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We introduce and demonstrate experimentally: (1) a framework called “gate set tomography”
(GST) for self-consistently characterizing an entire set of quantum logic gates on a black-box quan-
tum device; (2) an explicit closed-form protocol for linear-inversion gate set tomography (LGST),
whose reliability is independent of pathologies such as local maxima of the likelihood; and (3) a
simple protocol for objectively scoring the accuracy of a tomographic estimate without reference to
target gates, based on how well it predicts a set of testing experiments. We use gate set tomography
to characterize a set of Clifford-generating gates on a single trapped-ion qubit, and compare the
performance of (i) standard process tomography; (ii) linear gate set tomography; and (iii) maximum
likelihood gate set tomography.

Quantum information processing (QIP) relies upon
precise, repeatable quantum logic operations. Exper-
iments in multiple QIP technologies [1–5] have imple-
mented quantum logic gates with sufficient precision to
reveal weaknesses in the quantum tomography protocols
used to characterize those gates. Conventional tomo-
graphic methods assume and rely upon a precalibrated
reference frame, comprising (1) the measurements per-
formed on unknown states, and (2) for quantum process
tomography, the test states that are prepared and fed into
the process (gate) to be characterized. Standard process
tomography on a gate G proceeds by repeating a series of
experiments in which state ρj is prepared and observable
(a.k.a. POVM effect) Ek is observed, using the statistics
of each such experiment to estimate the corresponding
probability

pk|j = Tr[EkG[ρj ]]

(given by Born’s rule), and finally reconstructing G from
many such probabilities.

But, in most QIP technologies, the various test states
(ρj) and measurement outcomes (Ek) are not known ex-
actly. Instead, they are implemented using the very same
gates that process tomography is supposed to character-
ize. The quantum device is effectively a black box, ac-
cessible only via classical control and classical outcomes
of quantum measurements, and in this scenario standard
tomography can be dangerously self-referential. If we
do process tomography on gate G under the common
assumption that the test states and measurement out-
comes are both eigenstates of the Pauli σx, σy, σz opera-

tors, then the accuracy of the estimate Ĝ will be limited
by the error in this assumption.

This is now a critical experimental issue. In plat-
forms including (but not limited to) superconducting flux
qubits [1], trapped ions [5], and solid-state qubits, quan-
tum logic gates are being implemented so precisely that
systematic errors in tomography (due to miscalibrated
reference frames) are glaringly obvious. Fixes have been
proposed [1, 2, 6, 7], but none yet provide a general,
comprehensive, reliable scheme for gate characterization.
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FIG. 1: The GST model of a quantum device. Gate set
tomography treats the quantum system of interest as a black
box, with strictly limited access. This is a fairly good model
for many qubit technologies, especially those based on solid
state and/or cryogenic technologies. We do not have direct
access to the Hilbert space or any aspect of it. Instead, the
device is controlled via buttons that implement various gates
(including a preparation gate and a measurement that causes
one of two indicator lights to illuminate). Prior information
about the gates’ function may be available, and can be used,
but should not be relied upon.

In this article, we present gate set tomography (GST),
a complete scheme for reliably and accurately charac-
terizing an entire set of quantum gates. In particular
we introduce the first linear-inversion protocol for self-
consistent process tomography, linear gate set tomog-
raphy (LGST). LGST is a closed-form estimation pro-
tocol (inspired in part by [8–10]) that cannot – unlike
pure maximum-likelihood (ML) algorithms – run afoul
of local maxima in a likelihood function that is gener-
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ally ill-behaved. While the price of LGST’s reliability is
decreased accuracy compared with ML, it is easy to re-
cover accuracy using a hybrid scheme in which the LGST
estimate is used as the starting point for local ML es-
timation. We demonstrate (L)GST experimentally by
characterizing a complete set of gates for a trapped-ion
qubit. To demonstrate its performance, we introduce a
novel quantitative scoring protocol that evaluates how
well a tomographic estimate predicts independent “test”
experiments.

I. BACKGROUND

We begin with a brief review of standard tomography,
and the mathematical conventions used in both standard
and gate set tomography.

A. Mathematical conventions

A quantum information processing device is described
using a Hilbert space H of finite dimension d (any system
with d = 2 is a qubit). Its state at any time is described
by a d × d density matrix ρ that is positive semidefi-
nite (ρ ≥ 0) and has unit trace (Trρ = 1). Each possi-
ble measurement on the system is represented by a posi-
tive, operator-valued measure (POVM), comprising a set
M = {Ek} of d×d matrices that are positive semidefinite
(Ek ≥ 0) and sum to the identity matrix (

∑
k Ek = 1l).

This representation gains its meaning from Born’s rule,
which states that when measurementM is performed on
a system in state ρ, outcome “k” will be observed with
probability

Pr(k|ρ) = Tr[Ekρ].

A system’s reversible evolution is described by some
d × d unitary operator U , and the state evolves as
ρt2 = Uρt1U

†. In practice, a system’s dynamics (e.g.,
when a logic gate is applied in the laboratory) will be at
least slightly irreversible, and must be represented by a
completely positive, trace-preserving linear map on den-
sity matrices (CPTP map) that can be written in Kraus
form:

G[ρ] =
∑
i

KiρK
†
i ,

where the {Ki} are matrices satisfying
∑
iKiK

†
i = 1l.

In tomography, it is more useful to represent quantum
processes using the Hilbert-Schmidt space of matrices on
H, denoted B(H), in which any d × d matrix X is a
column vector |X〉〉 or row vector 〈〈X|. In this represen-
tation, we can write Born’s Rule as

Pr(k|ρ) = 〈〈Ek|ρ〉〉 (1)

using the Hilbert-Schmidt inner product 〈〈X|Y 〉〉 ≡
Tr[X†Y ]. Since quantum processes are always linear

maps on density matrices, they can always be represented
as d2 × d2 matrices (a.k.a. superoperators) on Hilbert-
Schmidt space. In this representation, if a process G is
applied to a state ρ and then a measurementM = {Ek}
is performed, then the probability of observing outcome
“k” is simply

Pr(k|ρ,G) = 〈〈Ek|G |ρ〉〉.

B. Standard tomography

In this framework, quantum state tomography [11–13]
is a simple linear algebraic inversion. Given an unknown
state |ρ〉〉, we characterize it by performing a set of mea-
surements that are informationally complete – i.e., their
outcomes {Ek} collectively span B(H). We repeat the
measurement(s) N times, count the observations of out-
come “k” (nk), estimate its probability as

Pr(k|ρ) ≈ nk
N
≡ p̂k, (2)

and use linear algebra to invert the set of equations

〈〈Ek|ρ〉〉 = p̂k. (3)

Quantum process tomography [13, 14] is very simi-
lar, but in addition to an informationally complete set
of measurement outcomes, we must also prepare a set of
test states ρj that span B(H), and apply the unknown
process G to them. From the count statistics of these
repeated experiments, we estimate

Pr(k|G, ρj) ≈
nj,k
N
≡ p̂j,k, (4)

and use linear algebra to invert the set of equations

〈〈Ek|G |ρj〉〉 = p̂j,k. (5)

These techniques define linear-inversion tomography.
While they have been largely supplanted by more sophis-
ticated statistical methods [15–17] that provide better
accuracy for finite N , linear-inversion techniques remain
useful in the limit N → ∞. More importantly, their ex-
istence guarantees the existence of efficient, reasonably
accurate protocols for standard tomography. They can
serve as a first stage in more accurate protocols [18], or
enable existence proofs for more sophisticated protocols
[19, 20].

These protocols, however, assume that the {ρj} and
{Ek} are known – and use them to define an absolute
reference frame for the quantum system’s state space.
This is a theorist’s fiction; in every quantum technology
except (arguably) linear optics, no such reference frame
is given. The assortment of test states and measurements
required for process tomography are obtained by apply-
ing the same dynamical gates that process tomography
is supposed to characterize to a single imperfectly known
fiducial state ρ and a single imperfectly known fiducial
measurement M.
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II. GATE SET TOMOGRAPHY

Gate set tomography (GST) is based on a simple in-
sight: playing around with a quantum device should be
sufficient to reveal all the properties needed to predict
its future behavior. If this is true, then every unjustified
assumption should also be unnecessary. We need not –
and should not – assert that certain operations prepare
|0〉 states, measure the σz basis, etc. If they do operate
this way, then the data will reveal it.

To enforce this intellectual discipline, we model the
quantum device as a black box (see Fig. 1, and also
Ref. [21], which pioneered the idea that black box qubits
should be fully characterizable). Our interaction with
the black box is strictly classical and limited to pushing
a small number of “buttons” (generally implemented in
experiments by electromagnetic control pulses):

• One button, marked “ρ”, initializes the system.

• Another button, marked “M”, performs a 2-
outcome measurement – it is accompanied by 2
lights, exactly one of which lights up to indicate
the outcome.

• Finally, a set of K buttons labeled G1 . . . GK per-
form quantum operations (logic gates) on the sys-
tem.

All of these buttons’ effects are unknown, and have
to be deduced from the data. No other controls exist.
In this article, we will make a number of simplifying as-
sumptions, all of which can be relaxed (at some cost –
which will be discussed further in [22]) to make GST
more robust.

• The Hilbert space dimension d = dim(H) is known.

• The effect of the initialization button really is to
reprepare the system (repeatably) in a state ρ.

• The measurement buttonM can be represented by
a 2-outcome POVM {E, 1l− E}.
• Control is Markovian: Each button can be repre-

sented by a completely positive, trace-preserving
(CPTP) map on B(H).

A gate set, then, is a complete description of a black box.
In Hilbert-Schmidt space notation, it is

G = {|ρ〉〉, 〈〈E| , {Gk}}.
The goal of GST is to identify G from the results of ex-
periments on the black box system.

A. Experiments, data, and inference in GST

GST, like all tomography protocols, comprises (1) ob-
taining data, and (2) analyzing the data to get an esti-
mate. Data are gathered from a discrete set of M exper-
iments, each of which is repeated many (N) times to get
statistics. Experiments have a simple form:

1. Push the “ρ” button to initialize the system.

2. Apply a sequence s = {Gs1 , Gs2 , Gs3 , . . . , GsL} of
L gates.

3. Push the “M” button and record the outcome.

Experiments are described and indexed by the sequence
s, and the data comprise the observed counts {ns} (for
each of theM values of s that were performed). Note that
sequences of gates are equivalent to quantum circuits,
except that in circuit design it is usually assumed that
certain gates commute (i.e., gates on different qubits) and
can be performed in parallel. Since this may be violated
in experimental hardware, we do not assume it in GST
– if two gates do commute, it will be apparent in the
data. Since sequences correspond to circuits, we can see
GST as predicting the statistics of arbitrary circuits by
studying the behavior of a specific (and limited) set of
circuits.

Each experiment s has two outcomes, and is thus as-
sociated with a single probability

ps = Pr(E|ρ, s) = 〈〈E|GsL ◦GsL−1
◦ . . . ◦Gs2 ◦Gs1 |ρ〉〉.

That experiment’s observed counts (ns) provide informa-
tion about ps, which is a single parameter of the gate set
G. A simple if crude inference procedure is to estimate

p̂s =
ns
N
, (6)

and thus to nail down the parameters of G one by one.
If dim(H) = d, then ρ requires d2 − 1 parameters, E
requires d2, and each of the K gates Gk requires d2(d2−
1), suggesting that

M ≈ Kd4 − (K − 2)d2 − 1

distinct experiments should be necessary and sufficient
to identify G.

B. The gauge

Not every parameter in G = {ρ,E, {Gk}} can be es-
timated, however. Given a gate set G, let M be some
invertible d2 × d2 superoperator, and suppose that we
construct a different gate set G′ given by

|ρ′〉〉 = M |ρ〉〉
〈〈E′| = 〈〈E|M−1
G′k = MGkM

−1. (7)

Every observable probability ps = 〈〈E|GsL ◦ . . . ◦Gs1 |ρ〉〉
is identical for G and G′. So the action of M is a gauge
transformation (see also [1]), and G′ and G are equivalent
representations of the same physical gate set. The gauge
group is SL(d2), since M must be invertible, and M and
αM act identically for any scalar α.
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This gauge freedom means that the standard represen-
tation of a gate set as {ρ,E, {Gk}} (which coincides with
the way that operations and states are conventionally
represented in quantum information) contains approxi-
mately d2 − 1 redundant and unobservable parameters.
Instead of describing the system’s observable dynamics,
they define only the convenient but arbitrary reference
frame (akin to the conventional x̂, ŷ, ẑ axes in space) in
which a given experimentalist or theorist has chosen to
express those dynamics. For example,

G0 = {ρ = E = |0〉〈0| , G1 = eiσzπ/4, G2 = eiσxπ/4}

is indistiguishable from

Ĝ = {ρ = E = |+〉〈+| , G1 = eiσxπ/4, G2 = eiσyπ/4}.

The only difference is what we have chosen to call the
computational basis.

We do not yet know any satisfying gauge-invariant
“normal form” for gate sets (although some of the gauge
parameters can be fixed in obvious ways, e.g. by defin-
ing ρ to be diagonal in the computational basis), nor
a well-motivated gauge-invariant measure of fidelity be-
tween gate sets. The sets G0 and Ĝ shown above ap-
pear quite different, and the gate-by-gate fidelity between
them would be very low by any measure. Yet they are
in fact indistinguishable. If an experimentalist set out to
implement G0, it would be quite unfair if a tomographer
reported that (1) in fact Ĝ was being implemented, and
therefore (2) the fidelity of implementation is quite low!
Ultimately, we aspire to a gauge-invariant theory, or at
least a canonical way of fixing the gauge. In its absence,
we compare a tomographic estimate Ĝ to a target G0 by
optimizing the gauge numerically.

To compare Ĝ with G0, we search for the gauge trans-
formation M ∈ SL(d2) that makes Ĝ as similar as possi-

ble to G0 (e.g., as measured by
∑
k ||Gk − Ĝk||22). Obvi-

ously, scientific integrity suggests that the intended tar-
get should play no role in the estimation of physically
observable quantities. So first, we perform tomography
and obtain an estimate Ĝ without considering the gauge
(or the target). Only then do we vary the gauge in which

Ĝ is described (which has no effect on anything observ-

able) to minimize the discrepancy between G0 and Ĝ.

C. Positivity

Positivity is a highly desirable property of any theory;
it means that no matter what weird objects appear inter-
nal to the theory, every observable probability is always
in the range [0, 1]. In the conventional representation of
quantum operations, positivity demands that:

• ρ is a positive semidefinite operator with trace 1,

• E and 1l− E are positive semidefinite,

• Each Gk is a CPTP map [i.e., (Gk⊗1l)[ρ] ≥ 0 ∀ ρ ≥
0].

These conditions are always sufficient for positivity, but
not strictly necessary in the black box model. In the
black box model, we cannot prepare arbitrary states (so
E need not be strictly positive), nor perform arbitrary
measurements (so ρ need not be strictly positive), nor in-
ject systems that are entangled with external ancillae (so
complete positivity is something of a red herring). But
since we reasonably anticipate that quantum mechanics
is the same inside the black box as outside, it is reason-
able to demand that our estimate satisfy the conventional
positivity conditions anyway.

However, gauge transformations do not respect the
conventional positivity constraints. Gauge transforma-
tion of a gate set in which every gate is CPTP can easily
yield a gate set in which several (if not all) of the gates vi-
olate complete positivity. It is natural to define a CPTP
gate set as one that is gauge-equivalent to a set of CPTP
gates, but we have no closed-form test for this property.
An alternative is to demand that each gate Gk be explic-
itly CP, but this constraint truncates the gauge freedom.
For an extremal gate set – where ρ and E are rank-1
projectors, and each Gk is a unitary – complete posi-
tivity simply reduces the gauge group to SU(d). Every
gauge transformation that does not lie in this subgroup
would produce a new gate set that violated positivity
constraints.

For noisy gate sets, in which each gate lies in the in-
terior of the set of CPTP maps, requiring positivity has
more complicated consequences for the gauge. Any suffi-
ciently small SL(d2) transformation will preserve positiv-
ity. But if a gauge transformation outside of the SU(d)
subgroup is iterated enough times, then it will eventually
violate positivity. Gauge transformations do not form a
group. There may exist pairs of CPTP gate sets that are
gauge-equivalent, yet are not connected by a continuous
path of gauge transformations.

These complications are severe enough that in this
work, we do not impose complete positivity, much as as
early work on linear-inversion state tomography did not
impose positive semidefiniteness on the density matrix ρ̂.
Instead, we allow the estimated gates to be arbitrary ma-
trices, and rely on consistency with experimental data to
ensure that the gate sets predict positive probabilities for
future experiments. Careful implementation of positiv-
ity constraints is a clear and pressing subject for future
work.

D. Practical inference of the gate set

Estimating p̂s = ns

N and reconstructing G from these
estimated probabilities is impractical. For one thing, the
linear inversion estimate of ps is imperfect (ns is rarely
equal to psN). A more elegant and robust approach is
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to define a likelihood function over gate sets,

L(G) =
∏
s

ps(G)ns(1− ps(G))N−ns , (8)

and construct an estimate from it. A simple and popular
(albeit still suboptimal; see discussion in [16]) technique
is maximum likelihood estimation, which reports

ĜML = argmax[L(G)].

But here, GST (and other techniques for self-consistent
gate estimation) diverge from standard state and pro-
cess tomography. In standard tomography the likelihood
function is log-convex [16], and therefore has a unique
local maximum that can be found via a variety of nu-
merical techniques. But in GST, the observable proba-
bilities ps(G) are not linear functions of the parameters
of G. They are polynomials of degree L, because each
gate can appear up to L times in an experiment (e.g.,
p = 〈〈E|GL1 |ρ〉〉). This makes the crude approach of es-
timating the probabilities {p̂s} and then solving for G
almost impossible, but (more worryingly), it also means
that the GST likelihood function will not generally be
log-convex or have a unique local maximum.

Prior approaches made use of the assumption that the
target gates G0 are a good prior estimate of G, e.g. by
maximizing a series expansion of L(G) in the neighbor-
hood of G0 [1]. This may work in many cases, but it de-
pends critically on the accuracy of the prior knowledge
– and could lead to worryingly circular estimates (i.e.,
MLE may find a local maximum near the prior estimate,
even if the prior estimate is wildly wrong and the true
global maximum is far away). In the next section, we
solve this problem with a robust, closed-form estimator
that can be used directly, or as a reliable “pretty close”
starting point for MLE.

III. LINEAR GATE SET TOMOGRAPHY

Linear inversion state tomography, the oldest and sim-
plest form of tomography [11, 14], is based on the notion
that we should assign an estimate ρ̂ that predicts proba-
bilities equal to observed frequencies:

Tr(ρ̂E) = Pr(E|ρ̂) =
nE
N
. (9)

When such a ρ̂ (1) exists and (2) is physically valid, it
will also maximize the likelihood. So linear inversion
and MLE coincide in such cases. When the data are
overcomplete, the set of equations implied by Eq. 9 are
overconstrained. Linear inversion is still possible using
least-squares inversion, which minimizes a weighted sum
of residuals between probabilities and observed frequen-
cies,

Err(ρ) =
∑
k

wk

(
Tr(ρ̂Ek)− nE

N

)2
. (10)

However, the (often neglected) weights wk are actually
rather important, since they determine which of the con-
flicting observations will dominate. To figure out what
these weights should be, we are generally forced to turn
to MLE anyway, and the best weighted least-squares fit
is simply the argmax of a Gaussian approximation to the
likelihood function. For these reasons, linear inversion
has been largely replaced by MLE.

Linear inversion nonetheless remains not only a pow-
erful conceptual tool, but also the only closed-form to-
mographic protocol. It proves that pretty good state to-
mography can in fact be done efficiently. This has never
been in doubt – but gate set tomography is a different
kettle of fish. It is not obviously feasible, for the likeli-
hood function is not necessarily unimodal because event
probabilities depend nonlinearly on the gate-set param-
eters.

We remedy this problem here by presenting a simple
method for linear inversion gate set tomography (LGST),
and a closed-form expression for the estimate. Our ap-
proach makes implicit use of a Gram matrix technique
similar to that used by Cyril Stark in [8–10]. We do not
propose raw LGST as a final estimator – it is clearly sub-
optimal in accuracy – but as a critical part of a toolchain.
It (1) proves in principle that efficient closed-form GST
is possible, and (2) provides in practice a good starting
point for gradient-based likelihood maximization.

A. Derivation of the LGST algorithm

Let {Fk}k=1...d2 be a set of quantum operations, each
implemented by a short “fiducial” gate string:

Fk = Gfk(L) ◦Gfk(L−1) ◦ . . . Gfk(1) (11)

Now, using the fixed and unknown state ρ and effect E,
let us define

|ρk〉〉 = Fk |ρ〉〉
〈〈Ek| = 〈〈E|Fk, (12)

and, in terms of them, the (unknown) matrices

A =
∑
j

|j〉〉〈〈Ej |

B =
∑
k

|ρk〉〉〈〈k|. (13)

Next, for any gate X, define

X̃jk = 〈〈Ej |X |ρk〉〉
= 〈〈E|FjXFk |ρ〉〉 (14)

Since X̃jk is the probability of an experimentally observ-
able event corresponding to the sequence FjXFk, we can

“measure” X̃jk to whatever accuracy we desire, and con-
struct the matrix

X̃ =
∑
j,k

|j〉〉〈〈k| X̃jk. (15)
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Now, although we do not know the matrices A and B,
we observe that

X̃ = AXB, (16)

and in particular

1̃l = AB. (17)

The final, critical observation is that if 1̃l is invertible,

then 1̃l
−1

= B−1A−1 and

1̃l
−1
X̃ = B−1A−1AXB = B−1XB. (18)

So, for each gate Gi, we define

Ĝi = 1̃l
−1
G̃i. (19)

This is (ignoring statistical fluctuations) a perfectly good

estimate, since Ĝ = {B−1GiB} is gauge-equivalent to
G = {Gi}. To estimate |ρ〉〉 and 〈〈E|, we define the
(element-wise identical) vectors

|ρ̃〉〉 = A |ρ〉〉 =
∑
j

|j〉〉 〈〈E|Fj |ρ〉〉 (20)〈
〈Ẽ
∣∣∣ = 〈〈E|B =

∑
k

〈〈E|Fk |ρ〉〉 〈〈k|, (21)

and observe that that linear-inversion estimates in the
same gauge as the Ĝk estimates can be obtained as

|ρ̂〉〉 = 1̃l
−1 |ρ̃〉〉 = B−1 |ρ〉〉 (22)〈

〈Ê
∣∣∣ =

〈
〈Ẽ
∣∣∣ = 〈〈E|B. (23)

B. How to implement LGST

The procedure for LGST is therefore to repeatedly per-
form each of the experiments

〈〈E|Fj ◦Gi ◦ Fk |ρ〉〉,
〈〈E|Fj ◦ Fk |ρ〉〉,
〈〈E|Fj |ρ〉〉,

gather statistics to estimate their probabilities, arrange
those probabilities into matrices as

1̃l =
∑
j,k

〈〈E|FjFk |ρ〉〉 |j〉〉〈〈k| , (24)

G̃i =
∑
j,k

〈〈E|FjGiFk |ρ〉〉 |j〉〉〈〈k| , (25)

|ρ̃〉〉 =
∑
j

〈〈E|Fj |ρ〉〉 |j〉〉 (26)〈
〈Ẽ
∣∣∣ =

∑
k

〈〈E|Fk |ρ〉〉 〈〈k|, (27)

and then construct {|ρ̂〉〉, ˆ〈〈E|, {Ĝi}} as above.

FIG. 2: Surface Electrode Trap. Linear surface electrode
ion trap used for the experiment. The trap has a central
through substrate slot. Neutral ytterbium vapor reaches the
trapping volume through the slot from the back of the chip.
For these experiments a single 171Yb+ is trapped in the center
of the trap.

1̃l may not be invertible – but if and only if either A or
B is rank-deficient. This occurs only if either the set {ρk}
or the set {Ej} fails to span B(H) – i.e., they are informa-
tionally incomplete. This is easily diagnosed by simply
checking the rank of 1̃l. If it occurs, we replace some of
the {Fk} with alternative sequences that do produce in-
formationally complete sets. If this consistently fails to
fix the rank-deficiency, it indicates that the gate set is
not sufficiently universal to generate an informationally
complete set, which requires hardware-level intervention.

If 1̃l is full-rank, but has small eigenvalues, the exper-
iments are marginally informationally complete. Small
statistical fluctuations in the observed frequencies will
be amplified by the inversion. This too can be fixed by
adding more sequences {Fk} to the mix and casting out
the least useful ones [i.e., the ones whose removal maxi-

mizes λmin(1̃l)].

IV. IMPLEMENTATION OF GST ON A
TRAPPED-ION QUBIT

Trapped ions are among the most reliable qubits avail-
able today; up to 14 qubits have been addressed in a sin-
gle trap [23], while logic gates on single qubits have been
performed with sustained failure probabilities of around
2×10−5 [5]. In order to scale these demonstrations to the
large number of qubits needed for quantum information
processing protocols it is crucial to use micro-fabricated
trap structures. Micro-fabrication enables the fabrica-
tion of extended segmented traps that provide the abil-
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ity to use multiple trapping sites and to shuttle ions be-
tween different locations. Sandia National Laboratories
uses state of the art silicon fabrication technology to pro-
duce sophisticated and highly optimized surface electrode
traps for use in quantum information processing exper-
iments. We used a Sandia surface trap to demonstrate
GST and our coherent qubit manipulation capabilities.

We trap a single 171Yb+ ion in a linear surface ion trap,
shown in Fig. 2 [24, 25], by photoionizing neutral ytter-
bium vapor that reaches the trapping volume through a
slot from the back of the surface trap chip. The qubit is
encoded in the |F = 0,mF = 0〉 and |F = 1,mF = 0〉 hy-
perfine clock states of the 2S1/2 ground state of 171Yb+

which are labeled |1〉 and |0〉, respectively.
Standard laser cooling techniques are applied to

Doppler cool the ion and prepare it in the |0〉 state.
The quantum state is read out via standard fluorescence
state detection[26]. Microwave radiation resonant with
the 12.6428 MHz separation of the qubit levels is used
to control the qubit. For a π-pulse microwave radiation
with a square envelope is applied for approximately 58µs.

We used GST to characterize a set of four gates that
generate the full set of single-qubit Clifford gates in this
system. Because the primary purpose of this experiment
was to evaluate and demonstrate GST, we did not at-
tempt to minimize errors in our gate set. However, our
analysis showed that the gates are extremely accurate
– enough that even standard tomography would have
worked fairly well (although it is only thanks to the ro-
bust GST framework that we can say this with confi-
dence!)

We implemented an alphabet of four quantum opera-
tions ({G1 . . . G4}), aiming at the target set

T1 = 1l (28)

T2 = ei(π/4)σx (29)

T3 = ei(π/4)σy (30)

T4 = ei(π/2)σx . (31)

Our target initial state was ρideal = |1〉〈1|, and our target
measurement was Mideal = {|0〉〈0| , |1〉〈1|}.

We performed two kinds of gate sequences to gather
data: training and testing. The training sequences gen-
erated data that was used to generate tomographic esti-
mates. The testing sequence data (discussed below) were
kept hidden until after the estimates had been generated,
and were then used to objectively “score” the four dif-
ferent kinds of tomography, by evaluating how well they
predicted the testing data. In order to minimize the ef-
fect of systematic drift during the several hours required
to take all this data, we interleaved training and testing
experiments. We also recalibrated the gate pulse ampli-
tude periodically.

Our training sequences were designed around the de-
mands of LGST. We chose the simplest possible fiducial
sequences, Fk = Gk for k = 1 . . . 4. For each of the five
operations X ∈ {1l, G1 . . . G4}, we performed 16 distinct

LGST estimate (Ĝk) Target (Tk)

ρ

(
0.0099 0.0104 + 0.0007i

h.c. 0.9901

) (
0 0

0 1

)

E

(
0.9879 0.0182− 0.0023i

h.c. 0.0121

) (
1 0

0 0

)

G1


0.9977 −0.0219 −0.0204 0.0024

−0.0152 0.9657 0.017 0.0291

0.0031 0.0627 1.0172 0.0335

0.001 0.0065 0.0335 0.9915




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



G2


0.9974 −0.048 −0.0304 0.0161

−0.0077 0.9538 −0.0033 −0.0045

−0.0113 0.0332 0.0066 −1.0044

−0.0029 0.0042 1.0099 0.0284




1 0 0 0

0 1 0 0

0 0 0 −1

0 0 1 0



G3


0.9923 −0.0163 −0.0066 0.001

−0.0049 −0.0087 −0.0087 0.9839

0.0124 −0.0082 1.0136 −0.0017

−0.0074 −0.9797 0.0043 0.0025




1 0 0 0

0 0 0 1

0 0 1 0

0 −1 0 0



G4


0.9991 −0.0291 0.0028 0.0194

0.0096 0.9796 −0.0049 0.0013

0.0083 −0.0211 −1.0494 −0.0632

−0.0091 −0.0123 −0.0427 −1.0012




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


TABLE I: Results of LGST. This table shows the LGST
estimate of our trapped-ion qubit gates, based on 84 distinct
experiments (gate sequences), each repeated 1900 times. The
intended target gates are shown on the right. Estimates (ob-
tained on the left) were obtained using the LGST analysis
procedure given in Section III, then gauge-optimized numer-
ically, by applying similarity transformations to all gates, to
match the target gates as closely as possible.

experiments of the form

〈〈E|FiXFj |ρ〉〉

to estimate the 4× 4 matrix X̃. (For X = 1l, the exper-
iments were of the form 〈〈E|FiFj |ρ〉〉). An additional 4
experiments involving just one gate – 〈〈E|Fi |ρ〉〉 – were
performed to enable inference of ρ and E. Each of these
84 experiments was repeated 1900 times to obtain statis-
tics (each repetition yielded a single binary result, de-
pending on whether the ion fluoresced). The formulae
from Sec. III were then used to calculate LGST esti-
mates of ρ, E, and Ĝ1 . . . Ĝ4. Since these estimates are
only defined up to a gauge (see Sec. II B), we then used
a numerical search to find the gauge transformation

Ĝk →MGkM
−1

that minimized the RMS discrepancy,∑
k

Tr[(Gk − Tk)2],

between the estimated Ĝk and the target gates Tk. The
resulting linear GST estimates, represented as 4× 4 su-
peroperators in the Pauli basis, and presented adjacent
to the target gates, are given in Table I.
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ML estimate (short dataset) ML estimate (long dataset) Target gates

ρ

(
0.0099 0.0077− 0.0046i

h.c. 0.9901

) (
0.0092 −0.0017 + 0.0088i

h.c. 0.9908

) (
0 0

0 1

)

E

(
0.9911 0.0166− 0.0006i

h.c. 0.0089

) (
0.988 0.0019 + 0.0089i

h.c. 0.012

) (
1 0

0 0

)

G1


1.0019 −0.0128 −0.0198 −0.0002

−0.0066 0.9775 −0.0118 0.0122

0.0041 0.0842 1.0138 0.0073

−0.0035 −0.013 0.0075 0.9969




1.0001 −0 0.0003 0.0001

0.0001 0.9994 −0.0003 −0

−0.0001 0.0006 0.999 −0.0003

−0 −0.0001 0.0002 0.9998




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



G2


1.0017 −0.0276 −0.0276 −0.0048

−0.0193 0.9582 −0.0076 −0.0127

−0.0134 0.043 0.0082 −0.9987

−0.0072 0.002 1.0069 0.0192




1 −0.0001 −0.0045 −0.0005

0 0.9994 −0.006 −0.0018

−0.005 −0.0112 −0.0064 −0.9991

0.0006 0.0063 0.9993 0.0143




1 0 0 0

0 1 0 0

0 0 0 −1

0 0 1 0



G3


0.99 −0.0114 0.0083 0.0044

−0.0082 −0.0141 −0.0045 0.9892

0.0121 −0.0044 1.0056 −0.0059

−0.0001 −0.9848 0.0017 −0.0016




1.0001 0.0033 0.0001 0.0049

0.0033 −0.0001 −0.0005 0.9992

−0.0002 −0.0024 0.9995 −0.0161

−0.0019 −0.9989 0.0179 0.0085




1 0 0 0

0 0 0 1

0 0 1 0

0 −1 0 0



G4


0.9983 −0.0217 0.0127 0.0142

−0.0039 0.9745 0.0034 0.0077

−0.0004 −0.0145 −1.0473 −0.0323

−0.014 −0.0167 −0.0072 −1.0024




1.0001 −0 0.0062 0.0028

−0 0.9997 0.0127 0.0022

0.0066 0.0164 −0.9976 0.0065

−0.004 −0.0004 −0.0066 −0.9981




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


TABLE II: Maximum likelihood refinements of LGST gates. This table shows maximum likelihood (ML) estimates of
the gate set. Column 2 shows the results of ML estimation on the “short” dataset of 85 sequences (the LGST sequences and
the SPAM sequence 〈〈E|ρ〉〉). Column 3 shows the results of ML estimation on the “long” dataset of 1066 sequences described
in the text. Column 4 shows the target gates that we intended to implement.

V. IMPROVING GST WITH MAXIMUM
LIKELIHOOD

Linear inversion tomography has been largely super-
seded by maximum likelihood estimation (MLE), for mul-
tiple reasons. Linear inversion and MLE coincide when
the data are informationally complete (rather than over-
complete) and the linear inversion estimate doesn’t vi-
olate positivity constraints. But the ML method can
easily take account of constraints and can reconcile over-
complete data efficiently, both of which are essentially
impossible for linear inversion (least squares optimiza-
tion is properly seen as an approximation to MLE, rather
than a generalization of linear inversion).

For gate-set tomography, a third quality is even more
important: maximum likelihood is easily adapted to non-
linear data – i.e., the results of experiments in which the
directly inferrable probabilities are not linear functions
of the parameters. Such experiments are natural in gate
set tomography, and promise great improvements in ac-
curacy. Probabilities involving Gnk are roughly n times
more sensitive to variations in Gk than probabilities de-
pending linearly on Gk. However, nonlinear data poses
a danger; the likelihood function L(G) need not be uni-
modal or have convex level sets, which means that maxi-
mizing a generic GST likelihood function is not a convex
problem, and may be NP-hard.

Fortunately, LGST provides a simple solution to this

problem. The LGST estimate is typically not optimal,
but it is necessarily close to the point of maximum like-
lihood, and we can reasonably expect that a gradient
ascent algorithm starting from the LGST estimate will
find the global maximum of L(G). So ML acts as a
turbocharger for GST, relying critically on the LGST
estimate to provide a good starting estimate, and then
refining it to incorporate the nonlinear and overcomplete
data that are critical for achieving high accuracy.

We use the standard Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm [27], as implemented in Scipy
[28], to minimize the likelihood function. With no par-
ticular attention paid to optimization, run times ranged
from a few seconds to several hours (depending on the
complexity of the data) on a typical laptop computer.
The LGST estimate often does not predict positive prob-
abilities for the training data, which means that the log-
likelihood is technically undefined when it is chosen as a
starting point. To address this, we first find an in-bounds
starting point by using the Nelder-Mead downhill simplex
method [29] to find the nearest valid gate set (in terms of
Euclidian distance). We then use this point as the initial
value for our BFGS optimization routine.

We found ML estimates for two datasets: (1) the 84 =
4+16×5 LGST sequences of length≤ 3 only, and (2) a set
of 1066 distinct sequences (each repeated 1900 times) cor-
responding to LGST on: {Gk}, {G2

k}, {G4
k},. . . {G128

k }.
These choices of experiments were somewhat arbitrary;
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FIG. 3: Average score versus test sequence length. This figure shows the logarithmic predictive score achieved by four
different estimates on 1000 distinct testing experiments. Each experiment corresponded to a partial sequence comprising the
first L gates from one of 10 sequences of 100 gates (see Figs. 4-5), and was repeated 950 times. The vertical axis shows
the average (per count) logarithmic score achieved by each of five estimates as a function of L (averaged over the 10 partial
sequences of length L). Notably, the bare LGST estimate outperforms target gates when used to predict short sequences, but
becomes rapidly very inaccurate for sequences longer than L = 5. The ML estimate incorporating data from long training
strings is far more accurate for L > 5, achieving a per-count score of ≈ 0.01 even on strings of length L = 100. For reference,

an estimate that predicted p = 1
2

for every experiment would suffer a score of roughly ln(2)
2
≈ 0.35 per count.

we have no reason to believe that these sequences will
provide better (or worse) accuracy than any other se-
quences of various lengths. We refer to these as the
“short” and “long” datasets. The MLE estimates are
given in Table II.

VI. QUANTIFYING ACCURACY
OBJECTIVELY WITH SCORED TESTS

Tomography is not the end of a science experiment; it
is the middle. The tomographic estimate is a theory; it
needs to be tested to determine how well it predicts fur-
ther experiments. We cannot evaluate the theory based
on how well it fits past (“training”) data, since its param-
eters were chosen specifically to fit them. Tomographic
estimates are traditionally scored using some concept of
fidelity, but this is always problematic. First, the whole
point of tomography is to characterize unknown quanti-
ties, so we don’t have a “true” state/process with which
to evaluate fidelity. Second, the gauge degree of freedom
in gate set tomography makes it unclear how to calculate
or interpret standard quantities like entanglement fidelity
or diamond norm.

We therefore introduce a novel and very simple method
for evaluating tomographic estimates. We perform a set
of “testing” experiments – sequences of gates that were
not performed in the tomographic phase – and score our
tomographic estimates based on how well they predict
the results. The scoring is based entirely on observ-
able probabilities, which are explicitly gauge-invariant.
Of course, there are many ways to compare (predicted)
probabilities to (empirical) frequencies. The log scoring
rule is particularly simple and well-motivated.

For each testing experiment Sj , we use the tomo-

graphic estimate[s] to assign probabilities to the outcome
(before it is revealed). Each of our experiments has 2 out-
comes, which we label + and −, so the predicted proba-
bilities are {p+, p−}. When the outcome (call it “b”) is
revealed, we increment the estimate’s score by the nega-
tive logarithm of Pr(b):

score→ score− log(pb).

When all the testing data are evaluated, this leads to a
total score of

score0 = −
∑
j

n+(j) log[p+(j)] + n−(j) log[p−(j)],

where lower scores are better. We then renormalize the
score by subtracting off the minimum score that any pre-
diction could conceivably achieve (because some of the
score is due to the entropy of the data itself):

score =
∑
j

n+(j) log

[
n+(j)

n+(j) + n−(j)

]

+
∑
j

n−(j) log

[
n−(j)

n+(j) + n−(j)

]
−
∑
j

n+(j) log[p+(j)] + n−(j) log[p−(j)].

This score is in fact (1) the relative entropy between the
predicted probabilities and the empirical frequencies, and
(2) the loglikelihood of the tomographic estimate given
the testing data.

However, while the logarithmic score is very well-
motivated, it penalizes nonpositive probability estimates
rather dramatically – if p = 0, then the penalty is
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FIG. 4: Rabi oscillations – prediction vs. data. Each panel shows (i) observed counts and (ii) predicted counts, for one
of ten series of testing experiments. Each testing series was based on a particular sequence of 100 consecutive gates, which
was used to define a series of 101 experiments corresponding to partial sequences of length L (horizontal axes). Each partial
sequence was repeated 950 times to obtain the displayed count statistics (vertical axes). The sequences shown in this figure
are: (a) 100 consecutive 1l gates; (b) 100 consecutive Xπ/2 gates; (c) 100 consecutive Yπ/2 gates; and (d) 100 consecutive Xπ
gates. Each plot thus represents a Rabi oscillation experiment (albeit with discrete gates rather than continuous Hamiltonian
evolution), and compares the observed counts to the predictions of ML GST estimates obtained from both short and long
training datasets. In panels (b)-(d), the number after each label indicates the counts at the point at the end of each trace.
The grey shaded bars represent the middle 50%. of possible counts.

− log(0) =∞, and if p < 0, the whole formalism fails. Al-
though negative probabilities should never be predicted,
we did not impose positivity in this work, so some of
our estimates (especially naive tomography and LGST)
do predict negative probabilities. We deal with this in
a simple and tolerably well-motivated way: whenever an
estimate predicts p < ε for some small threshold ε, we
truncate that probability to ε. In the data reported here,
we chose ε = 10−3 [approximately 1/N , where each train-
ing sequence was measured N = 1900 times; after N ob-
servations, the lowest probability that can reasonably be
reported is O(1/N)], and verified that varying ε does not
qualitatively change the results.

We scored and compared four different estimates, each
of which can be used to predict the testing data:

1. The target gates themselves,

2. LGST using only the 4 + 5 × 16 = 84 training se-
quences discussed above,

3. Maximum likelihood GST on the “short” 85-
sequence dataset comprising 84 LGST sequences
and the “SPAM” experiment 〈〈E|ρ〉〉,

4. Maximum likelihood GST using a much richer
“long” dataset, described below.

Our “long” dataset was intended to probe the use of
long gate sequences: (1) their utility for improving ac-
curacy; and (2) the feasibility of GST estimation for
such data. We included the 85 sequences in the “short”
dataset, and added 448 = 7×4×16 additional sequences
of the form 〈〈E|FiGpkFj |ρ〉〉 for p = 2, 4, 8, 16, 32, 64, 128.
That is, we did the experiments necessary for LGST on
{Gpk}, although we only analyzed this data using MLE.
Finally, for each of these 533 experiments, we also per-
formed a corresponding experiment in which we added
a single G4 ≈ ei(π/2)σx gate at the end, so that we
could probe the bright-vs-dark asymmetry of the mea-
surement1. The “long” dataset thus contains a total of
1066 sequences, each repeated 1900 times, for a total of
≈ 2× 106 measurements.

1 This turned out to not actually be necessary – GST is completely
self-calibrating, and can extract this asymmetry from any com-
plete set of training sequences.
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FIG. 5: Generalized Rabi oscillations – prediction vs. data. These plots show essentially the same sort of results as
Figure 4, but on non-uniform strings of gates. Panel (a) shows a sequence of 100 alternating Xπ/2 and Yπ/2 gates, while
Panels (b-f) show the results of five randomly chosen gate sequences (similar to those that would be involved in randomized
benchmarking). Each plot thus represents a “generalized Rabi oscillation experiment”, in that we are evaluating the accuracy
with which a given estimate predicts an evolution through quantum state space, but that evolution is not the orbit of a
Hamiltonian. In each panel, he number after each label indicates the counts at the point at the end of each trace. The grey
shaded bars represent the middle 50%. of possible counts.

The main results are displayed in Figure 3, which
shows the estimates’ score-per-count (note: lower scores
are better), averaged over all 10 test sequences of length
L, as a function of L. Shorter sequences are easier to
predict, and all estimates’ scores increase with L.

All three tomographic estimates predict very short
(L ≤ 5) fairly well. The target gates themselves fail to
predict even short sequences well, although most of this
predictive failure seems to be due to SPAM error rather
than errors in the gates. Maximum likelihood methods
are more accurate than LGST even for strings of length
L = 4, 5, but the most dramatic difference is between
the “Long ML” estimates, which were trained on long
sequences, and all the others. For reference, we note
that an estimator that simply predicted p = 1

2 for every
count would achieve a score-per-count of approximately
ln 2
2 ≈ 0.35. The best ML estimate still achieves a score-

per-count of ∼ 0.02 at L = 100, indicating a very high
degree of predictive power even for long test sequences.

The LGST estimate works well on strings of the same
length as its training data, but degrades rapidly beyond
L = 3. This is not a major concern, however. LGST’s
critical role is to get close enough to provide a good seed
for ML methods (which it does admirably), not to pro-
vide an optimal estimate. We suspect that LGST’s accu-
racy could be improved quite a bit by using overcomplete
data and appropriately weighted least-squares fitting.

VII. CONCLUSIONS

Continued development of QIP technology – memory
qubits, logic gates, state preparations, and measurements
– depends critically on reliable characterization proto-
cols, which cannot rely on precalibrated reference frames
that are not available in most technologies. Gate set to-
mography is, to our knowledge, the first completely reli-
able framework and protocol for characterizing quantum
logic gates. By using LGST as a first stage to obtain
a closed-form approximation to the true gates, the GST
protocol can ensure robustness against local maxima in
the likelihood function – yet take full advantage of max-
imum likelihood (or any other well-motivated statistical
method) to achieve high accuracy.

Our experimental demonstration illustrates GST’s
ability, and demonstrates that it is practically feasi-
ble. Moreover, out of necessity, we have introduced and
demonstrated a novel and (we think) very useful method
for objectively testing how good a tomographic estimate
is. Unlike all the previous work of which we are aware,
this scoring protocol doesn’t measure how well the to-
mographic estimate agrees with the target goal (which
might be incorrect) or with another tomographic esti-
mate (which might be biased in the same way as this
one). Instead, it evaluates how well the estimate does
its fundamental job – predicting future data. Our results
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not only illustrate the scoring protocol, but also show
that our GST estimates are quite good predictors.

We do not expect that gate set tomography will be an-
other kind of tomography, standing shoulder to shoulder
with state tomography, process tomography, and mea-
surement tomography. It is intended to replace them
– to be, as one of us has said in public, “One tomog-
raphy to rule them all.” This is out of necessity: state
tomography requires well-calibrated measurements, mea-
surement tomography requires well-calibrated states, and
gate tomography requires both – yet in practice, states
and measurements are only as well calibrated as the
gates that prepare them! This is a vicious circle. GST
cuts that Gordian knot by (1) estimating everything self-
consistently, and (2) identifying the gates as the critical
element. Gates are central because they can be applied
multiple times in a single experiment (unlike state prepa-
rations and measurements, which can appear only once
per experiment), and this allows us to generate combina-
torially many (2L) distinct observable probabilities using
only 2 distinct gates (and thus without adding any extra
parameters to be estimated).

The necessary price paid for this is the appearance of
the SL(d2) gauge. This gauge is arguably the single most
intriguing and pernicious aspect of GST. It is clearly fun-

damental to black-box descriptions of quantum devices,
and therefore seems to be fundamental to QIP. Yet it in-
teracts very badly with complete positivity, and we do
not yet know how to represent gate sets in an efficient
and gauge-invariant way – nor how to compute a gauge-
invariant measure of fidelity between two gate sets (e.g., a
target and an estimate). Of all the many aspects of GST
that cry out for further research and development, the
gauge – its relationship with conventional descriptions of
circuit QIP, and how it can be tamed – seems the most
worthy of urgent study.
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[7] A. Brańczyk, D. H. Mahler, L. A. Rozema, A. Darabi,
A. M. Steinberg, and D. F. James, New Journal of
Physics 14, 085003 (2012).

[8] C. Stark, arXiv preprint arXiv:1209.5737 (2012).
[9] C. Stark, arXiv preprint arXiv:1209.6499 (2012).

[10] C. Stark, arXiv preprint arXiv:1210.1105 (2012).
[11] K. Vogel and H. Risken, Phys. Rev. A 40, 2847 (1989).
[12] D. Smithey, M. Beck, M. Raymer, and A. Faridani, Phys-

ical review letters 70, 1244 (1993).
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