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1 Introduction

Variational multiscale concepts for Large Eddy SimulatibkS) were introduced
in Hughes, Mazzei and Jansen [32]. The basic idea was to uisgioaal projec-
tions in place of the traditional filtered equations and tou® modeling on fine-
scale equations rather than coarse-scale equations.ahaacdf filters eliminates
many difficulties associated with the traditional apprqamely, inhomogeneous
non-commutative filters necessary for wall-bounded flowss, @f complex filtered
guantities in compressible flows, the closure problem, letaddition, modeling



confined to the fine-scale equations retains numerical stamgly in the coarse-
scale equations and thus permits full rate-of-convergeridgbe underlying nu-
merical method in contrast with the usual approach, whitlité convergence rate
due to artificial viscosity effects in the fully resolved k=a(©O(h*/?) in the case
of Smagorinsky-type models). Initial versions of the vaoaal multiscale method
focused on dividing resolved scales into coarse and fingdasons, and eddy vis-
cosities, inspired by traditional models, were only in@dddn the fine scale equa-
tions, and acted only on the fine scales. This version wasestud Hughe<t al.
[33], Hughes, Oberai and Mazzei [35], and Oberai and Hugh®k énd found to
work very well on homogeneous isotropic flows and fully-deped equilibrium
and non-equilibrium turbulent channel flows. Static eddscesity models were
employed in these studies but superior results were subatiywbtained through
the use of dynamic models, as reported in Holreeal. [26] and Hughes, Wells,
and Wray [40]. Good numerical results were obtained withstia¢ic approach by
other investigators, namely, Collis [18], Jeanmart anddkémans [43], and Ra-
makrishnan and Collis [58], Ramakrishnan and Collis [6@]pRakrishnan and Col-
lis [59], Ramakrishnan and Collis [61]. Particular mentgimould be made of the
work of Farhat and Koobus [20], and Koobus and Farhat [47] Wave imple-
mented this procedure in an unstructured mesh, finite vol@om@pressible flow
code, and applied it very successfully to a number of comi@sixcases and indus-
trial flows. A valuable review with many references to relaviiterature may be
found in Gravemeier [22]. We believe that this initial versof the variational mul-
tiscale concept has already demonstrated its viabilitypaadtical utility and is, at
the very least, competitive with traditional LES turbulenoodeling approaches.
For a comprehensive treatment of multiscale concepts butence, see Sagaut,
Deck and Terracol [64].

Nevertheless, there is still significant room for improvenéhe use of traditional
eddy viscosities to represent fine-scale dissipation iaefficient mechanism. Em-
ploying an eddy viscosity in the resolved fine scales to greturbulent dissipa-
tion introduces a consistency error, which results in tiselked fine scales being
sacrificed to retain full consistency in the coarse scaleso(r opinion, this is
still better than the traditional approach in which coresisly in all resolved scales
is sacrificed to represent turbulent dissipation.) Thiscpdure is felt to be inef-
ficient because approximately 7/8 of the resolved scalesyareally ascribed to
the fine scales. Another shortcoming noted for the initias\ of the variational
multiscale method is too small an energy transfer to unvesbinodes when the
discretization is very coarse (see, e.g., Hughes, WellsVdray [40]). This phe-
nomenon is also noted for some traditional models, sucheaedythamic Smagorin-
sky model, Hughes, Wells and Wray [40], but, by design, isermonounced for
the multiscale version of the dynamic mod€he objectives of recent multiscale
work have been to capture all scales consistently and todawsé of eddy viscosi-
ties altogetherThis holds the promise of much more accurate and efficient LES
procedures. In this work, we describe a new variational iszdte formulation,
which makes considerable progress toward these goals. &t folows, all re-



solved scales are viewed as coarse scales, which obviatagitementioned issue
of inefficiencyab initio.

We begin by taking the view that the decomposition into ceasd fine scales
is exact. For example, in the spectral case, the coarse-spakte consists of all
Fourier modes beneath some cut-off wave number and thedale-space consists
of all remaining Fourier modes. Consequently, the coataéespace has finite di-
mension whereas the fine-scale space is infinite dimensidhalderivation of the
coarse- and fine-scale equations proceeds, first, by sutbggithe split of the exact
solution into coarse and fine scales into the Navier-Stogaateéons, then, second,
by projecting this equation into the coarse- and fine-saaltesgaces. The projec-
tion into coarse scales is a finite dimensional system focdlagse-scale component
of the solution, which depends parametrically on the firdescomponent. In the
spectral case, in addition to the usual terms involving theae-scale component,
only the cross-stress and Reynolds-stress terms invodvértb-scale component.
In the case of non-orthogonal bases, even the linear termesrigie to coupling
between coarse and fine scales. The coarse-scale compdanhtap analogous
role to the filtered field in the classical approach, but hasatfvantage of avoiding
all problems associated with homogeneity, commutatiwigils, compressibility,
etc. The projection into fine scales is an infinite-dimenal@ystem for the fine-
scale component of the solution, which depends paramiyrarathe coarse-scale
component. We also assume the cut-off wave number is suligirge that the
philosophy of LES is appropriate. For example, if there isedl\defined inertial
sub-range, then we assume the cut-off wave number residesgtere within it.
This assumption enables us to further assume that the energgnt in the fine
scales is small compared with the coarse scales. This turtn® de important in
our efforts to analytically represent the solution of theefgstale equations. The
strategy is to obtain approximate analytical expressiontik fine scales then sub-
stitute them into the coarse-scale equations which areym solved numerically.
If the scale decomposition is performed in space and tinely approximation
in the procedure is the representation of the fine-scaleisoluro provide a frame-
work for the fine-scale approximation, we assume an infindypbation series
expansion to treat the fine-scale nonlinear term in the fiadesequation. By virtue
of the smallness of the fine scales, this expansion is exppéateonverge rapidly
under the circumstances described in many cases of praotegest. The remain-
ing part of the fine-scale Navier-Stokes system islithearizedoperator which is
formally inverted through the use of a matrix Green'’s fumetiThe combination
of a perturbation series and Green’s function provides acteformal solution of
the fine-scale Navier-Stokes equations. The driving fonctése equations is the
Navier-Stokes system residual computed from the coar$essdanis expresses the
intuitively obvious fact that if the coarse scales congtitagood approximation to
the solution of the problem, the coarse-scale residualbeilbmall and the result-
ing fine-scale solution will be small as well. This is the casgehave in mind and
it provides a rational basis for assuming the perturbateies converges rapidly.
Note that one cannot use such an argument on the origindigpndiecause in this



case the perturbation series would almost definitely faddoverge. (If we could
have used this argument, we would have solved the NavidkeStequations an-
alytically! Unfortunately, it does not work.) The formallston of the fine-scale
equations suggests various approximations may be empioy@dctical problem
solving. We are tempted to use the word “modeling” becaupecjmate analyt-
ical representations of the fine scales constitute the gyaximation and hence
may be thought of as the “modeling” component of the prespptaach but we
want to emphasize that it is very different from classicatelong ideas which are
dominated by theddition of ad hoceddy viscosities. We will present numerical
results that demonstrate these eddy-viscosity terms arecessary in the present
circumstances. There are two aspects to the approximdttbe tine scales: 1) Ap-
proximation of the matrix Green’s function for the lineaizNavier-Stokes system;
and 2) approximation of the nonlinearities representechieypierturbation series.
The first and obvious thought for the latter aspect, nontitygas to simply trun-
cate the perturbation series. This idea is investigatede#isas another promising
idea, in conjunction with some simple approximations of @reen’s function. It
turns out there is considerable experience in local scapmroximations of the
Green’s function based on the theory of stabilized methagshids [27], Hughest
al. [30], Hughes, Scovazzi and Franca [38]. These ideas derpgaration from the
asymptotic approaches of Barenblatt [2]. The Green’s fanas typically approx-
imated by locally defined algebraic operators (i.e., the™of stabilized methods)
multiplied by local values of the coarse-scale residuathwhis approximation of
the solution of the linearized operator, nonlinearities lba easily accounted for in
perturbation series fashion.

The remainder of the paper is summarized as follows: In 8e&iwe present the
mathematical details of the variational multiscale thedegcribed previously. This
represents our general approach to LES-style turbulenceling and is indepen-
dent of the specifics of the discrete spaces utilized to sgtethe coarse scales.
In Section 3, we present ideas supporting the use of simpkfoaling arguments
to represent the fine scales. In Section 4, we describe thHememtational aspects
of the procedures used herein and the details of the fine-apgroximation. The
relationship between this version of the variational nsghkie method and classical
stabilized methods is delineated. The variational mudtsenethod includes addi-
tional terms. Both conceptually and from the point of viewastual implementa-
tion, stabilized methods may be viewed as historical steppiones leading to the
more coherent variational multiscale formulation. In 8&tb, the time integration
techniques are presented. In Section 6, we present our raanstudies of forced
isotropic turbulence aRe), = 165 and Re, = oco. (Re, is the Taylor microscale
Reynolds number.) We begin in Section 6.1 with a descripbibtihe approxima-
tion spaces consisting of NURBS elements (non-unifornonatl B-splines, see,
e.g., Rogers [62], Piegl and Tiller [56], Farin [21], and @ahRiesenfeld and El-
ber [17]). In the case of the rectilinear geometry consideMURBS reduce to
B-splines, which have been advocated for turbulence cations previously (see
Kravchenko, Moin and Moser [48], Shariff and Moser [67], #chenko, Moin



and Shariff [49], and Kwok, Moser and Jiménez [50]). We evgptivariate linear,
guadratic, and cubic NURBS with periodic boundary condsioLinear trivari-
ate NURBS turn out to be identical to trilinear hexahedratdielements, but the
higher-order NURBS are different than classical higheteorfinite elements. In
Section 6.2, we perform a dispersion error analysis for NSRBrsus classical
finite elements on simple, linear, one-dimensional adveaid diffusive model
problems, and conclude that NURBS have better approximatioperties than
classical finite elements. In Section 6.3, we describe theweaforce the turbu-
lence and in Section 6.4 we present the results of our nuaileradculations. We
employ meshes df23, 643, 1282, and256° to explore convergence with mesh re-
finement {-convergence) and we examine the behavior of increasingr drdm
linear to cubic on fixed meshes-€onvergence). In the case &, = 165, we
compare with the DNS spectral results of Langford and Mds&}f. Energy spectra
and third-order structure functions are presented. Owsassent is that the results
are very good for all cases. In the casefaf, = oo we can clearly see the devel-
opment of an inertial subrange. In Section 7 we presentteefarl turbulent chan-
nel flows atRe, = 395. (Re, is the wall-friction Reynolds number.) We employ
meshes 082% and643. This time the mesh is graded in the wall-normal direction
to better capture the boundary layer. Again, we considevergence from thé-
andk-refinement perspectives. A striking result is how muchdsequadratic ele-
ments are than linear elements. For a mesbuéf the quadratic and cubic results
are essentially identical to the DNS results of Moser, Kird dMansour [54] for
first- and second-order statistics, and for a mest2dthey are in close agreement.
Conclusions are drawn in Section 8.

2 Variational multiscale formulation of the incompressible Navier-Stokes equa-
tions.

In this section we describe our turbulence modeling theory.

2.1 Incompressible Navier-Stokes equations

We consider a space-time dom&in= Qx]0, T'[C R? x R with lateral boundary
P =I'x]0, T, asillustrated in the left-hand side of Figure 1. The itfitieundary-
value problem consists of solving the following equatioosd : Q — R?, the

velocity, andp : Q — R, the pressure (divided by the constant density),
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Fig. 1. Space-time domain (left) and slicing into spaceetstabs (right).

%—?+V~(u®u)+Vp:VAu+f inQ (1)
V- -u=0 inQ 2)

u=0 onP 3)

w(07) = u(07) on{ (4)

wheref : Q — R?is the given body force (per unit volume)js the kinematic vis-
cosity, assumed positive and constan)~) : Q — R< is the given initial velocity;
and® denotes the tensor product (e.g., in component nota{m@,v]ij = uv;).

Equations (1)—(4) are, respectively, the linear momentalarize, the incompress-
ibility constraint, the no-slip boundary condition and thiial condition.

2.1.1 Global space-time variational formulation

LetV = V(Q) denote both the trial solution and weighting function sgaaéich
are assumed to be identical. We assuihe- {u,p} € V impliesu = 0 onP and
Jop(t)dQ = 0forallt € )0, T]. Let(-, ), denote the.? inner product with respect



to the domainw. The variational formulation is stated as follows:

FindU € V such thatW = {w, ¢} € V:

B(W,U) = B,(W,U) + By(W.,U,U) = L(W) (5)
(6)
with
_ _ ow
BUW.0) = (T ) u(T)n ()
Q
+ (¢, V-u)q— (V- w,p)qg + (Vw,2vV*u), (7)
By(W,U,V) = — (Vw,u®wv), (8)
L(W) = (w, f)q + (w(07), u(07))a ©)

whereV = {v,-}. Note thatB, (-, ) is a bilinear form and3,(-, -, -) is a trilinear
form. Assuming sufficient regularity and integrating bytsawe obtain the Euler-
Lagrange form of (5)-(9):

0
O:<w,8—r‘;+V~(u®u)+Vp—f> + (¢, V - u)q
Q

+ (w(0%),u(0%) —u(07))q (10)

which reveals that the variational formulation impliessfaction of the momentum
equations, incompressibility constraint, and initial diion. The velocity bound-
ary condition is built into the definition of the spa¥eln summary, the variational
formulation is equivalent to (1)-(4).

2.1.2 Sliced space-time variational formulation

Consider aslicing of space-time obtained by replacit@ 7'[ by |t,, t,s1[, n =
0,1,2,..., N, and summing over the space-tislabsQ,, (see Fig. 1). The coun-



terparts of (5)—(10) for a typical slab are:
BW.U), =B(W,U),+ B,(W,U,U),, = L(W), (11)
_ _ ow
BAW.0), = (wlty) o — ()
Q

+ (q7 V. u)Qn - (V ’ ’U),p)Qn + (sza 2VVS’U,)Qn

(12)
By(W,U, V), = — (Vw,u®wv)q, (13)
LW)n = (w, fa, + (w(t;), ult,))s (14)
O:@¢E+VKU®M+VWJJ
ot .
+(0. V-u)g, + (wty), ulty) —u(t,))o (15)

where, in (11)-(15)U = {u,p} andW = {w, ¢} belong toV, = V(Q,), the
restriction ofV to Q,,. From the Euler-Lagrange form of the equation, (15), we see
that the momentum equation and incompressibility constraie satisfied on the
slab, and the solution is continuous across slab interfddesformulation in terms

of space-time slabs exploits the causal nature of the N&ti@kes equations and
reduces the overall problem to a succession of initial/blamyvalue problems on
the slabs. The solution is obtained solving the variati@tplation on each slab
successivelyp = 0,1,2,..., N. We emphasize that this is axactformulation,
entirely equivalent to (5)—(10), and (1)—(4). Howeversitimore suitable starting
point for the development of numerical schemes.

Remark

In order to simplify notation in the sequel, we will work withe global form of the
variational equation. However, all results are equallyliapple to the variational
equations of the individual space-time slabs.

2.2 Scale separation

We consider a direct-sum decompositionbinto “coarse-scale” and “fine-scale”
subspaces; and)”, respectively,

V=VaoV (16)

V is assumed to be a finite-dimensional space and it will betifieahlater with the
space of functions with which we actually compute. In orademiake the decom-
position well-defined, we need to introduce a procedure foquely determining
U € VandU’ € V' from a givenU € V. This can be accomplished with the aid
of a projectorP : V¥ — V. For exampleP could be thel.2-projector,H *-projector,



etc. There are infinitely many possibilitiésOnceP is selected, we know how the
coarse scales approximate all scales, viz.,

U =PU (17)
U=U-PU=~1-PU (18)

wherel is the identity operator. Likewise, we can decompose a wigighunction
into its coarse- and fine-scale components:

W =PW (19)
W =W —PW = (1 -P)W (20)

With these, we may decompose the original variational ega@tto coupled coarse-
scale and fine-scale equations, viz.,

B(W,U +U') = L(W) (21)
B(W' U +U')=L(W') (22)
where
BW,U +U')= B,(W,U) + B(W,U’)
+ BQ(Wv Ua U)
+ Bo(W,U,U’) + Bo,(W,U',U)
+ BQ(W, U, U") (23)
BW' U+U') =B, (W' U)+ B (W, U
+ Bo,(W',U,U)
+ Bo(W' U, U") + B,(W',U', U)
+ BQ(le Ulv U/) (24)

In (23), Bo(W,U,U’) and Bo(W,U’,U) correspond to the cross-stress terms,
andBo(W,U’, U") corresponds to the Reynolds stress term. Equation (21)ean b
expressed as

Bﬁ(W’, U/) + BQ(W/, U/, U/) = <W/, Res (U))V/’y/* (25)

> The wayU is determined fronU is a very important issue, and it has very significant
impact on the theory to be developed. An initiatory studyypidal projectors is presented
in Hughes and Sangalli [36]. Not only can one envision an itgfinumber of possible pro-
jectors, but one can also envision an infinite number of neali optimization schemes that
“fit” U to U. In some applications nonlinear schemes will surely be imao, an exam-
ple being compressible turbulence with shocks where moioty is important. However,
for incompressible turbulence, we feel linear projectsissh as theZ '-projector, should
suffice. (See Hughes and Oberai [34] for an application offfgrojector in turbulence.)

10



where

By(W',U’) = B,(W',U")
+ Bo(W', U, U) + Bo(W', U, U (26)

<W/, ReS(U»w,\)/* = L(W/) — Bl(W/,U) — BQ(W/,U, U) 27)
in whichRes(U) is the coarse-scale residual “lifted” to the dual of the ficale
spaceV’™, (-, ) is the duality pairing, and

V’,V/*

By (-, U") = (%B(-,U%U’)) (28)
e=0

the linearization of3(-, U + U’) aboutU in the directionlV’. Note that the solution
of (25) can be formally represented as a functiond/aindRes (U ), namely,

U' = F'(U,Res(U)) (29)

The explicit dependence di in the first argument of” emanates from the depen-
dence of the linearized operatBf, onU. This expression can be inserted into (21)
to “close” the finite-dimensional system fof,

B(W,U + F'(U,Res(T)) = L(W) (30)

(29) and (30) can be thought of in global terms or in terms @quence of space-
time slabs. In both cases, they represent a procedure fangdhe Navier-Stokes
equations in terms of a scale decomposition of the solutanfar we have not
discussed approximations or numerics. The solutioa U + U’, whereU is de-
termined by solving (30) anti”’ is determined frontJ through (29), is thexactso-
lution of the original variational problem, (21)-(22), ai}-(4), the Navier-Stokes
initial/boundary-value problem.

Our plan for turbulence modeling is to systematicapproximatethe functional
F’. This will provide us with a parameterization of the fine ssain terms of the
coarse scales, which can be substituted in the coarse-egadgion, “closing” it.
The finite-dimensional coarse-scale equation can then lvedsdn this way we
obtain an approximate coarse-scale solution and an egtim@tthe fine scales. In
summary, our variational multiscale theory of turbulenasdeling is encapsulated
in the following equations:

/ — —

U = F(U,Res(D)) (31)

B(W.,U + F (U,Res(U)) = L(W) (32)

11



where F is an approximation of the exact function&l, and U’ andT are the
approximations olJ’ and U, respectively. The concept underlying the model is
illustrated in Figure 2. We also note that (31) constitutea @osterioriestimation

Represented scales Subgrid scales
NO Vg
14
0 k k' — oo
U = F (U,Res(T)) Solve analytically

Fig. 2. The variational multiscale turbulence modelingotlyels schematically illustrated.
The fine, or “subgrid” scales are solved for analytically antstituted into the coarse-scale
equation. The coarse scales are the represented scaleslaulaton. Note that there is no
ad hoceddy viscosity model introduced.

of theerror in the coarse-scale solution (see Huggeal. [30], Hughes, Scovazzi
and Franca [38] and Hauke, Doweidar and Miana [24, 25]).

Remarks

(1) (32) may be thought of as playing a similar role in the aonal multiscale
theory as the filtered equations play in traditional turbaemodeling. Dis-
tinguishing features are (32) is finite-dimensional angeth in contrast with
the filtered equations.

(2) Intuitively, the “better” the fine-scale approximatjdhe smaller the dimen-
sion of the coarse-scale space required, and consequbatbmaller the com-
putational effort. It is also possible to envision a hiehgrof approximations
that produce variational multiscale analogues of tradéldurbulence mod-
eling concepts, such as large eddy simulation (LES), dethelldy simula-
tion (DES), the Reynolds averaged Navier-Stokes (RANS)aah, etc. LES
represents the turbulence modeling methodology requthiagreatest com-
putational burden, but perhaps the least complex moddimtipe following
sections we will endeavor to develop a variational mullseaalogue of LES
within the theoretical framework of (31) and (32).

(3) Itis very important to emphasize that in practice we wairectly with (32),

a finite-dimensional system, and we consider the solutiq@?¥, U, our ap-
proximation toU, and in turn our approximation t&/. Recall, by design of
P, U is an approximation t@/. We do not need to solve for the fine scales
and because of this (31) is completely extraneous, unlessigleto use it

to estimate the error in the coarse scales. That being saiyi also be in-

teresting to considel/ + U’ as an alternative approximation &@. It will
of course be necessary to assume that the coarse-scaleisgatkciently

12



large for the philosophy of LES to be appropriate. That ishére is a well-
defined inertial sub-range, then we assume the cut-off egtwee coarse- and
fine-scale spaces resides somewhere within it. This assumgatables us to
further assume that the energy content in the fine scalesall sompared
with the coarse scales, an aspect of considerable impertarattempting to
analytically determine the solution of the fine-scale eigunat

2.3 Perturbation series

It seems reasonable to assume that the larger the 3habe better the approxi-
mation of U to U, and the smaller the coarse-scale resi®Ret(U) € V'*. We
further assume that Res(U) = 0, thenF’(U, 0) = 0, and ifRes(U) is “small,”
thenU’ will likewise be “small.”® These suggest a perturbation series expansion
of the form:

U' =cU, +Uy+ Uy +...= > "U, (33)
k=1

wheres = HRes (U)Hw. Let us rewrite (25) in terms of the proposed expansion:

By (W’, > a’fU;) + By (W’, > UL akUL) =<(W'.R(U)) (34)

k=1 k=1 k=1

Where(, > - <', '>v/7v/*, and

S Res(U
ROy~ —ResU) (35)
HRes(U) .
v/
Notice that, by linearity,
B (W30 ) = X480 (W0, (36)
k=1 k=1

while the second term requires further consideration. Vy&aed it as follows:

By (W', U| + Uy + UG+ ..., eUs + 22U + UL + .. )

= 2By (W', UL, UY)

+&°[By (W', U, Uy) + By (W', U, Uy)]

+ e [By (W, U}, UY) + By (W U, Uy) + By (W U3, UY))|

+ ... (37)
6 These assumptions seem physically reasonable, but rigonathematical justification
may be difficult to obtain. The existence of nontrivial, urded weak solutions of the Eu-

ler equations, compact in space and time, underscores ttieematical difficulties of the
Navier-Stokes equations at large Reynolds numbers (s¢ke [68

13



A recurrence formula can be easily deduced, by groupindicaafts of the powers
of e:

e? — By (W' U, UY)

g3 — By (W' U, Uy) + By (W', U, UY)

el — By (W' U, Uj) + By (W', U, U,) + By (W', U, UY)

b — - + .. + .. +
Hence:
00 9] (9] k—1
B, <W’, S fuy, S g’fU;> =Y "> B, (W/, U, ;_j) (38)
k=1 k=1 k=2  j=1
The full expansion of the equation can be compactly writen a
0 00 k—1 -
Z €kB§ (W,, U;C) + Z €k Z B2 (Wlu U;7 U;e—j) = €<W,7 R(U» (39)
k=1 k=2  j=1

Equating like coefficients, we obtain a sequence of linedatianal problems cou-
pled through their right-hand sides:

Fork=1 By (W' U,) = (W' RO)) - (40)
k—1
Fork>2 Bz (W'.U})=-Y B, (WU, U} ;) (41)
j=1
The bilinear operatoBs (-, -) is the same for all the problems in the cascade, and

can be formally inverted through a Green’s operator. Theeseoperator concept
can be introduced in an abstract sense througisalventoperator:

G-()=G'U,): V*=)V (42)
F()— V' (43)

such that
Bg(W' . V') = F(W") (44)

If a sequence of operatofs; : V' — R (i.e., F; € V™) is defined as:

Fork=1 F(W')=F (W:RU))

= (W' .R(O))yr - (45)
Fork >2 F.(W')=F.W,U,,...,.U;_,)
k—1
- Zl B, (W', U}, Uy, ) (46)
iz
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then it is possible to reformulate the sequence of probld@s-(41) as:
=G5 (Fy) = G (U, Fp), k=1,2,... 47)

Notice that in the cascade of problems (40)—(41) (or, edemtty, (45)—(46), or
(47)) the levelk term in the expansion depends on terms on the right-hang side
which involve the coarse-scale residual and terms in thamsipn from level to
k—1.

Upon substituting thé&/)’s into the series (33), the powers of= HRes(U)HW
cancel out. If the series converges, it represents an eghttan to the fine-scale
equation, and then (32) gives the exact solution of the eescale equation. In
other words, given the validity of the assumptions, the egalution of the original
Navier-Stokes system is obtained. In order to determinexhet solutions of each
of the linear problems in the cascade, we need the exact BigegratorGy;. This
is anon-classicalGreen’s operator, referred to as the “fine-scale Green’satqe’
that in turn depends on tliassicalGreen’s operator and the selected proje&tor
(see Hughes and Sangalli [36]):

G' = G - GP'(PGP")'PG, (48)
whereP" is the adjoint ofP. Note that the orthogonality properties

PG’ =0 (49)

GP =0 (50)

immediately follow from (48). In Hughes and Sangalli [36jw&s shown, in the
context of finite element approximations of the advectidfugion equation, for
the advection-dominated case, that the projector basetheo/}-inner product
(termed the Dirichlet projector in Hughes and Oberai [34P)duced a highlyo-
calizedfine-scale Green’s operator, despite the classical Gregygsator being
highly nonlocal In fact, for the one-dimensional case, the support of the dicale
Green’s operator was confined to individual elements, aatktivas no coupling
between elements. It is important to realize that this issngéneral feature of the
fine-scale Green'’s operator, but one that depends crucialtiie particular projec-
tor. For example, the fine-scale Green’s operator produgéhled.>-projector was
nonlocal in all cases.

Exact determination of the Green’s function is not possiole neither is summing
an infinite number of terms in the perturbation series. Cguestly, two approxi-
mations are necessary in order to develop a practical salsttheme:

(1) Approximation of the fine-scale Green’s operator for linearized Navier-
—~
Stokes systenGy ~ G-
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(2) Approximation of the nonlinearities by truncation oétperturbation series.

Once these approximations are made precise, we have deftngabéence model
of the form (32). This will be discussed in the next section.

Remark

It needs to be emphasized that the pathway to an approximditelénce model
identified by the above assumptions is not the only possibbut it does seem a
viable candidate for LES-type modeling within the variaabmultiscale method.
Clearly, a more direct attack on the fully nonlinear finels@quation, rather than
the perturbation series approach, might seem an even mupéipus approach. In
either case, our theoretical framework for turbulence ningegemains (31) and
(32).

3 Approximating the fine-scale Green’s operator

A study of the fine-scale Green’s operator for the lineagdyeadvection-diffusion
equation was performed in Hughes and Sangalli [36], in wlginhexplicit for-
mula was derived in terms of the classical Green’s operatdraaprojector onto
the coarse-scale space, given here by (48). It was showrlifferent projectors
yielded very different locality properties of the fine-s=@reen’s operator. Thi; -
projector produced a highly localized Green’s operatorenghs the.?-projector
exhibited more global support. Locality is a very desirgiieperty because it sug-
gests local approximation, a significant simplificatiomfrthe practical viewpoint.
It has been known for some time that stabilization operatepsesent local ap-
proximations to fine-scale Green’s operators (see HughgsReezziet al. [10],
Hugheset al. [30] and Hughes and Sangalli [36]) and this also suggeststiiea
product of stabilization operators and coarse-scale uatsdvould represent very
simple but potentially effective representations of ficals fields. (A more pre-
cise justification of this idea for simple model problems wa&n in Hughes and
Sangalli [36].)

So far, for the most part, effort devoted to calculating foale Green’s opera-
tors has utilized an analytical approach. This can only exebed rigorously in
the simplest circumstances (see Hughes [27], Bretzal. [10], Hugheset al. [30]
and Hughes and Sangalli [36]), but provides valuable irtsagll serves as a basis
for comparing with approximate and more practically usgiuacedures. Given a
fine-scale basis, and the variational equation for the foadesfield, the fine-scale
Green’s operator can be computed (see Hughak [30]). However, heretofore no
practical success has been attained with this approachsetize functions used to
represent the fine-scale basis, typically low-order potgiabs, have not been able
to faithfully describe advection-dominated asymptotibdeor, of paramount im-
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portance in high Reynolds and Péclet number applicatidasently, progress has
been made by two of us (J.A.C. and T.J.R.H.) utilizing thealiginuous variational
multiscale method (see Hughesal.[37], Bochev, Hughes, and Scovazzi [9] and
Buffa, Hughes and Sangalli [13]). This approach providaessaterable generality
and enables fine-scales fields to be calculated numeriealtpunting for nonlin-
earity, and time dependence. We believe it will represelitguortant step forward
in better representing fine-scale fields, resulting in memeate turbulence mod-
eling procedures, and we hope to report on it in the neardutur

In the present work we are content to work on the most simplebasic end of the
approximation spectrum. The idea is to compute elemeng-stebilization opera-
tors, denoted, and calculate the fine-scale field as the produet ahd the local
coarse-scale residual,

U ~ —tRes(D) (51)

Note thatr is matrix-valued in our case, specificalty, € R**4, and it can be
computed from the formula for the fine-scale Green’s opetat@ssuming it takes
the form ofr times a Dirac distribution in each element. The result tngues is
thatr is the element mean value of the fine-scale Green’s opehatibre case of a
space-time elemen®¢, we have (see [39])

T

1 —~ R R
e — T~ G: ,t;/\,t d d 52
@ = ] Jo Jo, G2, 4Q0Q (52)

Note thatr is a function ofU. This formula has been used to determine precise
values ofr for simple cases, primarily in the steady case, but, moendftan not,
well-established asymptotic scaling arguments have bsed to directly calculate

7 in more complex circumstances. There are a number of refeseio this begin-
ning with some of the earliest works on stabilized methodg,(g.g9., Brooks and
Hughes [12], Shakib, Hughes and Johan [66], Tezduyar [7ufHhds, Scovazzi
and Franca [38], Scovazzi [65], Calo [14] and Bazilevs [3]is is the approach
adopted here and the precise formula utilized is given imthe section.

Once we have a formula such as (51) we can construct the petingrbation series
approximation, as shown in Scovazzi [65] and Calo [14]. Heerein the present
work, keeping with the theme of simplicity, we will truncatee series at the first
term, namely, (51).

4 Implementation

The space-time formulation of Section 2 is very general arstiggestive of a wide
variety of interpretations. For fixed spatial domains seliscrete formulations are
very economical (see, e.g., Bettral.[8]), and this is what is employed herein. In
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place of (21) and (23), we have, respectively,

B"W" U"+U') = L"(Wh) (53)
BMwW" U"+U) = B! (Wh Uh) + BNW" UM UM + BlW",U)

) =
) =

+ Bh(Wh, U U)+Bwh U, UM (Cross stress)
4

/

+ BN W U) (Reynolds stress) (54)
where
MW" = (w" f) (55)
h
BH(W" U") = (w", )Q —(V-w",p")o

( w 21/v8 h) + (qh7 A uh)Q7 (56)

BI(W"U') = (V- w", )0 — (V¢" @)q (57)

BYW" V U) = —(Vw,v Q@ u)q (58)

andU" = {u" p"} andW" = {w", ¢"} have replaced and W, respectively,
and U’ remains the same. Thie-superscript denotes a mesh parameter. In this
formulation, time is continuous at this stage. (53) is aiedi by integrating by
parts and invoking the following assumptions: %Z—h =0;2a = 0onT;

and 3)(Viw", 2vV*w')q = 0. The last assumption follows from the orthogonality
conditions induced by the projector emanating from thebdir form describing the
viscous term (see Bazilevs [3], Hughes and Oberai [34] anghidsi and Sangalli
[36]).

4.1 Fine-scale approximation

We assume thd? is a partitioned into a set of subdomains, such as finite el&sne
or NURBS elements, and on this partition we have a finite dsiwral space of
functions, with local support, that is our approximatiorasg definingU" and
Wh Letx = {9:Z 2., denote the coordinates of elemdiitin physical space,
and let¢ = {¢;}7_,, denote the coordinates of eleméntin parametric space. Let
x=x(§): K — Kbea continuously differentiable mapping with a continupus
differentiable inverse. We now provide a detailed expas$or the fine-scale ap-
proximation appearing in equation (51) for a typical eletmen

In the present notation,

oy o’
U = { } — —TRes(U") (59)



where

Tl 353 03
T g
Og TC

Res(U") = {

Tc(’uh)

h

ray(u”, ph) = u +u" - Vu' + Vp' —vAu — f

ot

ro(u) =V -u"

4
™ = (—5 +u" Gu' + 112G

At?

c=(tug-g)""

.06, 0
Gij =2 o %

k=1 8&72 827]-

3
G:G= Z GijGij

1,j=1

3
u' Gu' =Y u?Giju?

4,j=1

3 agj
gi =
;axl
3
g-9=> 9y

rar (uh, ph) }

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)



andAt is the time step size and; is a positive constant, independent of the mesh
size, derived from an element-wise inverse estimate (sge,Johnson [44]). For

a cube-shaped element, witithe edge lengthi?;; = 50;;, whered,; is the Kro-
necker delta (i.eq;; = 1, if « = j, and is zero otherwise).

Ty IS designed by asymptotic scaling arguments (see BarerjBlatdeveloped
within the theory of stabilized methods (see, e.g., Hughesb Mallet [31] and
Shakib, Hughes and Johan [66]). The definitionrgfderives from the fine-scale
Shur complement operator for the pressure (see Bazile¥si{8Etails).

Remarks

(1) The momentum residual contains second derivativea’ofi.e., —vAu").
Typically, w" will be smooth on element interiors but may only be contirgiou
across element interfaces. Interpreted distributionttiigre are Dirac layers
located on element interfaces. Janséal. [41] have developed a procedure
for reconstructing second derivatives, avoiding the Diagers. The technique
L?-projects the first derivatives af" onto the basis fou”. The derivatives
of the projection are well-defined on element interiors angharticular, are
square-integrable. We have used this procedure wifeis only continuous
across element interfaces. However, our numerical expezimdicated that if
the nonlinear convergence tolerance within each time steypset sufficiently
small, reconstructing second derivatives in this manrmeéndt appreciably af-
fect results. This observation is not consistent with thafskanseret al.[41],
and the matter deserves further study. Whés at leastC-continuous, it is
of course not necessary to reconstruct second derivalihesis the case for
higher-order NURBS utilized in our computations (see $&ti6 and 7).

(2) Although we have not introduced the time discretizattbe time step\t ap-
pears in (64). For time steps of the order of the element didectime scale,
that is, At = O(h/|u"|), this behaves satisfactorily. However, A$ — 0,
for fixed h/|u"|, the formulas forr,, and 7~ degenerate in that,, — 0
and7c — oo. To address this deficiency, Codiatal. [16] have introduced
the notion of “dynamic subgrid scales.” An ordinary diffetial equation and
asymptotic scaling arguments are used to advance the fate-Beld. This
means that the fine-scale field becomes a “history varialtlat heeds to
be stored at each integration point. The computationattre is similar to
that for inelastic constitutive equations in computati@wid mechanics (see
Simo and Hughes [69]). The procedure has been shown to betiedfeven
for very small time steps. This seems like a promising stedpendirection of
more accurately representing the fine scales.

Combining equations (53) and (59), we obtain the followiamsdiscrete formu-
lation: FindU" such thatyW",

BMS(wh UM — LMY (W) =0 (71)
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where

BMS(wh U™ = BS(W", U") (72)
+ (uh -Vw" + V¢, TMrM(uh,ph))Q
(V w", oo h))Q
( TMTM( h’ph))ﬂ
—(

Vw", myr o (u p )®7'M"°M(Uhaph))9

LMI(WP) = (w", f)a, (73)
and

h
BY(W" U") = (w", agt Yo — (Vw u" @ u)q (74)
+ (Vow™, QVVsuh)Q

Remark

The first term on the right-hand side of (72), and defined in),(i&4the Galerkin
term; the next two terms are classical stabilization teramst the last two terms
are the additional terms produced by the variational medtes method. From this
perspective, classical stabilization, such as SUPG and (G&&Hughes, Scovazzi
and Franca [38]), is only a stepping stone toward the fuliatenal multiscale
method.

5 Time discretization and numerical implementation

In what follows, A is the nodal index in standard finite element analysis, aad th
control point index in NURBS-based isogeometric analysigle; is thei’* Carte-
sian basis vector. We assume that velocity and pressurexpamaed in terms of
the same basis, denotéd/ 4} ,, wheren, is the number of basis functions. This
simplifies the exposition, but this is not a requirement @ thethod. LetV, V,
and P denote the vectors of nodal or control point degrees of fseedf velocity,
velocity time derivative, and pressure, respectively. \&@end two residual vectors,
corresponding to the momentum and continuity equationssutstituting/V,e;
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and N4 in place ofw”" andq” in (71), respectively.

R" = [RY|] (75)
Ry, = B ({Nae;, 0}, {u",p"}) = LM*({Nae;, 0}) (76)
RC =[RS (77)
RG = BM3({0, Na}, {u",p"}) — LY5({0, Na}). (78)

AlthoughV is the time derivative o¥, we view it as independent in the time in-
tegration algorithm. We employ the generalizedaethod, which was first applied
to fluid dynamics in Jansen, Whiting and Hulbert [42] (see &kung and Hulbert
[15] for the original presentation for the equations of stmal dynamics). Here we
present the details of the algorithm for the equations cdmmgressible flow in the
multiscale description. Our exposition is similar to thi¥¢hiting and Jansen [75]
and Whiting [74]. The algorithm is stated as follows: Given, V., find V.1,
Vi, Vn+am, Viias» andP, ., such that

RM(Voian: Virass Pu1) =0, (79)
RY(V pians Vi, Pn+1) 0, (80)

Viasri =V + AV, + ALV i — V), (81)
Vn-i-am = Vn + am( n+l — )v (82)

Vita; =Vt ap(Vip — Vi), (83)

where At = t,4, — t, is the time step size, and,,, oy, and~ are real-valued
parameters that define the method. Given the solution at lened ¢,,, we inte-
grate the equations of motion to the time leygl; by forcing the residuals of the
momentum and continuity equations, (79) and (80), to vaaishtermediate time
levels. Parameters,,, or, andy are selected based on considerations of accuracy
and stability. It was shown in Jansen, Whiting and Hulbe?f fhat second-order
accuracy in time is achieved if

v=1/2+ a,, — ay, (84)
while unconditional stability is attained if
Qm > ayp > 1/2. (85)

We obtain a one-parameter family of second-order accuradeuaconditionally
stable time integration schemes by settingccording to (84) and employing the
following parameterization of the intermediate time level

1.3 — poo 1

m = = and =
a 2<1+poo) oy

: (86)

where the parameter,, is the spectral radius of the amplification matrixss —
0o, which controls high-frequency dissipation (see Hugh&$)[Z0 solve the non-
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linear system of equations (79)-(83), we employ Newton’shroé, which results
in a two-stage predictor-multicorrector algorithm.

Predictor stage.Set

Viti,0=Va (87)
. _1).

Voo = gl S )Vn (88)
P, 10 =P, (89)

where subscripb on the left-hand-side quantities is the iteration indexisas

referred to the “same velocity” predictor by Jansen, Wiitamd Hulbert [42], and
was shown to be efficient for turbulence applications. Tlogofe(y — 1)/ makes

the predictor consistent with the generalizeggquations.

Multi-corrector stage. Repeat the following steps for= 1,2, . . ., l,qz-

(1) Evaluate iterates at the intermediate time levels,

Vn-i—ocm,(l) = Vn + am(Vn—i—l,(l—l) - Vn)7 (90)
Vn+af,(l) =V,+ af(vn—i-l,(l—l) - Vn) (91)
P.1q = Priia-) (92)

Note, (90) and (91) amount to satisfaction of (82) and (83).
(2) Use the intermediate solutions to assemble the residdidhe continuity and
momentum equations and the corresponding matrices inrtbarlsystem

KAV 10+ GoAP, o) = —R{), (93)
DAV 1)+ LyAPnyy o) = —Rf). (94)

Solve this linear system using a preconditioned GMRES élyor(see Saad
and Shultz [63]) to a specified tolerance. Note that in (93) %) we are
solving for the increment iV rather tharl’.

(3) Having solved the linear system, update the iterates:

Vi) = Vasrgon + AVaii o), (95)
Vi) = Ving,a-1) T YAtAV 1 ), (96)
Pn—i—l,(l) = Pn+1,(l—1) + APn—i—L(l)' (97)

Note, this update automatically satisfies (81). This comegl®ne nonlinear
iteration.

Two to four nonlinear iterations are typically required tdheeve convergence in a
time step.

The most computationally involved part of the above ald¢ponits obviously step (2)
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of the multi-corrector stage. The amount of computationalkwvequired is equiv-
alent to the solution of a linear finite element problem, Whiovolves assembling
the left-hand-side matrices and right-hand-side vectord,a calling a linear equa-
tion solver. Implementation in the isogeometric analysiiisg is very similar to
that of standard finite elements (see Hughes, Cottrell azdvea [29] for details).

The matrices in (93) and (94) are approximations of the @bast tangent matrices,
given by partial differentiation, namely

- aRM(Vn—i-ama VTL"FCYf? Pn+1) avn—i-am
“ = OV o OV
ORM(V pyams Vintays Pri1) OV g,
OV nia, OV i
aRM(Vn-i-awm Vn-i-afa Pn+1)
OV nsan,
aRM(Vn+am> Vn+afa Pn+1)
OV nia,
_ORM(Viian, Vitays Prt1)
aPn—i—l 7
_ OR%(Viian: Visay Pui1) OV i,
B OV e, OV i1
OR(Vitan, Virass Put1) OV e,
OV via, OV i
aRC(Vn-i-awm Vn"l‘Oéf? Pn+1)
).
aRC(Vn+am7 Vn+afa Pn+1)
OV nta,
_ OR°(Vuian Visas Puti)
aPn-i—l .

:am

+ apyAt (98)

(99)

+

:am

(100)

+ apyAt

L (101)

In obtaining (98) and (100), we used (81)-(83).

Explicit formulas for the matrices used in our calculati@ans given as follows:

K = [Kiy] (102)
K5 = am(Na, Np)g 055 + am(u" - VN4 747, Np)g 6 (103)

+ ayyAH(Na,u" - VNg) 6 + apyAt(VNav, VNg)q 6
+ apyAt(VNy4 - e;v,VNg - €;)q

+ ozfyAt(uh - VN7, u" - VNg)g 0y

+ apyAt(VNy4 - e;7¢, VNg - €;)a
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G = |Gy (104)

s =—(VN4-e;, N+ (u" - VNse;ar, VNp)g (105)
D = |Diy] (106)
Dyp = apyAt(Na, VN - €;)qa (107)
+ apyAt(V Ny, uh - VNge)a + an(VN4 Ty, Npe;)q
and
L = [Las] (108)
LAB = (VNATM,VNB)Q (109)

whered;; is the Kronecker delta, and the iteration indéxas been omitted to sim-
plify the notation.

6 Forced isotropic turbulence

6.1 Discretization

The domain in physical spacefis= (27)? with periodic boundary conditions in all
directions. We employ uniform meshes of NURBS basis fumstid he functions

are constructed in the usual tensor product format [29]. kivieley meshes o323,

643, 1283, and256% elements and basis functions, which are equal in number due
to periodicity. An illustration of the basis functions fon & element mesh in one
dimension is presented in Figure 3. For a fixed order we sthdyeffect ofh-
refinement, that is, we subdivide meshes. For a fixed meshudy #te effect of
k-refinement, that is, we elevate order. Notice that inithrefinement process, the
number of degrees-of-freedom is the same for every ordeés. i$tdue to the full
periodicity of the basis.

6.2 Phase-error analysis for classical finite elements ablRBS

The first-order wave equation

To determine the performance of NURBS applied to flow prolsleamatural start-
ing point is the first-order wave equation, or pure advectidare we compare
analyticsolutions to the discrete equations arrived at by finite eldrand NURBS
treatments of the problem.
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(c) C2-cubic basis functions.

Fig. 3. One-dimensional periodic basis functions.

A linear dispersive system is one that admits solutions efftmm (see Whitham
[73])

¢ = acos(kx — wt) (110)
where the frequency is a real function of the wavenumbér with the specific
form of w(k) being determined by the system. If the phase spdéd/ % depends
on k, rather than being a constant, the system is said to be ‘idispe For the
first-order wave equation posed on an infinite domain, namely

0o 0o

—Z fu=— =0, f - 111

8t+u8x 0, forz €] — oo, +o0], (112)
w = ku, and any dispersion in a numerical solution is artificialafs, every
Fourier mode should travel to the right at speg(le., pure advection), any devia-

tions being artifacts of the numerics.
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For both finite elements and NURBS, we seek a solution of thma fo
¢=> da(t)Na(z). (112)
A=1

In the case wherd/ 4 is a standard finite element basis function, we associate4ts
efficient¢ 4 with the value of the function at the nodg. For the non-interpolatory
NURBS basisg4 is still the coefficient of functionV,, but the nodal value in-
terpretation no longer holds. Still, we may speak of a “siémt the usual way

(though perhaps the specific choice of terminology is legs@piate). To arrive

at a stencil for either finite elements or NURBS, we sub4i{itl2) into (111),

multiply by basis functionV,, and integrate to get

np

/OL Na Y (¢5Np + uppNy)dz = 0, (113)
A=l

where the superposed dot denotes differentiation withe@sio+ and the prime
superscript denotes differentiation with respect to

Linear finite elements and linear NURBS are identical, so egifbour investiga-
tion with the quadratic case. Assume a uniform mesh with eferengths. Look-
ing first at the case where thé,’s areC*' quadratic NURBS functions (actually,
B-splines in this simple scenario), performing the intéigrain (113) yields

1 . : : . :
EO(CbA—Z + 26041 + 6604 + 260411 + Pat2)
u
+ m<—¢A_2 —10¢4—1 + 100 4+1 + Pat2) = 0. (114)
As in Vichnevetsky and Bowles [72], we let

¢4 = exp 1(k"Ah — wt) (115)

wherek" is the discrete wave number, an approximatioh te w/u, andi = /—1.
Substituting this into (114) and simplifying yields

;T“O”(e—” + 267 + 66 + 26¢" + €2)

L =20 —10 10 20\ _
+24h( e 10e™ + 10 4+ ¢*) = 0 (116)

whered = k"h. Rearranging and recalling that® + ¢=%) /2 = cos o and(e'® —
e™'*)/21 = sin a we get

du

w(cos 26 + 26 cos § + 33) h

(sin20 4+ 10sinf) = 0. (117)
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Finally, solving fork /k" = w" /w gives us

k 5(10sin # + sin 26)
— = ) 11
kh 0(33 + 26 cos 0 + cos 20) (118)

For the classical quadratic finite element (see Hughes,[#8})situation is more
complicated as the basis functidf, can take on two forms. IN, corresponds to
an end node (i.e4 odd), then performing the integration in (113) results in

1

E(_éA—2 + QQ'bA—l + SQ'bA + Qg'bA-‘rl - €5A+2)+

Pat1 — Qa1 Payr — Pa—a
2u o u m =0. (119)

For the case wherd/, is associated with a center node (i.&.even), performing
the same steps yields

1—10(95/4_1 +8pa+ dav1) + u% — 0. (120)

Following Gresho and Sani [23], we let

1— (=14
2

1+ (=14
2

oa(t) = [ + 0 ] exp1(k"Ah — wt). (121)
Substituting (121) into (120), solving the latter férand using that result in (119),

we arrive af

—2sin20 £ /(1 — 260)(19 — cos26
k _ ~2sin \/( cos 20)( c0s20) | (122)
kh (3 — cos 26)

See Gresho and Sani [23] for a discussion on selectifigdt “ —" in (122).

Plots of the phase errdi/k" = w" /w for these two quadratic cases, as welt&s
cubic NURBS and linears, are shown in Figure 4. We see thaquhdratic finite
elements actually overshoot the exact solution for parhefdomain whereas the
NURBS solution is considerably more accurate. The cubic BBRre better still.
For a fixed wavenumber, the error in the phase speed gaéggidsfor C° quadratic
finite elements and a8 (h°) for the C'! quadratic NURBS. In general, the error is
O(h?*) for classicalC” finite elements of orderandO (h?P*+2) for C*~* NURBS of
orderp (see Vichnevetsky and Bowles [72]). These results illustilae superiority
of NURBS over classical finite elements for advective preesgjoverned by the
first-order wave equation.

" Note that if we had considered® quadratic NURBS instead @ quadratic finite el-
ements, the stencil would have been different, but the te$oit w would be exactly the
same. This is becausgé” NURBS basis functions are different from the classical dinit
element basis functions, but tepacethey span is exactly the same.
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Fig. 4. The first-order wave equation. Phase errors versasiimensional wave numbers.
Comparison of linear and quadratic finite elemenit$,quadratic NURBS, and'? cubic
NURBS.

The heat equation
We study the heat equation given by:

ou 0*u
o = Kag - 123
5 = " forxz € | — 0o, +00] (123)
and proceed as in the case of the first-order wave equaticepexhis time we
assume
b4 = exp (1k"Ah — wt). (124)

The dispersion analysis is performed for finite elementsMO&RBS using basis
functions of ordep = 2 throughp = 4. For completeness, the solution using linear
elements is shown as well, though for linear elements tisare difference between
finite elements and NURBS. Results are presented in Figure 5.

The superior behavior of NURBS basis functions comparel finite elements is
once again evident. In this case, the finite element resefietlan accurate acousti-
cal branch and inaccurate optical branches (see BrilldLif) [ It is very important
to observe the trends in Figure 5. For finite elements, thieadiranchesliverge
asp is increased. That is, the errors in the higher wave numleasrbe greater as
pisincreased. On the other hand, for NURB%® entire spectrum convergasp is
increased. These opposite trends are likely very impomaagpplications in which
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Fig. 5. The heat equation. Phase errors versus non-dinmasi@ve numbers. Comparison
of classicalC?-continuous finite elements and NURBS foe= 1 to 4.

theentirediscrete spectrum participates significantly in the sohutiThese results
demonstrate the superiority of NURBS over classical finiéenents for diffusive

processes governed by the heat equation. The combinatieswalts for advective
and diffusive processes suggest to us that NURBS may be leapiadittaining bet-

ter accuracy than classical finite elements in represetinbglence. (A companion
study investigating this issue has confirmed this behaSiee. Akkermaret al.[1].)

6.3 Constant power-input forcing

We simulate forced isotropic turbulence by supplying a tamispower input in the
lowest velocity modes. The force at each instant is given by

Pin_
fx)= > uy exp (1K - ) (125)
2Bk,
‘ki|<kf
k40

where1 = /—1, P, is the fixed power input, set to 62.8436001234 in the simula-
tions,

1 A
Ekf:i ; Uk - Uk (126)



is the kinetic energy contained in the lowest modes, and
Uy = Tl / x)exp (—iK-x)dx (127)

denote the Fourier coefficients of the velocity field. Ttheare computed for each
k that satisfiesk;| < kg, i = 1,2, 3. k; is selected to be 3 in our calculations. The
integrals in (127) are computed by quadrature rather thdadty-ourier transforms
because only a few modes are required.

The solution may be written as

u"=> Naid, (128)
A

whereN ,’s are the basis functions amb),’s are the degrees of freedom, and thus it
follows that the Fourier coefficients can be written as a matector product,

g = \Q\/ x)exp (—iK - x) d
= Na(xz) d —1k - x) d2
\Q\/QXA: A (x) daexp (—1K- x)

-y L_é'/QNA () exp (—1k - 2) dQ| ds

= Brada (129)
A

in which By 4 can be precomputed.
6.4 Testcases

We consider two case$ie, = 165 and Re, = oo, wWhereRe, is the Taylor mi-
croscale Reynolds number, Pope [57].

For Re, = 165 the kinematic viscosityy is set tol/150. The kinetic energy is
computed as:

¢ = ﬁ [ (@) - () o (130)

which fluctuates aboutl, +15%, in all cases. Thus,

2¢> 1
Rey — 2¢* |15 (131)

3 Vev

is about165 for all cases, where is the dissipation (see Pope [57]). Once the
simulation reaches equilibrium, the power inp#t,, is equal to the dissipation of
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the simulation. This result is in good agreement with the Di&. Results are
compared with the data provided by R.D. Moser, which is deedrin Langford
and Moser [51]. FolRe, = oo the viscosity is set to zero. In this case we compare
with theoretical correlations (see Pope [57]).

6.5 Simulation results

The quantities of interest are the energy spectrum and tbheybant third-order
structure function. The two-point third-order structuuadtion is defined as

S (r)=(u(z+r)—u(x)) (132)

where(-) implies ensemble average. In the inertial subrarfjescales liker for
fully-developed, locally isotropic turbulence (see Pop&]][ p. 204). Due to the
role played bySs in the Karman-Howarth equation, an accurate representafio
Sz implies an accurate description of the energy transfereririartial subrange.

Data samples were collected for at least 20 eddy-turnoweesi7,;;, = ¢°/(2¢).
Samples were separated by aboult’,;;. The spatial sampling is performed at
knots and the mid-points between knots. For example, inithelation of322, we
sample on #42 uniform mesh.

Remarks

(1) We investigated the possibility that,, the parameter in the generalized-
method that controls its numerical high-frequency dissgpaaffected results.
We ran cases with,, = 1 (no dissipation), 0.5 (our default value) and 0
(maximal dissipation). We found no discernible differenae the computed
statistics. This may have been due to the very small timesstispd in the
calculations, typically of the order of 0.2 the advectivau@mt number, where
the advective speed is defined #s.

(2) We note that it is important to precisely converge thelimear residual of
the coarse scale equations in every time step. We reduceaeglttial by a
factor of 10~° in each step. Failure to sufficiently converge the residemdl$
to spurious dissipation in our experience.

The data is presented in two complementary fashions. Fgéyeé, 13, and 14

illustrate h-refinement, whereas Figures 8, 9, 15 and 16 illustkatefinement (
see Hughes, Cottrell and Bazilevs [29]).
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(c) C%-continuous cubic NURBS

Fig. 6. Energy spectra fdr—refinement.Re) = 165.
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Fig. 7. Two-point third-order structure functions flor-refinement.Re) = 165.
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Fig. 8. Energy spectra fdr—refinement.Re) = 165.
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Fig. 9. Two-point third-order structure functions flor-refinement.Rey = 165.

36



6.5.1 Rey =165

Figure 6 shows that the energy spectrum has no energy pilehigrawave num-
bers for all orders and numbers of degrees-of-freedomcindt energy spectra are
in good agreement with the DNS, even for coarse meshes. urd-@ we observe
that about half the wave numbers for linear basis functioasraclose agreement
with the DNS spectrum, while this ratio significantly impesvfor higher-order
basis functions, becoming almost 100% for the cubic caéé’at

In Figure 7, the third-order structure function is plottg@ast the non-dimensional
distance-/n, wheren is the Kolmogorov dissipative scale (Pope [57]) , defined as,

3\ /4
n:(-) . (133)

€

As r/n increases the velocity field should decorrelate, which iseoked in our
calculations and the DNS. However, the forcing utilizedha DNS is somewhat
different than that utilized here. In the DNS, the forcinguis within a sphere of
radius 3 in spectral space, whereas in our calculationdptieeng was performed
within a box of half-edge-length 3. Thus, the small discrepes between our re-
sults and the DNS for large valuesofn are to be expected. Figure 7 shows that
for each order, improved agreement with DNS is attained byeising the num-
ber of degrees-of-freedom. Figures 8 and 9 show that ordeagbn improves the
agreement with DNS. It is particularly evident from thesaufes, that the most
significant payoff is achieved when increasing the ordenflimear to quadratic.

Figures 10-11 show snapshots of vorticity isosurfaces aidcity streamlines
computed on a28% mesh of quadratic NURBS. Figure 12 shows a detail of a
single vortex tube computed on a mesh6df cubic NURBS. The visualizations
are performed using techniques from Johnson, Calo and € 4#8] and Johnson,
Gaither and Calo [46].

6.5.2 Rey =

The Re, = o case (i.e.y = 0) is felt to be relevant to practical engineering situ-
ations in which the resolution is inadequate to represenpltysical flow features,
even with an LES approach (see Lesieur, Métais and Comje [@Bat one hopes
to seein an LES is a distinct branch of the energy spectrunegiponding to the in-
ertial range, without an energy pile-up at the cut-off wauenber. Likewise, there
is a theoretical inertial-range scaling for the two-pokmtd-order structure func-
tion. In the present circumstances, the forcing occur§for< ky = 3, i = 1,2, 3,
but beyond this value we expect to see a transition to anahe<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>