1 = f(y_2, y_L) = a + by_2 + cy_L \]
 \[y_2 = g(y_1, y_R) = d + ey_1 + fy_R \]
- Maps link the subdomains.
- \(y_L, y_R \) are known BC.
- Solve, new state: \((y_1^*, y_2^*) \).
- If needed: update range, repeat loop.
Algorithm Overview: Domain Decomposition & Boundary Maps

- Grid with current state.
- Partition space with overlapping subdomains.
- Treat subdomains independently.
- Define sampling range for each boundary. Sample and solve PDE locally.
- From samples build maps:
 \[y_1 = f(y_2, y_L) = a + by_2 + cy_L \]
 \[y_2 = g(y_1, y_R) = d + ey_1 + fy_R \]
Maps link the subdomains.
- \(y_L, y_R \) are known BC.
- Solve, new state: \((y_1^*, y_2^*)\).
- If needed: update range, repeat loop.
Algorithm Overview: Domain Decomposition & Boundary Maps

- Grid with current state.
- Partition space with overlapping subdomains.
- Treat subdomains independently.
- Define sampling range for each boundary. Sample and solve PDE locally.
- From samples build maps:
 \[y_1 = f(y_2, y_L) = a + by_2 + cy_L \]
 \[y_2 = g(y_1, y_R) = d + ey_1 + fy_R \]
- Maps link the subdomains.
- \(y_L, y_R \) are known BC.
- Solve, new state: \((y_1^*, y_2^*)\).
- If needed: update range, repeat loop.
Algorithm Overview: Domain Decomposition & Boundary Maps

- Grid with current state.
- Partition space with overlapping subdomains.
- Treat subdomains independently.
- Define sampling range for each boundary. Sample and solve PDE locally.
- From samples build maps:
 \[y_1 = f(y_2, y_L) = a + by_2 + cy_L \]
 \[y_2 = g(y_1, y_R) = d + ey_1 + fy_R \]

- \(y_L, y_R \) are known BC.
- Solve, new state: \((y_1^*, y_2^*)\).
- If needed: update range, repeat loop.
Algorithm Overview: Domain Decomposition & Boundary Maps

- Grid with current state.
- Partition space with overlapping subdomains.
- Treat subdomains independently.
- Define sampling range for each boundary. Sample and solve PDE locally.
- From samples build maps:
 \[y_1 = f(y_2, y_L) = a + by_2 + cy_L \]
 \[y_2 = g(y_1, y_R) = d + ey_1 + fy_R \]
Maps link the subdomains.
- \(y_L, y_R \) are known BC.
- Solve, new state: \((y_1^*, y_2^*)\).
- If needed: update range, repeat loop.

Build:
\[y_1 = f(y_L, y_2) \]
Build:
\[y_2 = g(y_1, y_R) \]
Algorithm Overview: Domain Decomposition & Boundary Maps

- Grid with current state.
- Partition space with overlapping subdomains.
- Treat subdomains independently.
- Define sampling range for each boundary. Sample and solve PDE locally.
- From samples build maps:
 \[y_1 = f(y_2, y_L) = a + by_2 + cy_L \]
 \[y_2 = g(y_1, y_R) = d + ey_1 + fy_R \]
Maps link the subdomains.
- \(y_L, y_R \) are known BC.
- Solve, new state: \((y_1^*, y_2^*)\).
- If needed: update range, repeat loop.
$y_1 = f_1(y_L, y_2)$

$y_2 = f_2(y_1, y_4)$

$y_3 = f_3(y_1, y_4)$

$y_4 = f_4(y_3, y_6)$

$y_5 = f_5(y_3, y_6)$

$y_6 = f_6(y_5, y_R)$
Extension

Stage 1: discretization

Workflow
Extension

Stage 1: discretization

Stage 2: partitioning

Workflow
Extension

Stage 1: discretization

Stage 2: partitioning

Stage 3: state & range

Workflow
Extension

Stage 1: discretization
Stage 2: partitioning
Stage 3: state & range
Stage 4: sampling

Workflow

Motivation	Algorithm	Implementation	Results	Power	Conclusions
F. Rizzi | Resilient Approach for PDE | Min:
Extension

Stage 1: discretization
Stage 2: partitioning
Stage 3: state & range
Stage 4: sampling
Stage 5: regression, boundary maps

Workflow

F. Rizzi
Resilient Approach for PDE
Extension

- **Stage 1**: discretization
- **Stage 2**: partitioning
- **Stage 3**: state & range
- **Stage 4**: sampling
- **Stage 5**: regression, boundary maps
- **Stage 6**: solve boundary maps system

Ax = b

Sampling range

PDE samples

Workflow
Extension

Motivation

Algorithm

Implementation

Results

Power

Conclusions

F. Rizzi

Resilient Approach for PDE

Min:

Workflow

Stage 1: discretization

Stage 2: partitioning

Stage 5: regression, boundary maps

Stage 6: solve boundary maps system

Stage 7: update state & range

Stage 3: state & range

Stage 4: sampling

PDE samples

Sampling range

State

Ω

Ω_{00}

Ω_{01}

Ω_{10}

Ω_{11}
Robust Regression: Resilience to SDCs

- High-dim boundary maps:
 \[u(x^*) = a + bu_1 + cu_2 + \ldots \]

- Generate samples, suppose some are corrupted, run regression.

- ℓ_1 noise model is robust against presence of corrupted data.
Implementation
Server/Client-based Implementation

- **Cluster**: 1 server + n clients.
- **Servers**:
 - Communicate between each other.
 - Safe data/state storage (sandboxed).
- **Clients**:
 - Independent from one another.
 - Only serve as computing units.

- Separates state from computation: reduces the overall vulnerability.
- Fault-tolerance supported via ULFM-MPI: resilient to MPI ranks crashing.
- Resilient to clients crashing because even if tasks are lost, state is safe.
- It aligns with the vision of future exascale architectures involving heterogeneous and hierarchical hardware required to meet energy and cost constraints.
- C++ code, two external dependencies: Trilinos and Boost.
• MPI ranks crashing.

• Server simply continues the execution using only the clients that are alive.
 ✓ Avoid ULFM collective procedures to rebuild the client/communicators.

• Servers probe the corresponding cluster communicator using `MPI_ANY_SOURCE` to assess whether a new message is arriving from one of the clients.

• Client crash:
 1. tell ULFM we are aware of the failure.
 2. Fix communicators, etc.
 3. continue normal execution.
ULFM on Edison (NERSC): not an easy task

- Edison: Cray XC30, 2.57 petaflops, 133,824 cores, 357 terabytes memory. Cray Aries high-speed interconnect with Dragonfly topology (0.25 μs to 3.7 μs MPI latency, \sim 8GB/sec MPI bandwidth).
- Current ULFM-MPI release (1.1) is based on OpenMPI version 1.7.1, which lacks functioning native support for Cray uGNI.
 - openib byte transfer layer (BTL)/Infiniband verbs library: only allows for up to 4096 MPI ranks: X.
 - TCP byte transfer layer does not have this limitation. Needed to change settings for performance.
- necessary to set `btl_tcp_if_include = ipogif0` to ensure that TCP/IP packets were sent through the correct network interface. The `self` and `sm` BTLs are used to handle communications between ranks on the same physical node.
- This version of OpenMPI has some issues with newer versions of gcc (mostly with string handling), so we resorted to gcc/4.9.3. We also unloaded the darshan module since that can cause an overhead for large scale jobs. With these settings, we were able to have good performance.
Results
Injecting SDC and MPI Ranks Failures

Selective reliability

Inject/perturb applications at target points and evaluate how it behaves. Parts of the algorithm are assumed to be handled more reliably than others.

M. Hoemmen, M. Heroux, 2012

Silent Data Corruptions (SDC)
- Injected during the sampling stage.
- Injection at random; \(\#\text{faults} = m \% \) of tasks.
- Corrupt all boundary conditions data of a task.
- How: double \(\rightarrow \) binary \(\rightarrow \) random bit-flip \(\rightarrow \) convert to double.

MPI Ranks Failures
- Injected during the sampling stage.
- Injection occurs at random.
- Actually terminate (SIGKILL) the processes owing those ranks.
Injecting SDC and MPI Ranks Failures

Selective reliability

Inject/perturb applications at target points and evaluate how it behaves. Parts of the algorithm are assumed to be handled more reliably than others. M.Hoemmen,M.Heroux,2012

Silent Data Corruptions (SDC)

- Injected during the sampling stage.
- Injection at random; $\#\text{faults} = m \%$ of tasks.
- Corrupt all boundary conditions data of a task.
- How: double \rightarrow binary \rightarrow random bit-flip \rightarrow convert to double.

MPI Ranks Failures

- Injected during the sampling stage.
- Injection occurs at random.
- Actually terminate (SIGKILL) the processes owing those ranks.
Injecting SDC and MPI Ranks Failures

Selective reliability
Inject/perturb applications at target points and evaluate how it behaves. Parts of the algorithm are assumed to be handled more reliably than others. M. Hoemmen, M. Heroux, 2012

Silent Data Corruptions (SDC)
- Injected during the sampling stage.
- Injection at random; \(\#\text{faults} = m \% \) of tasks.
- Corrupt all boundary conditions data of a task.
- How: double -> binary -> random bit-flip -> convert to double.

MPI Ranks Failures
- Injected during the sampling stage.
- Injection occurs at random.
- Actually terminate (SIGKILL) the processes owing those ranks.
Resilience Condition:

- Out of the samples used in the regression, the number of uncorrupted samples has to be greater than the minimum set needed to have a well-posed regression problem.
- Ensured via oversampling: $\rho > 1$, such that $N = \rho N_{nom}^s$.

N_{nom}^s: number of samples for the fault-free scenario.

Silent Data Corruptions (SDC)

- The ℓ_1-model enables resilience to corrupted data.

MPI Ranks Failures

- Server continues the execution using only the clients that are alive.
- No need for ULFM collectives to rebuild broken communicators.
Edison, elliptic PDE.

Of total faults: SDCs=97%, ranks failures=3.0%.

Constant machine fault rate.

Oversampling of $\rho = 1.05$.

Times normalized by smallest nominal case: highlights scaling and overhead wrt nominal.

Excellent scalability with and without faults:
within 95% for weak scaling, within 90% for strong.

Overhead wrt nominal case:
for weak it shows as downward shift, for strong as upward shift.
• Performance uncertainty due to SDCs and client failures.
• Kahuna: total 3080 cores.
• Blue: 1% clients failing, SDCs=0.1% of total tasks.
• Red: 2% clients failing, SDCs=0.1% of total tasks.
• Oversampling $\rho = 1.05$.
• 4 samples: mean, errors $\pm 3\sigma$.

• Black for NOMINAL: excellent scalability and minimal variability.
• Faulty runs show larger variability due to random loss of resources, and additional regression overhead to overcome SDCs.
• Red curves show larger overhead than blue because number of clients failing doubles.
Effect of subdomain size on execution time, and its interplay with computational workload, communication costs and size of the clients.

- Use in-house cluster.
- SCM with fixed 36 client ranks:
 - 36 clients size 1
 - 18 clients size 2
 - 9 clients size 4
- 5% of the clients are terminated; corrupt 0.1% samplings tasks.
- Multiple samples for each case and extract mean values.
- Overhead due to faults is small.
- Best performance is obtained for small subdomains.
Resilience and energy consumption are tightly linked: voltage decrease is linked to higher faults rates. \(^a\)

Decreasing the energy consumption is possible via variable-voltage CPUs, which can reduce power consumption quadratically at the expense of linearly reduced speed. \(^b\)

Another possibility is for given frequency, to decrease voltage only up to the a certain threshold.

\(^b\)D. Zhu, R. Melhem, D. Mosse, and E. Elnozahy, “Analysis of an energy efficient optimistic tmr scheme”, ICPADS 2004
• How to exploit the resilience of the application and the small overhead for energy purposes?

• Idea: lower the energy consumption during the *sampling stage* by means of voltage scaling.

• Compare three scenarios:
 (A) machine running at full operational capacity/speed
 (B) voltage/frequency scaling on clients during sampling
 (C) voltage scaling on clients during sampling

• Same problem, same SC configuration, same machine.

• The servers always run at full capacity to keep the state safe.

• This framework can be enabled because of the SCM, which allows us to separate state from computation.
Power consumption and energy over $T = t_2 - t_1$:

$$P = \hat{P} + CV^2f$$

$$E = (\hat{P} + CV^2f)T.$$

\hat{P} = frequency independent active power

C is the switch capacitance

V is the voltage, and f is the frequency.

no sleep power: system always on.

\footnote{D. Zhu, R. Melhem, and D. Mosse, IEEE-ACM, 2004}
Power Consumption

Full operational mode: (A)
- V_A, f_A
- $t^s_A = \text{time for one task.}$
- Energy for N_A samples: $E^s_A = N_A(\hat{P}t^s_A + C V^2_A f_A t^s_A)$

Reduced voltage/frequency: (B)
- $V_B < V_A, f_B < f_A$ such that $V_B / V_A = f_B / f_A$.
- $t^s_B = t^s_A f_A / f_B$.
- Energy for $N_B = \rho N_A$ samples: $E^s_B = \rho N_A(\hat{P}t^s_A f_A / f_B + C V^2_A f_A t^s_B f^2_A)$

Reduced voltage: (C)
- $V_C = \gamma V_A$, with $\gamma < 1, f_C = f_A$.
- $t^s_C = t^s_A$.
- Energy for $N_C = \rho N_A$ samples: $E^s_C = \rho N_A(\hat{P}t^s_A + C \gamma^2 V^2_A f_A t^s_A)$.
Power Consumption

- Voltage scaling causes fault rates increase exponentially.
- For full application: energy usage due to regression overhead is smaller than the energy gain during sampling.
- Kahuna: 6% regression overhead due to 5% oversampling, 1% client failures, and 0.1% SDCs.
- Case(B), left fig, $\rho = 1.05$:
 20% voltage reduction $\rightarrow \sim 20\%$ potential saving during sampling.
- $\rightarrow 5\%$ regression overhead \rightarrow net 15% energy gain.
Conclusions and Ongoing Work

- Application is resilient to:
 - Silent Data Corruptions.
 - MPI ranks failing.

- Convergence is achieved in all cases.

- Sampling/decomposition approach provides concurrency/parallelism.

- Scalability is excellent with and without faults.

- Interesting tradeoffs between energy and resilience.

- Ongoing work/outlook:
 - Dimensionality reduction.
 - Extension to other types of PDE.
This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, under Award Number 13-016717.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

THANK YOU