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Abstract  
This paper reports on the progress of a new
compressible flow simulation code being developed at
Sandia National Laboratories.  The code called Premo
is a CFD module that is part of a much larger multi-
mechanics code framework called SIERRA.  The goal
of the Premo project is to deliver a general purpose
CFD capability for designers and analysts of
aerodynamics of flight vehicles.  SIERRA provides
unstructured mesh data services common to many
computational mechanics codes.  Utilizing the
framework allows for rapid development of physics
modules.  In addition, the SIERRA framework provides
an interface that will make it possible to conduct multi-
physics simulations between physics modules to solve
such problems as aero-thermal vehicle heating and aero
elasticity in the future.  Current code capabilities are
demonstrated by solving one-, two- and three-
dimensional flow problems.

Introduction  
In order to meet the needs of the Stockpile Stewardship
Program and the Accelerated Strategic Computing
Initiative (ASCI), a new code development project is
underway at Sandia National Laboratories.
SIERRA/Premo is the name given to this new
compressible flow simulation code.  The code is a
module of a larger multi-mechanics framework called
SIERRA [Edw01].  The goal of the project is to provide
a production simulation tool to be used to analyze
compressible flows of aerodynamic vehicles.  Flow
regimes of interest range from transonic all the way up
to hypersonic, steady-state and transient.

Premo is written in the C++ language and builds upon
the object-oriented design in SIERRA to provide a
flexible, maintainable easy to use and robust CFD code
package.  The SIERRA framework provides data
services for application modules which include;

I/O, domain decomposition and parallel process
management, mesh adaptivity, load balancing,
multiphysics code coupling and nonlinear and linear
solver libraries.  Fast prototyping new models is an
important objective of the project. This is made
possible by utilizing the framework data services.
Developers of modules are able to concentrate on
writing algorithms specific to the physics, thus reducing
the amount of work.

The strategy for development has been to write the
spatial discretization and numerical algorithms kernel
and then add functionality.  The final version of Premo
will include solvers for a wide range of governing
equations such as Euler and Navier-Stokes, Reynolds
averaged Navier-Stokes and the equations for
chemically reacting species. Arbitrary body motion and
relative body motion simulations will also be possible.

In the next section, the formulation is described
followed by computational results that demonstrate
current capabilities.  In the current state of
development, hexahedral or tetrahedral element meshes
can be used.  One of the goals of the project is to extend
the code to handle mixed-element meshes.

Formulation  
This section describes the numerical formulation used
to approximate solutions to the governing equations on
unstructured meshes.  The governing equations are
discretized using a finite-volume formulation.  The
main aspects of the numerical scheme are discussed
including; variable reconstruction, advection, diffusion,
boundary conditions and time integration.

Governing Equations
Restricting the discussion to a single component ideal
gas, the governing equations are the Navier-Stokes
equations written in integral form

( ) 0e vdV dS
t
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The volume of the domain is represented by Ω  and is
bounded by the surface Γ .  The equations describe the
evolution of the state vector, W, containing mass,
momentum and energy,
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The inviscid flux vector is e
αF , and the viscous flux

vector is v
αF .  Greek subscripts ( , 1,2,3)α β =  imply

coordinate directions ( , , )x y z  and αβδ is the Kronecker

delta.  This system of equations is closed by an
equation-of-state, p RTρ=  and initial and boundary

conditions.  In the above system, uα  is the velocity

component in the α coordinate direction, p is the
pressure, ρ  is the mass density, / 2E e u uα α= + , is the

total energy per unit mass (summation on α  implied),
T is the temperature and R  is the gas constant.  For a
single component gas, internal energy is defined,

( )/ 1ve C T p γ ρ= = −   , vC  is the specific heat at

constant volume and γ  is the ratio of specific heats.  It

is also convenient to introduce the specific enthalpy,
/h e p ρ= +  and the total enthalpy per unit mass as

2 2 2( ) / 2 /H h u v w E p ρ= + + + = + .

The primitive state vector is defined as

[ ], , , ,
T

u v w pρ=U .  A change in variables from

conservative to primitive is done by the operation

[ ]W = M U  where [ ]M  is given by,
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The viscous stress tensor has the form

2

3

u uu

x x x
β γα

αβ αβ
β α γ

τ µ µδ
 ∂ ∂∂= + −  ∂ ∂ ∂ 

and the heat-flux vector is

T
q

xα
α

κ ∂= −
∂

.

Constitutive equations are required to specify the
dynamic viscosity ( )Tµ , and the heat conduction

coefficient ( )Tκ .

Boundary conditions for Euler equations are 0=u ng
on impermeable surfaces and symmetry planes and
subsonic/supersonic inflow/outflow.  The slip condition
results in the following specification of the fluxes,

0

ˆ

ˆ

ˆ

0

x
wall
e y

z

pn

pn

pn

 
 
  =  
 
 
  

F . (1.1)

Subsonic/supersonic inflow/outflow boundary
conditions are based the characteristics of the Euler
equations [Whi93].  For Navier-Stokes equations, in
addition to the Euler equation boundary conditions, no-
slip velocity, 0=u , and either constant temperature or

adiabatic 0
T

n

∂ =
∂

 conditions are prescribed on solid

surfaces.  Here, ˆu iα α=u  is the velocity vector and n  is

a unit vector normal to the surface.  Specification of the
no-slip and constant temperature conditions requires a
change in variables from conservative to primitive via

[ ] 1−
U = M W .

Spatial Discretization
The SIERRA framework defines a computational
domain by a mesh of finite elements.  Data describing
the mesh are; nodes, edges, faces, elements and the
related connectivities.  State vectors are defined at
nodes.  Control-volumes are constructed for each node
and bounding control-surfaces around each control-
volume.   Control-volumes and control-surfaces are
defined by the median dual of the element mesh.  The
dual mesh is constructed by subdividing elements with
sub-control surfaces that intersect element surface
centroids, edge midpoints and the element centroid.
For example, an eight-node hexahedral when sub-
divided, contains eight sub-control volumes and twelve
sub-control surfaces.  In two dimensions, the sub-
control surfaces are line segments joining element
centroids with edge midpoints.  Examples are shown by
dashed lines in Figures 1 and 2.  The sum of sub-control
volumes (scv) sharing a common node define a control-
volume (CV) for node i
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( )
i j

j N i

V scv
∈

∆ = ∑

where N(i) is the set of sub-control volumes sharing
node i.  This construction results in non-overlapping,
space filling control-volumes.  The summation of sub-
control surfaces (scs) sharing an edge (distinguished by
the edge node pair, ij) define a bounding control-
surface.  An area vector ijSα , is defined as the sum of

projected areas of all the sub-control surfaces that share
edge ij, normal to the α co-ordinate direction,

( )
ij ij k

k E ij

S scsα α

∈

= = ∑S

where the kth scs touches edge ij and E(ij) is the set of
sub-control surfaces touching edge ij.  We require that
the summation of oriented areas be identically zero,

( )

0ij
j NE i

Sα

α∈

=∑ ∑

where the set of edges that contain node i is NE(i).  The
control-surface normal vector is defined as

ij
ij ij

ij

S
n

S

α
α

α= =n ,

and is oriented in the direction from node i to node j.
We also define area and normal vectors i iSα=S ,

i inα=n  on external boundary surfaces.

Cell-Centered Versus Node-Centered Spatial
Discretization
The discretization described above results in a node-
centered scheme (i.e., control-volumes are constructed
around mesh nodes).  The flux balance equations for
each control-volume are constructed by looping over
edges and external surface nodes.  Alternatively, a cell-
centered spatial discretization may be constructed by
treating each element of the mesh as a control-volume.
In this case, the unknown variables would be associated
with the centroid of the element and surface integrals
would be calculated on element faces.  The control-
volume would equal the element volume.  There are
efficiency issues that arise as a result of choosing cell-
centered vs. node-centered discretization.  The main
issue is the number of control-volume faces that must
be processed in the cell-centered case vs. the number of
edges that must be processed in the node-centered case.
Barth [Bar91] showed that there are twice as many
faces as edges for a given tetrahedral mesh in three
dimensions.  A significant amount of the computational

cost associated with finite volume schemes comes from
the flux calculations.  Therefore, the edge-based
scheme requires less effort than the cell-centered
scheme.  For, a hexahedral mesh, the difference in
effort is much less significant.
Edge-based schemes have a distinct advantage when
the mesh is heterogeneous.  In this case, the algorithms
for cell-centered schemes must adapt locally to the
element topology, while the edge-based algorithms are
transparent to the element topology.

One important drawback of the node-centered
discretization is that it is difficult to extend to higher
than second order accuracy.  This is due to the
requirement for increased connectivity and more
accurate quadrature.

Flux Quadrature
The semi-discrete form of the governing equations
require approximations to volume and surface integrals.
Let W represent the volume average of W.  Volume
integrals are approximated by

i

i i

V

V dV∆ = ∫W W .

Consider a  node labeled i that shares an edge with node
j.  Now let ij eij vij

α α α= +F F F  be the total flux vector

evaluated at the midpoint on edge ij.  Approximating
the surface integrals with the midpoint rule yields the
semi-discrete equation for iW

( )

0,    ( )i
i ij ij ij

j NE i

V i V
t ∈

∂ ∆ + = ∀ ∈Ω
∂ ∑W

F n Sg

.
( )

0,    ( )i
i ij ij ij i i i

j NE i

V i S
t ∈

∂ ∆ + + = ∀ ∈ Γ
∂ ∑W

F n S F n Sg g .

Note that algebraic conservation (excluding
inflow/outflow boundary fluxes) is assured by
recognizing that the fluxes crossing control surfaces
cancel exactly

ij ij ij ji ji ji= −F n S F n Sg g .

Variable Reconstruction and Limited Gradients
Higher-order upwind based control-volume schemes
are generally flux limited or gradient limited.  A
detailed discussion of each is given by LeVeque
[LeV92].  In either case, reconstruction is necessary to
represent unknown data at control surface using nodal
data.  In the present case, gradient limiting is used to
achieve higher-order.  One convenience that comes as a
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result of gradient limiting is that the gradients of
primitive variables are reused to construct the viscous
terms.  Evaluation of the flux function ij

αF , requires that

the state data be reconstructed at control surfaces (edge
midpoints).  State variables within the CV are assumed
to vary continuously.  At control-surfaces, variables are
discontinuous.  In order to resolve discontinuities a
Riemann solver is used.  The Riemann solver requires
the definition of a left (-) and right (+) state at each
interface.  A piece-wise constant approximation of the
left state (of any primitive variable u) is obtained from
the state at node i, and the right state from node j

ij i

ij j

u u

u u

−

+

=

=
.

Higher-order spatial accuracy is achieved by a multi-
dimensional MUSCL extrapolation of the variables to
the interface [van77] [Bar89].  A piece-wise linear
approximation is obtained from
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where iu∇  is the averaged gradient of u in control

volume i, ( )ij j i∆ = −r r r  is the distance from node i to

node j.  We note that this particular choice of
reconstruction is equivalent to Fromm’s scheme which
is part of a two-parameter family of reconstructions.  A
limiter function, [ ]0,1iΦ ∈ , limits iu∇  such that iju−  is

not a local minimum or maximum.  To calculate iΦ ,

the minimums and maximums of the nodal values
compared to its neighbors are computed
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The limit function must enforce the condition,
min max( )i iu u x uα≤ ≤ , everywhere within the control

volume.  The extrapolated values are calculated without
the limiter and the edge value ijφ , is defined such that

max
1
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min 1, , if 0
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ijφ
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Finally, the limiter for control-volume i is defined as
the minimum of all the edge limiter values,

( )
( )

mini ij
j NE i

φ
∈

Φ = .

The final reconstruction becomes
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This limiter was developed by Barth and Jespersen
[Bar89].  When applied to steady flows, this limiter can
produce "chatter" in the results.  Modifications that
delay the limiter until steep gradients are encountered
have been discussed in Hosangadi et al. [Hos96].
Venkatakrishnan [Ven95] has proposed modifications
that replace the discontinuous limit function with a
smoothly varying function.  While the new limiter does
not strictly enforce monotinicity of the reconstructed
fluxes, it has shown better convergence properties than
the Barth-Jesperson limiter
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in some cases.  The parameter ( )3
Khε = , is a function

of grid spacing and K is a small value (~0.1).  We note
that Aftosmis et. al [Aft95] has proposed limiting only
in the control-surface normal direction, thereby
reducing artificial dissipation tangent to the face.  We
have not implemented that here,
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In the case of non-isotropic limiting, the final
reconstruction becomes,

1

2ij i i iju u u− Φ= + ∇ ∆rg .

Green-Gauss gradient reconstruction
The control volume averaged gradient is calculated
using one form of the divergence theorem

V S

udV u dS∇ =∫ ∫ n¶ .

A discrete form is defined as,

( )
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j NE ii

u u dS u u S
V V

u u S
V

α
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∈

∈

∇ = ≈ +
∆ ∆

= −
∆

∑∫

∑

n¶
(1.2)

This formula is equivalent to midpoint quadrature on
hexahedral meshes and is equivalent to trapezoid
quadrature on tetrahedral meshes.  On Cartesian
meshes, this produces the canonical stencil for a
second-order central-difference approximation to the
first derivative.  It is also an edge-based formula and, in
a slightly modified form, is used on the boundaries.
The Green-Gauss gradient evaluation on simplexes has
the property that linear variation within the cell is
reconstructed exactly regardless of shape of the
element.  In order to recover this linear preserving (LP)
property on non-simplexes, a different approach will be
necessary.

Least-squares gradient reconstruction
Least-squares reconstruction preserves exact linear
gradients on arbitrary meshes.  The least-squares
system of equations for the gradient at node i are
formed by applying a Taylor’s series expansion on each
edge containing node i and neglecting higher-order-
terms, j i i iju u u= + ∇ ∆rg .

On hexahedral element meshes, distance-two node pairs
that share an element must be included in the gradient
evaluation.  In Premo this is done by looping over
hexahedral elements and defining virtual edges between
nodes of opposite corners and looping over
quadrilateral faces and defining virtual edges between
opposite nodes.  Haselbacher and Blazek [Has00] have
derived and summarized the three-dimensional
formulation of the un-weighted least-squares for
arbitrary meshes,
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This over-determined system of linear equations is
solved using a Gram-Schmidt process.  The three
gradient components can be written as a weighted sum
of differences between CV i and its neighbors
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where subscripts (x,y,z) denote differentiation and
superscripts denote component.  The set of edges
containing node i now contains the set of virtual edges
as well.  The weights are defined by geometric
quantities
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Implementation of the least-squares gradient
reconstructions requires that six floating point values

( )11 22 33 12 13 23, , , , ,r r r r r r  be stored at each node i.  Luo et

al. [Luo95] present results using a weighted least-
squares gradient reconstruction.

Inviscid Fluxes
The upwind advection scheme used in Premo is the
approximate Riemann solver of Roe [Roe81] [Hir90].
Spatial accuracy has been extended to higher-order
through MUSCL extrapolation as discussed earlier.
Selmin [Sel92] has shown that the Roe scheme provides
the minimum amount of artificial dissipation required
to ensure monotinicity.  A summary of Roe’s scheme is
given here.  The advection scheme has been formulated
as a one-dimensional Roe scheme in the direction
normal to each control surface.  The presentation
follows closely that of Whitaker [Whi93].  The inviscid
flux function is written as,

( ) ( ) � ( )1
, ,

2ij ij ij ij
+ − + − = + − − F F U n F U n A n U Ug (1.3)

where ( ), ,x y z=A A A A% % % %  is the vector of flux Jacobian

matrices and the edge identifier ij, has been removed
from the arguments for clarity.  The absolute value of
the matrix indicates that it was constructed from the
absolute value of the eigenvalue matrix.  The tilde
indicates Roe averaging.  The dissipation term is
written compactly as
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In the above equations the eigenvalues are

( ), , , ,l U c U U U U cλ = − +% % % % % %% % , u u u+ −∆ = − ,
2 2 2 2q u v w= + +% % % % , ˆ ˆ ˆx y zU un vn wn∆ = ∆ + ∆ + ∆% % % %  and

ˆ ˆ ˆx y zU un vn wn= + +% % % % .

Roe averages denoted with a tilde are defined as

ρ ρ ρ− +=%
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u u
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ρ ρ

ρ ρ
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+
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1
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ρ ρ

ρ ρ
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+
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+
%

and

( )( )21 2c H qγ= − −%% % .

An "entropy fix" (that prevents the artificial dissipation
from vanishing at the sonic points) is enforced through
a lower bound on the eigenvalues [Luo94].  This is
similar to the function proposed by Liou and Van Leer
[Lio88] and is given by
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l
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λ λ ε
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=  +
 <
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%

( )max ,0l l
j iKε λ λ = − 

and K is a small number.

Viscous Fluxes
There are different methods for calculating the viscous
terms.  A representative term in the viscous fluxes is

( )uµ∇ ∇g .  A straight-forward way to evaluate this

term is to apply the Green-Gauss theorem to the
average nodal gradients

( )
( )

1
ij

j NE iiS

u u dS u
V

µ µ µ
∈

∇ ∇ = ∇ ≈ ∇∑∫ n Sg g g¶

where 
2

i ju u
u

∇ + ∇
∇ =  and 

( )( ) ( )

2
i jT Tµ µ

µ
+

≈ .

Unfortunately, this produces a stencil that skips nearest
neighbor nodal values.  In one dimension assuming
uniform spacing i x∆ , the stencil for the second
derivative would be,

( )
2

2 22 2

1
2

4( ) i i i

u
u u u

x x + −
∂ = − +
∂ ∆

which is equivalent to a second-order accurate
approximation to the second derivative of u on a stencil
that is 2 x∆ !  Therefore, a more accurate and compact
support algorithm will be sought.  In the CHAD code,
O’Rourke et al. [ORo99] calculate the stresses at the
control surface using a correction to the Green-Gauss
gradient.  This correction stabilizes the computation of
the viscous terms,

( )
( ) ( )

( ) ( )
2
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2

i j
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i j ij
j i ij

ij

u u
u

u u
u u

∇ + ∇
∇ =

∇ + ∇  ∆
+ − − ∆   ∆ 

r
r

r
g

. (1.4)

The second term on the right hand side of Eq. (1.4)
produces the canonical stencil on regular meshes.  The
first and third term add a correction for non-orthogonal
meshes.  The average cell gradient is evaluated using
the third expression in (Eq. (1.2)) for hexahedral
meshes.  This has no effect on the calculation of
gradients for interior control volumes and requires no

special treatment or additional boundary surface
quadrature at nodes lying on external boundary
surfaces.  However, tetrahedral meshes do require
boundary surface quadrature.

Boundary Conditions
Nodes exist on external boundary surfaces in the edge-
based scheme.  These surfaces are treated as control
surfaces constructed from the dual of the external
element faces.  Each sub-control surface is assigned to a
boundary node and contributes to the flux balance for
that control volume.  In this way, different boundary
conditions sharing a common node are handled in a
straight-forward manner (e.g., corner nodes).  In
addition, the option exists for piece-wise linear
reconstruction of state variables at sub-control surface
integration points (centroids) using all element face
nodes and bilinear interpolation.  Unlike interior nodes,
boundary-surface fluxes are assembled by looping over
element faces instead of edges.  An inner loop over
surface nodes is then done to calculate the residuals.

Boundary conditions required for Euler equation
solutions include the flow tangency and inflow/outflow
conditions.  These boundary conditions are
implemented in a weak sense as flux conditions and
contribute directly to the residuals.  Flow tangency is
enforced by using Eq. (1.1).  Supersonic/subsonic
inflow/outflow are prescribed using the Roe flux
function and the definition of the free-stream primitive
state.  The left state is given by the node data and the
right state by the free stream data.  No-slip and constant
temperature conditions are enforced indirectly on the
nodes by relaxing the primitive nodal value to the
specified value.  For steady-state simulations this
results in the exact values that were specified.  An
option exists to extrapolate the Riemann invariants at
inflow/outflow boundaries in order to specify the right
state of the Riemann flux function [Chi85].

Time Integration
The semi-discrete equations are written as a system of
initial value problems and solved for transient and
steady-state from time n t∆  to ( 1)n t+ ∆
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1
,    ( )i

ij ij ij
j NE ii
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.
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∂ = − − ∀ ∈ Γ
∂ ∆ ∆∑W
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( )ni

t

∂ =
∂
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A multi-stage low-storage Runge-Kutta (RK) algorithm
has been implemented that provides 2nd-order accuracy
of transient simulations,
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.

The four coefficients are;

1 2 3 41/ 4,  1/3,  1/ 2,  and 1.0α α α α= = = = .

While this method is efficient for the time accurate
Euler equations at high Mach number, RK suffers from
a stability restriction making it inefficient for most
viscous and steady-state solutions.  Development of a
fully-implicit matrix-free Newton-Krylov (MFNK)
method (similar to that developed by Luo et. al [Luo98]
[Luo01]) is underway and will be reported on in the
future.

Results  
Results will be presented for six inviscid and one
viscous flow.  In the current state of development,
Premo solves the three-dimensional equations.  One-
and two-dimensional flows are solved by applying
symmetry boundary conditions in the y and z, or z
directions respectively.  All the meshes were generated
using the CUBIT code [Owe02] developed at Sandia
National Laboratories expect for the airfoil mesh which
was converted to unstructured format from a structured
mesh.

Shock-Tube Problem
The shock-tube problem is similar to the problem
proposed by Sod [Sod78].  A one-dimensional domain
spanning from x=-0.5 to x=0.5 is discretized with 101
nodes.  At x=0, a high pressure, high density region is
separated from a low pressure, low density region by a
diaphragm.  The left state is defined by 0 1.0p = ,

0 1.0ρ = , 0 0u = , and the right state is defined as

1 0.25p = , 1 0.25ρ = , 1 0u = and γ  = 1.4.  At time t=0,

the diaphragm is removed.  A shockwave propagates
from left to right followed by a contact discontinuity
and an expansion fan propagates from right to left.  The
exact solution is the solution to the Rankine-Hugoniot
relations.  Figure 3 presents a comparison of the Premo
predictions with the analytic results.  Predictions are
represented by symbols, analytic solutions are

represented by solid lines.  The comparison is quite
good.

2D Supersonic Wedge
Flow over a 10 degree wedge in two-dimensions was
also simulated.  The inflow conditions were Ma=2.5,
p=101,325 N/m2, T=300 K, and γ =1.4.  The mesh

contained 60x50x3 nodes.  Uniform spacing in the x-
direction was used.  Figure 4 presents pressure contours
of the flow for both the first-order and second-order
schemes.  The pressure and density rise in both cases
match the theoretical result to within 2% everywhere
behind the shock except near the leading edge of the
wedge where errors increase to ~5-8%.  The theoretical
shock angle is predicted to within 1% by the first-order
scheme and to within 10% by the second-order scheme
on this very coarse mesh.

2D Shock Reflection
Figure 5 shows a snapshot of a transient calculation of
shock impingement.  This produces a self-similar
solution.  The Mach number was 1.7, the wedge angle
25 degrees.  The domain was 0.25 m x 0.165 m and the
mesh contained 300x150x2 nodes.  This problem is
discussed in Toro [Tor99].  The shock impinges on the
wedge and a reflection occurs.  Density contours reveal
the shock location, slip surface and triple point.
Depressions in the contours mid-way up the curved
reflection are due to lingering errors in the specification
of properties within the shock in the initial conditions.
This issue is discussed by Toro.

3D Supersonic Sphere-Cone
The flow over a three-dimensional sphere-cone
geometry was computed.  Only one half of the domain
was computed.  A symmetry plane was placed at y=0.
The mesh contained 99,000 nodes.  The flow conditions
were as follows; Ma=4, p=101,325 N/m2, T=300 K,
angle-of-attack was 20 degrees.  A snapshot from the
solution is presented in Figure 6.  Flow is from right to
left.  Flooded contours of pressure reveal the shock
location.  The black lines are velocity streamlines.  A
high pressure stagnation region behind the detached
shock is also present.  The shock standoff distance was
compare with experimental correlations and found to be
in very good agreement.  For Ma=4 and sphere radius
equal to 0.103 m, the standoff distance is ~0.018m
[Lie57].

2D Supersonic Circular Arc Channel
This problem was first proposed by Ni [Ni82].  The
domain was a two-dimensional channel with
dimensions 3x1.  A 4% thick bump, of length one, was
positioned in the center of the channel.  The Mach
number was 1.4.  Two meshes were used to solve this
problem.  The first mesh was made up of 3,200
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hexahedral elements with one element in the z-
direction.  The mesh contained 6,666 nodes or 3,333 in
the x-y plane.  The second mesh used 19,777
tetrahedral elements with approximately two elements
in the z-direction and a total of 5,523 nodes.  The two
meshes are shown in Figures 7a and 7b.  While an
attempt to maintain approximately equal spacing was
made, these two meshes are significantly different.

Three cases were run on the hexahedral mesh; Green-
Gauss (GG) gradient reconstruction with the Barth-
Jespersen limiter (BJ), Least-Squares (LS) gradient
reconstruction with the BJ limiter and first-order
upwind.  Two cases were run on the tetrahedral mesh;
LS gradient reconstruction with the BJ limiter and first-
order upwind.  Pressure contours are shown in Figures
7c-7g.  It is evident that the linear reconstruction
schemes provide much better shock resolution
compared to the first-order schemes.  Comparisons of
the pressure coefficient between the three second-order
cases are presented on Figure 8a and for the two first-
order cases in Figure 8b.  The initial and reflected
shocks are predicted to be in the same location while
the peak pressures differ between the hexahedral and
tetrahedral simulations.

2D NACA 0012 Airfoil
This is a classic problem for Euler solvers.  A
129x33x2 node O-mesh with chord length equal to one
and far-field boundary at a radius of 25 chord lengths
was used.  A portion of the mesh near the airfoil is
shown in Figure 9a.  Two cased were run.  Both used
GG gradient reconstruction with either the BJ or the
Venkatrakrishnan limiter.  The Mach number was 0.8
and the angle-of-attack was 1.25 degrees.  Four orders
of magnitude reduction in the L1 and L2 density norms
were observed at steady-state.  Pressure contours are
shown in Figures 9b and 9c for the two cases and the
pressure coefficients for both cases are shown in Figure
9d.  No significant differences can be discerned
between the two cases.

2D Laminar Boundary Layer
The final problem that will be presented was chosen to
test the implementation of the viscous terms in the
Navier-Stokes equations.  A flat-plate boundary layer
has been computed and compared to the Blasius
solution.  A stretched Cartesian mesh was generated
with a buffer zone preceding the flat plate.  The mesh is
shown in Figure 10a.  The buffer zone was necessary to
damp transient waves as they approached the inflow
boundary.  The buffer zone was 0.1x0.05 m containing
10x80x2 nodes.  The mesh above the flat plate was also
0.1x0.05 m and contained 100x80x2 nodes.  The
Reynolds number based on plate length was 62,500 and
the Mach number was 0.5.  The smallest mesh spacing

normal to the wall was 5.0x10-5 m.  Comparisons
between predicted u and v velocity components with the
Blasius solution at three locations; x/L=1/4, 1/2, and
3/4, where L is the plate length are presented in Figures
10b and 10c.  The second-order scheme with GG
gradient reconstruction and no limiter was used for this
case.  The simulation was run using first-order time
stepping.  The duration to steady-state was t=0.00229
sec.  The agreement with theory for both u and v is very
good.  The only significant discrepancy is in v near the
outflow boundary.

Discussion  
A new compressible flow solver has been written as a
module for the Sandia National Laboratories ASCI
applications framework SIERRA.  The code uses state-
of-the-art spatial discretization.  One-, two-, and three-
dimensional solutions to the Euler equations have been
presented.  Both steady-state and transient flows have
been simulated.  A two-dimensional solution to the
Navier-Stokes equations has also been presented.
These results demonstrate current capabilities of the
code.  A rigorous verification of the Euler and Navier-
Stokes equations, both subsonic and supersonic, has
been conducted by Roy, Smith and Ober [Roy02] using
the method of Manufactured Solutions.  Their results
demonstrate second-order accuracy on uniform meshes.
Work is continuing to improve subsonic boundary
conditions.  In addition, work has begun on the implicit
solver and parallelization of the code.

An important goal of this project is to produce a
general-purpose, state-of-the-art CFD simulation tool
that is flexible, maintainable, easy to use and robust.
Spatial algorithms have been chosen based on accuracy,
robustness and flexibility.  These algorithms will form
the kernel of the general-purpose code.  Rapid
development of Premo was aided by the SIERRA
framework which provided many services common to
computational mechanics codes thus freeing the
developers to concentrate on developing algorithms
specific to the physics module.

Future developments will include solvers for a wide
range of governing equations such as Reynolds
Averaged Navier-Stokes, chemically reacting Euler and
Navier-Stokes as well as reduced models such as
parabolized Navier-Stokes and thin-layer Navier-
Stokes. Arbitrary body motion, relative body motion
and coupled physics are also planned.
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Figure 1. Quadrilateral element patch                      Figure 2. Triangle element patch

 and dual mesh.                      and dual mesh.

Figure 3 One-Dimensional shock-tube profiles.
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(b)(a)

(b)(a)

Figure 4. Flow over a two-dimensional wedge, a) 1st-order and b) 2nd-order scheme.

Figure 5. Shock impinging on a two-dimensional wedge.

Figure 6. Supersonic flow over three-dimensional sphere-cone at angle of attack; a) mesh and
b) pressure contours and stream lines.
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(b)(a)

(a)

(c)

(f)

(d) (e)

(g)

(b)

Figure 7. Supersonic flow in a circular arc channel; a) hexahedral mesh, b) tetrahedral mesh, c) GG-hex,
d) LS-hex, e) LS-tet, f) 1st order-hex, and g) 1st order-tet pressure contours.

Figure 8. Pressure coefficient on channel surface with circular arc; a) 2nd-order schemes, b) 1st-order
schemes.
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(b)

(c)

(b)(a)

Figure 10. Flat-plate boundary layer; a) mesh,
b) u velocity component and c) v velocity
component.

(a)

(c)

(d)

Figure 9. NACA 0012 airfoil at angle-of-attack; a) O-mesh, b) GG-BJ pressure contours, c) GG-Venkat
pressure contours and d) pressure coefficient.


