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Abstract. Scanning electron microscopes (SEMs) are used in neuroscience and materials sci-
ence to image centimeters of sample area at nanometer scales. Since imaging rates are in large
part SNR-limited, large collections can lead to weeks of around-the-clock imaging time. To in-
crease data collection speed, we propose and demonstrate on an operational SEM a fast method
to sparsely sample and reconstruct smooth images. To accurately localize the electron probe
position at fast scan rates, we model the dynamics of the scan coils, and use the model to
rapidly and accurately visit a randomly selected subset of pixel locations. Images are recon-
structed from the undersampled data by compressed sensing inversion using image smoothness
as a prior. We report image fidelity as a function of acquisition speed by comparing tradi-
tional raster to sparse imaging modes. Our approach is equally applicable to other domains of
nanometer microscopy in which the time to position a probe is a limiting factor (e.g., atomic
force microscopy), or in which excessive electron doses might otherwise alter the sample being
observed (e.g., scanning transmission electron microscopy).
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1 INTRODUCTION
Electron microscopes are used in neuroscience, microbiology and materials science for high-
resolution imaging and subsequent structural or compositional analysis. In particular, many
applications that utilize a scanning electron microscope (SEM) require imaging millimeters or
even centimeters of material at nanometer resolutions, leading inevitably to semi-autonomous
operation of a SEM, months of around-the-clock collection time [1, 2], and vast quantities of
data.

Many recent efforts have addressed the problem of collecting large mosaics of a speci-
men [3–5]. Engineering advances (for example, [6]) have allowed greater throughput by allow-
ing very wide field-of-view images to reduce image tile overlap and stage movement, and by
providing high scan rates. Nevertheless, even these well-engineered systems are still physically
constrained—due to the single-detector arrangement, the electron probe visits each pixel loca-
tion in raster-scan order and dwells for a time proportional to the desired SNR. Thus, high-SNR,
nm-resolution images taken over large mosaics can lead to prohibitively long data collection
times.

In this paper, we propose and demonstrate on an operational SEM a sparse imaging method
for smooth images, in which the electron probe measures only a subset of locations on the
specimen. The approach is inspired by compressed sensing theory to guarantee that the smooth
image can be recovered from undersampled data. Since the number of measurements is roughly
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proportional to the data collection time, we can increase imaging throughput while maintaining
image quality. Importantly, the imaging speedup provided by this approach is in series with
speedups obtained via technological and engineering advances.

Our proposed method is applicable to other domains of nanometer microscopy in which
speed is a limiting factor, such as atomic force microscopy (AFM). In [7], the authors ap-
ply compressed sensing for video-rate AFM and demonstrate results on a working instrument.
Their goal for video-rate imaging is aided by a fixed, deterministic scan pattern that permits
fast image reconstruction, but includes appreciable gaps that precludes universality [7]. Hu et
al. recently addressed high-throughput image acquisition for neural circuitry by acquiring a few
low resolution tomographic slices of tissue, then reconstructing a super-resolved 3D image by
using 3D dictionary atoms learned from a high-resolution training set [8]. Recently, Binev et al.
investigated the applicability of compressed sensing to scanning transmission electron micro-
scopes (STEMs) to reduce electron dose rates that might otherwise structurally alter or destroy
the sample being observed [9]. We note that the dose rate motivation is equally applicable to
the SEM case, in which certain biological or dielectric materials may exhibit charging artifacts
if the dose rate is too high. In [9], concepts are validated via numerical simulations of a STEM.

The chief contribution of this paper is a demonstration of sparse sampling and compressed
sensing image recovery using an operational SEM. A fast recovery method is derived using the
split Bregman formulation [10]. In order to implement our method on an operational tool, we
account for nontrivial dynamics of the SEM scan coils through modeling and prediction.

In Section 2 we review pertinent elements of electron microscopy. In Section 3, we intro-
duce a sparse sampling and exact recovery method, motivated by foundational work in com-
pressed sensing, and show simulated reconstruction performance for smooth images. Hardware
implementation and results from our experiments are discussed in Section 4. We conclude with
a summary of our work in Section 5.

Throughout the paper boldface variable in capital letters such as F, U will denote matrices.
The lowercase boldface variables, such as x, or y denote vectors, while non-boldface both
lower-case and upper case, such as M and δ denote scalars.

2 BACKGROUND
SEMs are often a tool of choice for imaging biological, geological or material science speci-
mens. Electron microscopes provide much higher magnifications than do optical microscopes.
Fundamentally, the diffraction limit in electron microscopes is about 103 better than optical mi-
croscopes, down to sub-nanometer levels for typical electron energies. In addition, SEMs have
a large depth of field, allowing a specimen to be in focus even when its topography exhibits
high variability.

A SEM acquires images by raster scanning a focused beam of electrons across the sample,
typically in raster-order. At each location, electrons in the incident beam interact with sample,
producing various signals about the composition or topography of the sample’s surface. These
signals may be detected and digitally assigned to the image pixel value at the corresponding
sample location. The electron probe is then repositioned via electromagnetic or electrostatic
deflection to the subsequent pixel location. Typically, the electron probe is much smaller than
the distance between pixel locations.

Backscatter electron (BSE) emissions are high-energy electrons that originate in the elec-
tron beam and are reflected back out of the interaction volume on the sample via elastic scat-
tering. Materials composed of heavy elements provide more opportunities for elastic scattering
than do lighter elements, so that images created from BSE emissions provide sharp contrast at
boundaries of different chemical composition. Secondary electrons (SE) are much lower-energy
electrons that are dislodged from orbitals of specimen atoms through inelastic scattering with
electrons in the incident beam. Due to their low energies, only SE emissions within the first



few nanometers of the sample surface radiate into the chamber. Thus SE images are primarily
topographical.

Detectors have been designed to detect BSE and SE emissions separately. BSE detectors
may be made from semiconductor materials and are positioned to leverage the higher energies
of BSE emissions, which essentially travel in line-of-sight trajectories inside the chamber. In
contrast, SE emissions are often detected by an Everhart-Thornley (E-T) detector, which at-
tracts SEs to an electrically biased grid via a positive voltage bias which does not significantly
deflect BSE emission trajectories. (However an E-T detector will respond to BSEs in its di-
rect line of sight.) Secondary electrons attracted through the biased grid are further accelerated
to a scintillator, which emits photons that are transported outside the SEM chamber. Using a
photomultiplier tube, the photons are subsequently amplified to an intensity that can be readily
captured. Sources of noise in the SE detection process include SE emissions originating from
locations not illuminated by the electron probe (e.g., from backscatter electrons interacting with
the chamber), line of sight BSEs, and detector noise introduced in one of the several stages of
E-T detection. Noise for both BSE and SE images is multiplicative (Poisson-like), wherein the
noise power is proportional to the signal intensity.

In order to produce high-quality SEM images, long (on the order of microseconds) inte-
gration times per pixel (alternatively, many digital samples per pixel) are required to reduce
noise. In the best case with independent measurements, one could expect SNR improvement
that grows like

√
n; however, non-trivial detector response times and other factors necessitate

longer integration times. In sum, well-engineered systems are SNR-limited in their data ac-
quisition speed, and can require months to collect millimeters or centimeters of data for some
applications.

One engineering challenge that often limits SEM speed is that the scanning coils, used
to deflect the incident beam to the desired pixel location on the sample, have non-negligible
dynamics. In most SEMs, the deflection is done with two or more sets of electromagnetic
coils (at least one for each scan direction). A current is driven through these coils, which
creates a magnetic field that deflects the moving electrons as they travel down the column. In
addition to the inductance in the coils, stray capacitance and wire resistance creates a dynamic
system which cannot respond instantaneously to changes in current. Additionally, the amplifiers
used to drive the coils exhibit a non-negligible dynamic response. The combination of these
systems creates a non-trivial dynamic system that can affect signals with frequency content as
low as tens or hundreds of kHz. As a result, the actual location of the beam is often not the
same as the commanded location, which creates image distortion unless some compensation is
done. To mitigate these effects, SEMs are carefully calibrated at a variety of magnifications and
speeds to compensate for coil dynamics and generally operate in a raster scan mode where the
beam always moves at a constant speed in the same direction when an image is being taken, as
opposed to a “meander” scan where the beam is driven back and forth which can create image
artifacts that appear hysteretic. Beam dynamics are more problematic when a non-trivial beam
motion is used to sample the data, such as when varying speeds or directions are used. The
dynamical response of the electron probe scan coils is investigated further in Section 4.

3 SPARSE SAMPLING
The degrees of freedom of typical electron microscope images are many fewer than the number
of image pixels. Foundational contributions in compressed sensing guarantee that an N -pixel
image x—which can be described by K coefficients in some compression basis Ψ—can be
exactly recovered in only M = O(K log N

K ) linear measurements of the form y = Φx. The
tightest guarantee to date holds when A = ΦΨ satisfies the restricted isometry property (see
[11]), which guarantees recovery using basis pursuit:

min
x

‖ΨTx‖1 s.t. Φx = y.



Fig. 1. (left) An excised 512× 512 block from a SEM monograph of Amorphophallus titanum
pollen; (center) simulated 50% random undersampling; (right) reconstruction using our method
with block-DCT as a sparsifying basis (PSNR is 36 dB).
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Fig. 2. The sparsity of Dartmouth public SEM images, where sparsity is measured by counting
the number of block-DCT coefficients K that account for at least 99.75% of the image energy.
The average sparsity is 17%, with half of all images less than 15% sparse, and three-quarters
less than 20% sparse.

It should be noted that for arbitrary A, certifying that the restricted isometry property holds
is combinatoric in M . Although mutual coherence µ(Φ,Ψ) provides a looser guarantee on
reconstruction from M = O(µK logN) measurements, it is trivial to compute [12].

Electron microscope images are smooth and are often compressed via block-DCT or wavelet
compression schemes using JPEG or JPEG-2000 standards, respectively, while still maintaining
high image fidelity. To assess image sparsity of typical electron microscopy images, we gath-
ered 1022 electron microscopy images (SEM, TEM and E-SEM) from the Dartmouth public
domain gallery at http://www.dartmouth.edu/˜emlab/gallery. The images are
of a variety of different specimens in biology, geology and materials, and over a wide range of
magnifications and image sizes. To standardize analysis, we excised the center 512 × 512 of
each image to remove banners and rescaled images to [0, 1] grayscale values. For each 512×512
image, we computed the sparsity K by counting the number of large coefficients in the block-
DCT domain (32× 32 blocks) that accounted for at least 99.75% of the total coefficient energy.
A histogram of the results is shown in Figure 2.

3.1 Split Bregman Interpolation
In this section we outline a fast recovery/interpolation method for sparsely sampled images.
Given sparsely sampled measurements y = Φx + n, where Φ is a subset of rows of identity I



and n is noise with power σ2, we reconstruct the image by solving regularized basis pursuit:

min
x

‖ΨTx‖1 + ‖∇x‖1 (1)

s.t. ‖y −Φx‖ ≤ σ2.

Motivated by good JPEG compressibility of SEM images, and by the low mutual coherence
between the DCT basis and image-domain sampling, we choose Ψ to be a block-DCT basis with

32× 32 pixel blocks. The total variation regularizer ‖∇x‖1 =
∑
i

√
|(∇hx)i|

2
+ |(∇vx)i|

2 in
(1) is included for denoising and to promote smooth boundaries between blocks.

Equation (1) can be solved efficiently using the split Bregman method [10], which recasts
the constrained problem in (1) into an unconstrained problem of the form

min
x
‖ΨTx‖1 + ‖∇x‖1 +

µ

2
‖y −Φx‖.

We follow the compressed sensing MRI derivation in [10], noting that our problem structure
differs since we collect image-domain samples rather than Fourier-domain samples. Letting
w = ΨTx, u = ∇ux (horizontal gradient), v = ∇vx (vertical gradient) and shorthand

‖(u,v)‖2 =
∑
i

√
|ui|2 + |vi|2, apply the split Bregman formulation so that the problem can

be solved iteratively to arbitrary precision. In particular, at the kth iteration, solve

min
x,u,v,w

‖w‖1 + ‖(u,v)‖2 +
µ

2
‖Φx− y‖22

+
λ

2
‖u−∇ux− bku‖22 +

λ

2
‖v −∇vx− bkv‖22 +

γ

2
‖w −ΨTx− bkw‖22, (2)

and then update the so-called Bregman parameters bku, bkv and bkw via

bk+1
u = bku +

(
∇uxk+1 − uk+1

)
(3)

bk+1
v = bkv +

(
∇vxk+1 − vk+1

)
(4)

bk+1
w = bkw +

(
ΨTxk+1 −wk+1

)
. (5)

The merit in the “split” Bregman formulation is that the `1 and `2 portions of (2) have been
decoupled, allowing a simple solution via alternating minimizations. The variables involving
`1 norms are solved efficiently via element-wise shrinkage:

uk+1
i =

max
(
ski − 1

λ , 0
)

ski

((
∇uxk

)
i
+ bku,i

)
(6)

vk+1
i =

max
(
ski − 1

λ , 0
)

ski

((
∇vxk

)
i
+ bkv,i

)
(7)

wk+1
i = shrink

((
ΨTxk+1

)
i
+ bkw,i,

1

γ

)
(8)

where
ski =

√∣∣(∇uxk)i + uki
∣∣2 +

∣∣(∇vxk)i + vki
∣∣2

and
shrink (x, ρ) = sgn (x) max (|x| − ρ, 0) .

Solving (2) for x yields(
µΦTΦ− λ∆ + γI

)
xk+1 = (9)

µΦTy+λ∇Tu
(
uk − bu

)
+ λ∇Tv

(
vk − bv

)
+ γΨ

(
wk − bw

)
,



where we have assumed that ΨTΨ = I, and used ∆ = −∇T∇ to represent the discrete
Laplacian operator. Note that unlike the MRI example introduced in [10], the system in (9) is
not circulant since ΦTΦ is non-constant along its main diagonal. Therefore, the system cannot
be diagonalized by the discrete Fourier transform to arrive at an exact solution. Nevertheless,
as noted in [10], an approximate solution to xk at each iteration suffices, since extra precision
is wasted in the Bregman parameter update step. A few steps of the conjugate gradient method
may suffice for arbitrary Φ, but for the special case in which Φ is a subset of the rows of identity,
we utilized a more efficient approach. Indeed, we have found that our algorithm converges when
approximating ΦTΦ as the nearest circulant matrix C, where nearness is measured in terms of
the Frobenius norm ‖ΦTΦ − C‖F . This results in ΦTΦ ≈ C = aI, where a is the average
of the elements along the main diagonal of ΦTΦ. The approximation error is bounded by
‖ΦTΦ − aI‖F =

√
N/2 at M = N/2. Employing the circulant approximation allows (9) to

be solved efficiently using Fourier diagonalization.
In summary, our application of the split Bregman formulation for basis pursuit interpolation

consists of an inner loop that solves (2) via (6)–(8) and a circulant approximation to (9), and an
outer loop that updates the Bregman parameters via (3)–(5). For typical images on the interval
[0, 1], we found that µ = λ = 1 and γ = 10−2 are reasonable values for reconstruction. In
our implementation, we use two iterations of the inner loop, and 150 iterations of the outer
loop for noiseless data, though 20–50 iterations are typically sufficient to produce high-quality
reconstructions. An example reconstruction from M = N/2 randomly selected samples is
shown in Figure 1.

3.2 Simulations and Results
Using the proposed recovery method in Equation (1), we simulated reconstruction of the pub-
lic domain Dartmouth images from sparse samples. For each 512 × 512 excised and stan-
dardized image x, we simulated sparse sampling by choosing M pixels at random from the
image, where M/N is swept from 10% to 100%. Then, we reconstructed the image using
the approach described in Section 3.1. The reconstructed image x̂ is deemed a “success” if
‖x − x̂‖22/‖x‖22 ≤ 0.25%, that is, if the reconstruction accounts for at least 99.75% of the
image energy. Reconstruction results are shown in Figure 3.

We wondered whether simple linear interpolation could be used for successful recovery,
since it is both simple and very efficient. (For the reconstruction in Figure 1, our method took
18 seconds for 50 iterations using non-optimized MATLAB code with a 2.66 GHz Intel Xeon
processor, whereas a similar reconstruction using MATLAB’s griddata for linear interpola-
tion took only 2 seconds.) Indeed, for noiseless measurements, linear interpolation performs
nearly as well as our proposed method, with only ≈5% less area of the curve in Figure 3.
However, linear interpolation is brittle, performing significantly worse in the presence of only a
small amount of noise. Figure 3 shows ≈50% less area under the curve than our method using
the same noisy measurements. (Noise was multiplicative: for pixel intensity η, we added zero-
mean white Gaussian noise with variance η/100). Thus, linear interpolation may be attractive
as a “quick-look” option, but the proposed method is preferred for high-quality reconstruction.

4 EXPERIMENTS
In this section, we demonstrate on an operational SEM our sparse sampling and recovery
method for fast electron microscopy. The experiments were conducted using a commercially
available SEM column with custom electronics to drive the beam location and sample the de-
tector. A Zeiss GmbH (Oberkocken, Germany) column was used with a Schottky thermal field
emission source and GeminiTM optics. A nominal beam energy of 10 keV was used with a 10
µm aperture, resulting in a beam current of approximately 200 pA.
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Fig. 3. Reconstruction phase transitions using the Dartmouth images whose sparsity histogram
is shown in Figure 2. The shading indicates how frequently an image with a given sparsity
K/N was “successfully” reconstructed (accounted for at least 99.75% of the image energy) at
a given undersampling rate M/N ; the shading ranges from 0% (black) to 100% (white). For
noiseless measurements (top row), linear interpolation (right) is only slightly worse than our
method (left) in terms of area under the curve, but is significantly worse when a small amount
of measurement noise is included (bottom row).

The incident beam was deflected onto the sample using the standard scanning coils and
current amplifiers in the column. However, custom electronics were used to set the desired
beam location using an external scan mode. The magnification (and consequently the field of
view) was set using the standard column controls. Once this was determined, pixels in the field
of view can be visited by driving a voltage of -10 V to +10 V, which is converted to a current
in the coil amplifiers. For example, in the horizontal direction, driving -10 V would place the
beam at the far left of the field of view and +10 V would place the beam at the far right. The
same is true in the vertical direction. A digital to analog converter (DAC) was used to drive the
desired voltages. The detector was sampled using an analog to digital converter (A/D) that was
synchronized to the DAC. The A/D and DAC were implemented using a National Instruments
(Austin, TX) PCI-6110 multi-function data acquisition system. This system has a maximum
frequency of 2.5 MHz with two analog outputs, an output resolution of 16 bits per sample and
an input resolution of 12 bits per sample.

We achieve variable dwell time by digitally averaging multiple samples at the same pixel
location. A basic dwell time of 400 ns using one sample per pixel results in low-SNR images,
while a high-SNR dwell time of 6.4 µs achieved by averaging 16 samples per pixel. A high-
SNR image of the surface of a Gibeon meteorite collected in the manner just described is shown
in Figure 4, along with simulated sparse sampling and subsequent image recovery.

It should be noted that on an operational SEM, nontrivial dynamics of the electron probe
scanning system create a mismatch between the desired and actual measurement locations on



the sample. The effect is less pronounced in typical raster-scan mode in which the electron
probe follows the same trajectory during each scan line, leading only to a nonlinear stretch
of the image. However, in our sparse imaging embodiment, the interval between randomly-
selected pixel locations within a scan line is highly variable, so that the effect of the dynamics
is pronounced, and the measured location differs from the desired location. Therefore, we
investigate scan coil dynamics and mitigation in the following subsections.

4.1 Scan coil dynamics
In order to characterize the dynamics of the amplifiers and scan coils, we commanded a step-
wise jump in position from one extreme of the beam’s scanning range to the other over a calibra-
tion sample. While the electron beam was in transit, we recorded the output of the secondary
electron detector. This step-scanning method produced a smeared scan of the sample. Com-
paring this with a very slow raster scan of the same sample allowed us to plot the transit as a
function of time. (See Figure 6.)

We found the dynamics of the beam to be slow compared to the sampling period (400 ns).
The 90% rise time was approximately 12 µs, the 99% rise time about 32 µs, and the 99.9% rise
time approximately 1/4 ms, or more than 600 samples. Note that the 99.9% rise time is relevant;
when making scans of several thousand pixels per line, an error of 0.1% corresponds to several
pixels.

The lowest order linear model to fit the data points well was fifth-order of the form

d5x(t)

dt5
= a0(x̂(t)− x(t))− a1

dx(t)

dt
− a2

d2x(t)

dt2
− a3

d3x(t)

dt3
− a4

d4x(t)

dt4
, (10)

where x(t) is the true one-dimensional probe position (in pixels) at time t, x̂(t) is the desired
position, and the best-fit parameters {a0, . . . , a4} are listed in Table 1. The same dynamical
model was used for both horizontal and vertical beam deflection.

parameter value
a0 4.42 ×10−4

a1 8.20 ×10−3

a2 5.49 ×10−2

a3 2.46 ×10−1

a4 4.60 ×10−1

Table 1. Parameters for the best fit fifth-order model of scan coil dynamics in Equation (10).

4.2 Sparse Sampling Demonstration
We demonstrated the proposed sparse sampling method in an operational SEM. Mirroring Fig-
ure 4, we commanded the electron probe to visit 10%, 30% and 50% of the sample locations
(chosen at random) in vertical-raster order, and to dwell for 6.4 µs (16 samples per pixel) at
each location. We used a 4/5 Runge-Kutta method to solve Equation (10) in order to predict
the actual location of the electron probe. The result is that the 16 samples per pixel are actu-
ally distributed across multiple pixel locations as the electron probe is in transit, as shown in
Figure 5.

We image a portion of the Gibeon meteorite sample at 800× magnification at a working
distance of 4.7 mm. Due to the close working distance, we collected samples with an in-lens
SE detector. Brightness and contrast for each sparse sampling collection is fixed at 76% and
41%, collectively.

Results for the sparse sampling collection and reconstruction are shown in Figure 5. For
M/N = 10%, the reconstruction exhibits some smearing along the vertical path of the electron



Fig. 4. (top) Original section of a high-SNR micrograph from our SEM of a particle atop the
surface Gibeon meteorite slice; (2nd row) simulated 10% sparse samples (left) and reconstruc-
tion (right); (3rd row) simulated 30% sparse samples (left) and reconstruction (right); (4th row)
simulated 50% sparse samples (left) and reconstruction (right)



Fig. 5. (top) Standard SEM image of the Gibeon sample; (2nd row) 10% sparse, modeled sam-
ple locations (left) and reconstruction (right); (3rd row) 30% sparse, modeled sample locations
(left) and reconstruction (right); (4th row) 50% sparse, modeled sample locations (left) and
reconstruction (right). The colors in the left column represent the number of times the probe
visited the given pixel. The electron probe scans in the vertical direction. In addition to sample
quality, notice the difference in sample charging.



Fig. 6. Measurement of the scan coil’s dynamic response. i) A slow scan was performed to
obtain a nearly dynamics-free image of the sample. ii) The beam was stepped from one extreme
of the scan range to the other while recording from the secondary electron detector. Landmarks
on both images were located. iii) The positions of the landmarks were plotted relative to each
other to obtain data points along the step response curve.
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Fig. 7. Actual and predicted collection time as a function of undersampling rate M/N .

probe, which can be attributed to large electron probe velocities and small errors in the 5th
order model. Acceptable image reconstruction is achieved for M/N ≥ 30%, corresponding to
over 3× increase in data throughput. Notice also that the for smaller M/N , the lower average
electron dose rates contribute to less charging on the sample (manifest by the slight glow on the
left-hand-side of the image).

The measured image acquisition time for collecting every pixel of a 1000 × 1000 image
with 16 samples per pixel is 6.9s (expected 6.4s at 2.5 MHz). Using sparse sampling factors
of 10%, 30% and 50%, we measured image collection times 0.7s (9.9× speedup), 2.1s (3.3×
speedup), and 3.5s (2.0× speedup), respectively, for 1000 × 1000 images. These collection
times are only slightly more than what would be predicted at 2.5 MHz, which can be ascribed
to software overhead. Nevertheless, the collection time indeed grows linearly with the number
of samples M , as shown in Figure 7.



5 CONCLUSIONS
We have demonstrated sparse sampling in an operational SEM, with acceptable image quality
achieved at 3× speedup for the sample we tested. This was accomplished by commanding
the electron probe to visit a randomly-selected subset of pixel locations, predicting the actual
locations via a 5th-order dynamical model, then recovering the image using a split-Bregman
formulation of regularized basis pursuit that leveraged block-DCT as a sparsifying basis.

Like most systems based on compressed sensing, our sparse imaging method achieves ef-
ficient data collection at the expense of greater off-line computation. Although fairly efficient,
our method still requires an order of magnitude more time to reconstruct the image than was
required to collect the data. This is acceptable since, in contrast to data collection, image recov-
ery may be easily distributed across many CPUs. Evaluating the quality of other approaches for
image recovery based on dictionary learning or image inpainting is a topic for future research.
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