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Decentralized Control of Cooperative Robotic
Vehicles: Theory and Application
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Abstract--This paper describes how decentralized control
theory can be used to control multiple cooperative robotic
vehicles. Models of cooperation are discussed and related to the
input/output reachability and structural observability and
controllability of the entire system. Whereas decentralized
control research in the past has concentrated on using
decentralized controllers to partition complex physically
interconnected systems, this work uses decentralized methods to
connect otherwise independent non-touching robotic vehicles so
that they behave in a stable, coordinated fashion. A vector
Liapunov method is used to prove stability of two examples: the
controlled motion of muitiple vehicles along a line and the
controlled motion of multiple vehicles in formation. Also
presented are three applications of this theory: controlling a
formation, guarding a perimeter, and surrounding a facility.

Index Terms—Autonomous Vehicles, Decentralized Control,
Robot, Stability.

1. INTRODUCTION

N recent years, there has been considerable interest in the
control of multiple cooperative robotic vehicles. The vision
being that multiple robotic vehicles can perform tasks faster
and more efficiently than a single vehicle. This is best
illustrated in a search and rescue mission where multiple
robotic vehicles would spread out and search for a missing
aircraft. During the search, the vehicles share information
about their current location and the areas that they have
already visited. If one vehicle’s sensor detects a strong signal
indicting the presence of the missing aircraft, it may tell the
other vehicles to concentrate their efforts in a particular area.
Other types of cooperative tasks range from moving large
objects [1] to troop hunting behaviors [2]. Conceptually, large
groups of mobile vehicles outfitted with sensors should be
able to automatically perform military tasks like formation
following, localization of chemical sources, de-mining, target
assignments, autonomous driving, perimeter control,
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surveillance, and search and rescue missions [3-6].
Simulation and experiments have shown that by sharing
concurrent sensory information, the group can better estimate
the shape of a chemical plume and therefore localize its source
[7]. Similarly, for a search and rescue operation, a moving
target is more easily found using an organized team [8-9].

In the field of distributed mobile robot systems, much
research has been performed and summaries are given in
[10][11]. The strategies of cooperation encompass theories
from such diverse disciplines as artificial intelligence, game
theoretical biology, distributed
computing/control, animal ethology, and artificial life.

Much of the early work focussed on animal-like
cooperative behavior. Arkin [12] studied an approach to
"cooperation without communication” for multiple mobile
robots that are to forage and retrieve objects in a hostile
environment. Kube and Zhang [13] also considered
decentralized robots performing tasks "without explicit
communication." Much of their study examined comparisons
of behaviors of different social insects such as ants and bees.
They considered a box-pushing task and utilized a
Subsumption approach [14-15] as well as ALN (Adaptive
Logic Networks). Similar studies using analogs to animal
behavior can be found in Fukuda et al. [16]. Noreils [17]
dealt with robots that were not necessarily homogeneous. His
architecture consisted of three levels: functional level, control
level, and planner level. The planner level was the high-level
decision maker. Most of these works do not include a formal
development of the system controls from a stability point of
view. Many of the schemes such as the Subsumption
approach rely on stable controls at a lower level while
providing coordination at a higher level.

Other methods for controlling a group of vehicles range
from distributed autonomy [18] to intelligent squad control
and general purpose cooperative mission planning [19]. In
addition, satisfaction propagation is proposed in [20] to
contribute to adaptive cooperation of mobile distributed
vehicles.

Most recently, researchers have begun to investigate using
decentralized control techniques and graph theory to control
multiple vehicles. Some simulations [21] have shown that a
wireless network of mobile robots can be modeled as an
undirected graph. In addition, Desai et al. [22-23] uses
directed graph theory to control a team of robots navigating
terrain with obstacles while maintaining a desired formation
and changing formations when needed. Chen and Luh [24]



examined decentralized control laws that drove a set of mobile
robots into a circle formation. Similarly, Yamaguchi studied
line-formations [25] and general formations [26], and so did
Yoshida et al, [27]. Decentralized control laws using a
potential field approach to guide vehicles away from obstacles
can be found in [28-29]. Beni and Liang [30] prove the
convergence of a linear swarm of distributed autonomous
vehicles into a synchronously achievable configuration. The
decentralized localization problem is examined by
Roumeliotis and Bekey [31] and Bozorg et al. [32] via the use
of distributed Kalman filters. Uchibe et al. [33] use Canonical
Variate Analysis (CV A) for this same problem.

In this paper, we address the stable control of multiple
vehicles using large-scale decentralized control techniques.
The objective is to first analyze whether a large group of
robotic vehicles, that is spread over an extensive spatial
terrain, is input/output reachable and structurally controllable
and observable. This depends on the communication paths
available between vehicles and the information transmitted
and received. Once we know that a system is structurally
controllable and observable, we use provably asymptotically
stable control laws to regulate the coordinated motion of the
vehicles. The stability of these control laws is proven with a
vector Liapunov technique.

The following section first describes the model of
cooperation used in the analysis. This is followed by a
stability analysis of two cases: the controlled motion of
multiple vehicles along a straight line and the controlled
motion of multiple vehicles in a formation. The remaining
sections discuss how this theory has been implemented on a
test platform for several applications.

1. MODEL OF COOPERATION

In this section, a group of robotic vehicles is modeled as a
large dimensional interconnected system. It is a well-known
fact that testing controllability and observability is a difficult
numerical problem for large dimensions. Because of this,
simple binary tests have been developed which test for input
and output reachability and structural controllability and
observability [34]. These tests are valid not only for the
nominal nonlinear system but also for perturbed systems
where the exact system parameters are unknown. Once
controllability and observability have been assured, vector
Liapunov techniques exist for testing asymptotic stability of
the overall system. The analysis below shows some of the
progress made in understanding how these techniques can be
used in the design of large-scale distributed cooperative
robotic vehicular systems.

Suppose that the overall system is denoted by

S =)

vy =h(t, x)
where x(r)e R" is the state of S (e.g., x, y position,

(1)

orientation, and linear and angular velocities of all vehicles) at

time te T, u(r)e R™ are the inputs (e.g., the commanded

wheel velocities of all vehicles), and y(t)e R’ are the outputs
(e.g., GPS measured x,y position of all vehicles). The function
fiTXxR"xR™ - R" describes the dynamics of S, and the
function A:TxR" — R’ describes the observations of .

We can partition the system into N interconnected subsystems
given by

S: x =ﬁ(t,x,—,u,-)+]~°,-(t,x,u),
¥i = hilt.x;)+ B (1, %)

ieil...N
e P
where x;(t)e R™ is the state of the ith subsystem S; at time
te R, u;(f)e R™ are the inputs to S;, and y;(t)e R are
The function f; :TxR" xR™ — R™
of §;, and the

the outputs of §;.

describes the dynamics function

fi :TXR"xR™ - R"™ represents the dynamic interaction

of §; with the rest of the system S. The function

B :TXR" — R represents observations at S; derived only

from local state wvariables of §;, and the function

E‘- TR 5> R represents observation at S;derived from
the rest of 8. The N independent subsystems are denoted as
S;: &= fitthxu) ief..N}
yi = hilt, x;)

To determine input and output reachability and structural
controllability and observability, we want to determine which
inputs, outputs, and state variables affect each other through
either a linear or non-linear relation. To perform this

operation, it is convenient to write the state interconnection
function as

(3)

file,xu)= f; (‘- A1 X1 A X7 e iy Xy By 1y, Bipl 5. by )

iefl,...N}

@)
where the matrices @; € B""" and Ej e B"™ ™ and the
elements of the matrices are

(_ ) L, (x j )q occurs in ()?, (r, x,u)) o
Yiilpg = 0, (ch )q does not occur in (f: (t,x,u))p w
(E;,J,) - 1, (u i )r OCCUTs in (f, (t, f u))p ©
pes e (u f)r does not occur in (f,- (t,x,u) 5
where ge {nJ} , PE {n‘-}, and re {mj} Similarly, the
observation interconnection function may be written as
hi(t.x)= b (t.enx1, €2 %0 0 Ciyxy ) i€ N} (D
where ¢;; € B“*™ and the elements of the matrix are
(EU ) £ 1e (x j )q occurs in (El (t, x))z "

/] (1] (x 5 )q does not occur in (f:, (z, x))z

where ge {nj}and ze{t;}. Using these definitions, the



interconnection  matrix of 8 is a  binary
(n+m+ E)x(n+ m-HE‘) matrix defined as
A B O
E=(0 0 0 (C)]
¢ 00

where the matrices A = (c_z‘-j), B (Eu) and E’-=(E,-j). The
three rows and columns of the interconnection matrix
represent the coupling between the state, input, and output
variables. For large scale systems, the interconnection matrix
E is often represented as a directed graph mapping state, input,
and output variables from one subsystem to another
subsystem. By searching this directed graph, it is possible to
check for input and output reachability of the system [34].
Input reachability tells us if we can reach all the state variables
from the input variables, while output reachability tells us if
we can reach all the output variables from the state variables.

Mathematically it is possible to check for input and output
reachability using the reachability matrix

R=EvE%v.vE = (10)

<ol T
R
(== =)

where s=n+m+/¢, E* = ¥ A E, v is the Boolean “or”
operator (0v0=0,0vl=1v0=1vi=1), and A is the
(IA1=1,0A1=1A0=0A0=0).
For two sxs binary matrices A=(ai-jJ and B=(b,-_,—). the

Boolean “and” operator

Boolean operations C=(c,-jJ=AAB and D=(d,j)=AvB

&
are defined b)’ cij = k\il(a,-k Abkj) and dU = a,-j v b‘l g

The system S is input reachable if and only if the binary
matrix G has no zero rows, and it is output reachable if and
only if the binary matrix H has no zero rows. The system S
is input-output reachable if and only if the binary matrix & has
neither zero rows nor zero columns, A system is structurally
controllable if it is input reachable and the corresponding
directed graph has no dilations, essentially meaning that there
are enough input variables available to independently control
all state variables.  More formally, a directed graph
D=(UuX .E) is said to have a dilation if there exists a

subset X; < X , such that the number of distinct vertices of
D from which a vertex in X is reachable, is less than the
number of vertices of X, . In this definition, the set of input

variables is U , the set of state variables is X , and E is the
set of edges connecting the set of vertices UuX . No

dilation exist when the generic rank pﬂ;{ §D= n where A

and B are the same as A and B except the “1” elements can
take on any value. Similarly, a system is structurally
observable if it is output reachable and the corresponding
directed graph D =(X ¥, E ) has no dilations (i.e. generic

cae AT & P
Feedback may be added to the system with
u =k, y)+kiey)  iefl..N}
where the feedback interconnection function is given by
ki(e,y)= E:(:Erl J’lsk-in’%---:EfNYN)

g s
"} and the elements of the matrix are

(an

(12)

and I?,-j €B
(E) )L (y f)z occurs in (f, (z, y))r

¥ " o, (yj )z does not occur in |i; (1, y) o

where re {m;}and ze {l‘ j}. With the feedback

(13)

interconnection matrix denoted by K = (I?,J) the system
interconnection matrix becomes
A

E=|0

o o W

0
K (14)
C 0

Again, the reachability matrix (R=E v Elv..v E*) may be
used to determine input/output reachability and structural
observability and controllability.

Note that in most prior research on decentralized control the

state interconnection function f; (t,x,u) is non-zero, while the

feedback interconnection function I:',;- (,v;) is zero. In other

words, typically it is desirable to stabilize a complex
interconnected system using only decentralized controllers.
However, in the case of multiple non-touching robotic
vehicles, we have many non-interconnected systems, but we
want to connect these systems through communication so that
they behave in a coordinated fashion. For this case, the state

interconnection function f,(r x,u) is zero, and feedback

interconnection function k;(z, y;) is non-zero.

As an example, let us analyze a simple one-dimensional
problem in which a linear chain of interdependent vehicles is
to spread out along a line as shown in Figure 1. The objective
is to spread out evenly along the line using only information
from the nearest neighbor.

Assume that the vehicle's plant is modeled as a simple
integrator, and the commanded input is the desired velocity of
the vehicle along the line. A feedback loop and a proportional
gain K, are used to control each vehicle’s position. Figure 2

shows a block diagram of the control system. The dynamics
of each subsystem is

S;: % =—-K,x+Kpu, iefl..N} -

¥y =% ‘

where x;is the position of the ith vehicle, u;is the control
input, and y; is the observation. Assume the control of each
vehicle is a function of the two nearest vehicles’ observed
positions, and the boundary conditions on the first and last
vehicle are 1 and 0, respectively.



up =1+mw,
ui =Yy + yi) i€ {2..N-1} (16)
Uy =WnN-
where ¥ is the interaction gain between vehicles. The
interconnection matrix of this system is
A B 0]
E=[0 0 K (17
cC 0 0
where A=B=C=1,
[0 1 0 «« 0]
O | 0
K=|0 10 alep™ (18)
: - ol
6 00 1 B

and 7 is the identity matrix of dimension NxXN . In this

problem, the reachability matrix R=EvE*v..vE® is a
3N x 3N matrix of all ones, meaning that any state, input, or
output can reach any other state, input, or output. Since the
system is input and output reachable and there are no
dilations, we know that the system is structurally observable
and controllable.

f=1f

Figure 1. One-dimensional control problem. The top line is
the initial state. The second line is the desired final state.
Vehicles 0 and 3 are boundary conditions. Vehicles 1 and 2
spread out along the line by using only the position of their
left and right neighbor.

1
+
X Y
1(8) >1(S)
+
4
Y
e
+ 1
lQ K, o - X5 (s) ll’g(S)
+ Ua(s) _ s
¥
4
+
&
- K, |» % X v (s)] | Y (s)
+ N(S)_
0

Figure 2. Control block diagram of N-vehicle interaction
problem.

IOI. STABILITY OF LARGE SCALE SYSTEMS

Once we know that a system is structurally observable and
controllable, the next question to ask is that of connective
stability. Will the overall system be globally asymptotically
stable under structural perturbations? Analysis of connective
stability is based upon the concept of vector Liapunov
functions, which associates several scalar functions with a
dynamic system in such a way that each function guarantees



stability in different portions of the state space. The objective
is to prove that there exist Liapunov functions for each of the
individual subsystems and then prove that the vector sum of
these Liapunov functions is a Liapunov function for the entire
system.

To simplify matters, we will assume that the control
function has already been chosen and the closed loop
dynamics of the system can be written as

S: X =g;(tx)+g;(tx), ie{l,...N}
The interconnection function can be written as
2:(t,x)= g:(t.eyxy B xp iy xy) i€ {L... N} (20)

(19)

H)(ﬂ

where e;e B/, and the elements of the fundamental

interconnection matrix E = ( € )are

(x : )q occurs in (g;(t, x,u)) -

1,
( ij )m lO, (xj )q does not occur in (§i (t,x,u)) 2L

i
where ge {nj} and pe {n}.
The structural perturbations of S are introduced by

assuming that the elements of the fundamental interconnection
matrix that are one can be replaced by any number between

zero and one, i.e.
(0.1,
e,-j = 0

Therefore, the elements e;; represent the strength of coupling

EU =1
e; =0. 2

between the individual subsystems. A system is connectively
stable if it is stable in the sense of Liapunov for all
possible E =(e,-j) [34]. In other words, if a system is

connectively stable, it is stable even if an interconnection
becomes decoupled, ie. e; =0, or if interconnection

parameters are perturbed, i.e. 0<e; <1. This is potentially

very powerful, as it proves that the system will be stable if an
interconnection is lost through communication failure.

For linear systems such as in Figure 2, the linear system
dynamics may be written as

fefL.. Ny, BB

N
S: x=Ax;+ Zle,-jA,-jxj.
J=

and the Liapunov function for each individual subsystems is
2
vi(x; )= (x,T H ,;x,-)!/ where H; is a positive definite matrix.
For the system S to be connectively stable, the following test
matrix W = (wy) must be an M-matrix (i.e., all leading
principal minors must be positive) [34]:
n(Gi) o i2(uTa) i=
wy; =424y (H;)
g y2(.T
~ &y (Aij Aijl

where the symmetric positive definite matrix G; satisfies the

24)
i#j

Liapunov matrix equation Af H; + H;A; =—G;, and A,,(e)

and Ay (-) are the minimum and maximum eigenvalues of

the corresponding matrices.
In the example, the test matrix becomes

K, -K,y 0 0
K,y Kp —Kp¥ :
w=| 0 K, K, g 1. 29
: =K ¥
0 . Sltge Ky |

For N=2, this test matrix is an M-matrix (i.e. the system is
connectively stable) if |y| <1. For N=3, the system is

connectively stable if |;v1<L For N=4, the system is

V2
connectively stable if M <0.618. Notice how the range of
the interaction gain gets smaller for larger sized systems. In
fact, for this particular example, the interaction gain range
reaches a limit of lyl < 0.5 for infinite numbers of vehicles.

This same analysis can also be performed in the discrete

domain [35]. Consider a discrete dynamic system described
by

N
S: x;(k+1)= Ayx;(k)+ X ;A x; (k) ie{l...N} (26)
=l
, ; T /2
and a Liapunov function v,—(x,-)=(x,- H,-Jc,-)l The test
matrix is
i=j

L
g _elj‘;}" l-'»tj

where & =1- [1- : )
Ay \H

and A,-{ H: A;—H ,* =-], and the superscript * denotes the
Hermitian operator.

Inserting a zero order hold function before the integrator in
Figure 2, we can transform our example problem above into
the discrete time domain as shown in Figure 3. The sampling
period is denoted by 7. The sampling period is both the
communication and position update sample time. The state
equations of the system are

(27)

Sij = ﬂh‘?(“*g‘*ij)-

S: x(k+1)=(1-K ;T (k)+ 9K ,Tx, (k)
x,-(k+1)-(1—KpT)x,- )4+ 7K pTxiy (k)4 9K T (k)
ie{2,.,N-1}
w(k+1)= (1=K, They (€)+ K ,Txy 1 (k)
(28)
If O<K'_,,TS1.theresultingtestmatrixis
[ B =K Ty 0 9
-K Ty K,T -K, Ty :
W=| 0 —K,Ty K,T o .
: -K,Ty
0 0 -K,Ty K,T |

(29)



and if 1< KPT < 2, the test matrix is

[e-&,7) -&,Ty 0 G 4
-k, Ty [-k,T) -K,T¥ ;
w=| 0  -Kk,Ty (-k,T) 0
: K Ty
o0 0 -k, Ty [2-K,7),
(30)
|
+
+ ! | x Yi(s
U Ky I z—1 i L()
4
4
i3 -
17" | Xa09)] |
Us(s) el li 12-1 Bing
+ T[%= -
4
Y
% -
7 Yn(s)
T X N
U()Q K”-’lz‘l
5 =
+ N(s) | z
C

Figure 3. Discrete time control block diagram of N-vehicle

interaction problem.

For N=2, the test matrix is an M-matrix, and the system is
connectively stable if
It 0<K pT <l
M < L—l,
K,T

Figure 4 illustrates the stability region for the case of N=2.
The dark region represents stable combinations of the
interaction gain ¥ and K pI (proportional control gain

1<K,T<2 @1

multiplied by the sampling period). The white region
represents unstable combinations of ¥ and K pT - We refer

to the dark region as a stability “house” due to the shape of the
stable zone. The size of this stability house varies only with
N. As N is increased, the house gets smaller in width but
maintains the same height and shape. Figure 5 shows the
stability region for N=70000.

2 Wehicles

KpT

0.8

0B

0.4

0.2

-1 -08B 06 D4 02 0 02 04 06 0B 1
Interaction gain

Figure 4. Stability region for the N=2 vehicle case.

10000 Vehicles

-1 08 06 04 02 0 02 04 06 DB 1
Interaction gain

Figure 5. Stability region for the N=10000 vehicle case.



For this particular example, another way to check the
stability of this linear system is to check that the eigenvalues

of the system matrix A are within the unit circle. There is a Step-Rdaponsa
special formula (p. 59 of [36]) for the eigenvalues of A given i
by

in i
z’t,-(A)=1—KpT+2KpTycos(m), i=L---,N. (32)

E ]
B
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()
. Figure 6. Step response of (a) single vehicle withK ,T =0.1,
- . (b) single vehicle with K,T =1, (c) single vehicle with
T (nn,) K,T =17, (d) two vehicles with K,T =0.1 and y=0235,
(c) (e) two vehicles with K ,T =1 and y=0.5, (f) two vehicles

with K,T =17 and y=05.



From this formula, we can see that as N —oo the cosine term
becomes unity. This implies that ¥ must stay between —0.5

and 0.5 for K ,T less than one in order to maintain stability.
For K ,T greater than one, the admissible ¥ values taper off
parabolically (the sloped “roof™) until X =2

It is instructive to look at the step response of one and two
vehicles to understand why the interaction gain limits on the
stability house converges so quickly to +0.5. The step
responses of a single vehicle with varying K pT are shown in

Figures 6(a)-(c). A single vehicle is stable when
0< K ,T <2, however, the step response will overshoot for

I1<K,T'<2. The step responses of two interconnect

vehicles with the same values of K ,7 are shown in Figures

6(d)-(f). With an interaction gain of 0.5, two vehicles are
stable if 0< K ,7' <1.33 (note this range is smaller than for a

single vehicle). When K pT=1.7, we can see that the

overshoot of each vehicle is amplified by the other until both
go unstable. When more vehicles are involved, any amount of
overshoot can cause the whole group to go unstable.

It must be remembered that the above example assumed
that the sampling period for both communication and position
are the same. It can be shown that if the position sampling
period is much less than the communication sampling period
T, then the stability region is independent of T and only
dependent on the interaction gain ¥ . In the limit, the position

feedback loop may be modeled as a continuous time system,
and the zero order hold may be moved outside the position
feedback loop. As long as the position feedback loop is stable
(K » >0), then there will be no overshoot in driving the

vehicle, and the vehicle will stop at the desired position given
by y(xiy+ X;41) at each communication sample period.

Intuitively this result is obvious.
Several conclusions can be drawn from this stability
analysis.  First, asymptotic stability of vehicle positions

depends on vehicle responsiveness K p» communication

sampling period 7, and vehicle interaction gain . If the
vehicle is too fast (large K p) or the sample period is too long

(large 7) then the vehicles will go unstable. There is a
dependence on interaction gain for stability as well. Second,
the interaction gains can be used to bunch the vehicles closer
together or spread them out. Third, the stability region shrinks
as the number of vehicles, N, increases but only to a defined
limit.

To further demonstrate the power of this stability analysis,
let us next consider the stability of a formation control
problem where the desired position of each vehicle is a
function of the position of all the vehicles. To simplify the
problem, we will assume that the vehicles’ x and y positions
can be independently controlled. This assumption is valid if
each vehicle’s position is controlled at a faster servo rate using

the inverse Jacobian control law given in the appendix.
Considering only the x position of the vehicles, the dynamics
of each subsystem is again assumed to be
S, x;,=—K,. x;+K u;, ieil...N
i i pri pHi { } (33)
Y=k

where x;is the position of the ith vehicle, u;is the control
input, and y; is the observation. In the previous example, the

control of each vehicle is dependent on the position of the two
neighboring vehicles. For formation control, the control of
each vehicle is a function of all the vehicle positions. Assume

the control of each vehicle is a constant position offset x;,

plus the sum of the position of each vehicle multiplied by an
interaction gain .
N
wp =X;, + Y Zly,-, ie{l,..N} (34)
j=
In this example, the feedback interaction matrix K is a
matrix of all ones, and the reachability matrix is also a matrix
of all ones. Since the system is input and output reachable
and there are no dilations, we know that the system is
structurally observable and controllable.  The resulting
stability test matrix is
o _[Kpl=7) i=j
LA R 4 S

and it is an M-matrix (ie. the system is connectively

(35)

asymptotically stable) if and only if y < % It is interesting

to note that when ?=Tr:',7’ the vehicles will converge to their

offset formation position about the average position of the

g : 1 ; ; Y

vehicles given by x;, +F 2 x; . While this condition is
e

stable, it is not asymptotically stable because the group does
not converge to the origin. In order to make the vehicles
converge in their formation and the entire group to move to

the origin, the interaction gain }f<7\1-f—. Of course, when

driving the vehicles in formation from point A to point B, we
move the origin along the line connecting the two points and
compute the x and y values with respect to the new origin.

IV. EXPERIMENTAL TEST PLATFORMS

To test the analysis provided in the previous sections, we
have developed a squad of semi-autonomous all terrain
vehicles for remote cooperative sensing applications (see
Figure 7). The system has been used to demonstrate the
feasibility of using a cooperative team of robotic sentry
vehicles to investigate alarms from intrusion detection sensors
and to surround and monitor an enemy facility.
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Figure 8. The base-station’s graphical user interface displays
vehicle status, remote sensor status, video, and GPS position
on a GIS map.

The "Roving All Terrain Lunar Explorer Rover"
(RATLER™) vehicles are electric, all wheel drive vehicles
with two composite bodies joined by a passive central pivot.
This flexible structure when combined with an aggressive
asymmetric tread on custom carbon composite wheels
provides agile off road capabilities. With a PC104 Intel
80486, the RATLER vehicles are fully equipped with a wide
range of sensors and peripherals. Software on the vehicles is
currently a single-threaded DOS-based application for
simplicity. The vehicles have been programmed to operate
either through tele-operation or autonomously. The RATLER
vehicles rely on Radio Frequency (RF) signals for
communications. Currently, the vehicles are outfitted with
differential GPS receivers, and two spread spectrum RF

modems. One modem is for inter-vehicle and base-to-vehicle
communication and the other is for the differential GPS
correction. Video cameras communicate to the base-station via
a separate RF video link.

A laptop computer is used as the base-station. A Windows
NT application was written to control the vehicles from the
base-station. A Graphical User Interface (GUI) displays
vehicle status information and allows the operator to monitor
the vehicles’ positions on a Geographic Information System
(GIS) map — either aerial photo or topological data, as well as
view the live video from a selected vehicle (see Figure 8).
Mission specific control modes such as tele-operation,
formation following, autonomous navigation, and perimeter
detection can be initiated and monitored using this GUI
interface.

There are two modes of communication between the base
station and the vehicles: a star network and a token ring
network. In the star network, all radio communication is
coordinated by the base-station. In the token ring network,
each node (either vehicle or base-station) speaks only when it
receives the token. In our case, an actual token packet was not
needed since each vehicle has an identification number, and
communication order is determined from this number. All
messages are broadcast in half-duplex mode so that each
vehicle knows when the other vehicles or the base-station has
transmitted a message. If a node does not communicate when
expected, a timer on the next node expires, signaling that the
next node should transmit. The token ring network is more
fault tolerant than the star network since there is no single
point of failure as there is with the star network. Also, the
token ring network allows the vehicles to continue to operate
in perimeter detection mode even if the base station is
shutdown.

V. FORMATION CONTROL

The goal of formation control is to develop a simple user
interface that allows a single operator to guide multiple robot
vehicles. The ability to maintain a formation is useful for
conducting searches and for moving the squad from place to
place. This capability has been implemented using the base-
station’s GUL  The decentralized formation control law
described in the previous section is used by each vehicle to
keep the vehicles in formation while driving the group to a
desired destination. To initiate formation control, the
operator graphically places the vehicles into a relative
formation as shown in Figure 9. Initially, each vehicle is sent
a relative offset and the initial formation location command.
Each vehicle determines its own destination by adding its
individual offset to the formation command. Subsequent
moves only require broadcasting the new formation location
command. In the current implementation, orientation is not
considered so that the vehicles always traverse nominally the
same distance as the formation moves along. A formation
always remains aligned to the compass frame rather than to a
lead vehicle’s frame.
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Figure 9. On the left the current vehicle locations are
displayed. On the right the user may drag and drop vehicle
icons to arrange any desired formation

VI. PERIMETER SURVEILLANCE

The goal of robotic perimeter surveillance is to use a
cooperative team of robotic sentry vehicles to investigate
alarms from intrusion detection sensors [37]. A variety of
miniature intrusion detection sensors (MIDS), hidden on a
defensive perimeter, broadcast unique identification codes to
all the vehicles when the sensors are tripped. There are four
different types available including: magnetometer, seismic,
passive infrared and beam break (or active) infrared.

The vehicles are outfitted with receivers to detect when the
sensors are tripped. The vehicles are also programmed to
maintain an internal representation of the location of the
MIDS sensors and the other vehicles. Additional code was
also added to the base-station to enter and display the MIDS
information.

As the sensors are hidden, the operator enters the MIDS
attributes at the base-station including:

1. the type of sensor,

2. the GPS location of the sensor,

3. the number of RATLERsS to attend the alarm, and

4. the priority of the alarm.
The operator draws a perimeter on the GIS map as shown in
Figure 10. The MIDS information and the perimeter region
are sent to all the vehicles.

Once the operator places the vehicles in the MIDS sentry
mode, the vehicles spread out uniformly along the perimeter
maintaining equal distance between their two nearest
neighbors using the control law described in the previous
sections. An interaction gain of 0.5 is used in the tests. The
line that the vehicles are to be controlled on is the curved
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perimeter in Figure 10. Differential GPS is used to locate and
guide each vehicle. A RF radio on each vehicle is used to
broadcast its GPS position to the others. Each vehicle has a
communication time slot of 220 milliseconds, which results in
a total communication sample period of 1.1 seconds for 4
vehicles and a base-station. The differential GPS sample
period is 200 milliseconds. As the previous section points out,
stable control is guaranteed as long as the differential GPS
sample period is faster than the communication sample period,
and the vehicle has a faster inner position control loop based
on the GPS position.

When a sensor is alarmed, the vehicles decide, without
base-station intervention, which of the vehicles can best
investigate the intrusion, and how the remaining vehicles
should adapt to maintain the perimeter using the same control
law.
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Figure 10. Perimeter being guarded by robot sentries

To maintain the perimeter, the vehicles periodically
broadcast (they take turns transmitting every 220
milliseconds) their location and the status of the sensors. In
this way, each vehicle can maintain a local representation of
where the other vehicles are and which sensors have been
tripped. When a vehicle receives an alarm signal, it broadcasts
to the other vehicles which alarm has been tripped. If one
vehicle receives an alarm and the others dont, the other
vehicles will receive the alarm through this broadcast. The
base-station displays the location of the vehicles and the
MIDS sensors on a GIS map. When a MIDS sensor is
alarmed, the icon of the MIDS sensor changes color. The
status display indicates which vehicles are moving to
investigate the alarm.

The determination of which vehicles attend an alarm is
made independent of the base-station. When an alarm is
received each vehicle computes its distance to the alarmed
sensor as well as the distance of the other vehicles to the same

-



sensor. If the vehicle is closest to the alarmed sensor within
the number of vehicles that are to attend the sensor, then it
will head toward the alarm. That is unless a MIDS of higher
priority is alarmed, in which case it heads towards the MIDS
of higher priority. All of these decisions occur once per
second; therefore, a vehicle may be heading towards one
alarmed MIDS, when a higher priority MIDS is alarmed,
causing it to change directions. When a vehicle is not
attending an alarm, it tries to maintain an equi-distant position
around the perimeter from the other unalarmed vehicles using
the control law described in the previous section.

Jli. Squad Control
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Figure 11. Base-station control window. The initial positions
of the vehicles were at the lower left corner of the screen. The
vehicles first follow their assigned paths. Once they reach the
end of their paths, the vehicles use the obstacles and
attractors to navigate to their final positions on the goal
attractors. To avoid collision between the vehicles and to
uniformly cover the goal attractors, the vehicles are also
repulsed by each other. The obstacles are drawn in red, the
goals are drawn in green, and the vehicle paths are drawn in
black.

VII. SURROUND TASK

In addition to the formation control and perimeter
surveillance tasks, an interactive playbook capability has been
developed where the operator can guide individual vehicles or
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the entire group using drawing tools. In Figure 11, the
operator has used a drawing tool bar to outline the obstacles
and indicate goal regions. A simple attractive and repelling
potential field algorithm is used to generate the desired paths
for the vehicles. The algorithm uses the distance and direction
to the nearest goal, obstacle, and neighboring vehicle to
determine the gradient used to update the vehicle’s position as
each vehicle moves from its initial position to the closest goal.

The distance to the closest goal and obstacle is computed as
described in [38]. After the closest obstacle, goal, and vehicle
positions are computed, the direction of the vehicle is given
by

dx = - =
dy Ya— Yy ¥r—= Wy Yev = Yy

where (xv, yv) is the vehicle’s position, (x,,y,) is the
closest attractive point (goal), (x,, y,.) is the closest repulsive
point (obstacle), (xa,,ym,) is the closest vehicle, and K,
K,, and K, are positive gains. The closest obstacle, goal,

and vehicle positions, and the potential gradient are updated
every 220 milliseconds.

The stability of Equation (36) can also be proven using the
same decentralized control techniques discussed in the
previous section. To simplify the problem, assume that the x
and y position can be controlled independently and assume
that vehicle dynamics of the two closest vehicles are

S;: & =—K,x+K,u;, ie{l2} (37)

IfK, =K, and x, —x, =0, then the control can be written as

u,-=}’(xi-—le lij (38)
where ¥ = K, . The resulting stability test matrix is
Kyl-7) i=j
wi=1 Lp g 39
-Kpy, i#j

which is an M-matrix if 7<%. When y=%,thetwo

vehicles stabilize at % [x,(0)-x, (O)] and —% [x] (0)-x, (0)]
where x,(0) and x, (0) are the initial x positions of the two

1 ; ;
vehicles. When ¥ < i both vehicles asymptotically converge
to the origin. In this particular application, we do not want the
. o 1] 1
vehicles to converge to the origin, so we chose ¥ > 5 which

pushes the vehicles away from each other until they are a
desired distance apart, after which the repulsive term is
disabled.

In Figure 11, six RATLER™ vehicles were used to
surround a facility. The vehicles were initially located in the
lower left-hand corner of Figure 11. This is also where the
base-station was placed. The facility to be surrounded was
located approximately 200 meters on the other side of a rough
moto-cross course. It is important to note that the base-
station’s coordinates were obtained directly from a registered



aerial photograph, and neither surveying nor GPS integration
was used. This fact demonstrates the feasibility of a fast
response squad of mobile robots.

When specifying the vehicle paths, the operator can either
draw the paths of individual or groups of vehicles, or draw
goal and exclusion regions to be used by all vehicles, or do
both. Drawing goal and exclusion regions is a simple way of
specifying paths for several vehicles at once. However, there
are circumstances when we need to specify the path of
individual vehicles, such as when creating a diversion. For
the test, the operator drew several different paths (displayed as
black lines in Figure 11) towards the facility. Groups or in this
case pairs of robots were assigned a single path. The paths
were chosen to follow the moto-cross course so that deep
ditches and heavy brush could be avoided. However, these
pre-defined paths ended short of the facility.

Goal and exclusion regions were used to specify the
remaining vehicle path to the facility. The operator defined
the goals (displayed as green lines) and the exclusion zones
(displayed as red lines) on the GIS map. In Figure 11, a goal
line is drawn on the backside of the facility. Two different
pre-defined paths terminate near this surrounding goal. Each
of these paths was assigned two robots. Therefore, four robots
are expected to participate in the surround task. The remaining
two robots were assigned a path that goes near the main
entrance of the facility. The nearest goal at the end of this
path is inside the main entrance to the facility. These two
vehicles were intended to act as a diversion, while the first
four vehicles were strategically positioned to watch the rear
door.

Once the mission is fully defined, the operator at the base-
station can view a simulation. In the simulation, the vehicles
first follow their pre-defined paths. Once they reach the end,
the potential field algorithm is used to plan the remaining path
to the goal. This simulation is important since the potential
field approach to path planning can be trapped by local
minimum. After the operator previews the plan, the pre-
defined paths and the exclusion zone and goal polygons are
downloaded to the vehicles. On board the vehicle, the same
potential field path planner directs the vehicle to the goal
region while avoiding the exclusion regions, neighboring
vehicles, and live obstacles. The true position of neighboring
vehicles is obtained from the RF network, as each vehicle
continually broadcasts its location and status. The vehicles
naturally spread out along the goal region because of the
repulsive forces between vehicles.

While the test was being performed, the vehicles were
mostly able to stay on the moto-cross course using
differentially corrected GPS. The aerial photograph is known
to be optically warped, which means that it cannot be
calibrated accurately for all regions. However, since the
differential transmitter was initialized based on the
coordinates taken from the map, the calibration is very good
locally. When the vehicles strayed from their course, they ran
into obstacles. On-board tilt sensors combined with a simple
obstacle recovery algorithm allowed for all but one of the
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robots to successfully navigate the motor-cross course. The
vehicle that failed to reach the goal was intended to be part of
the diversion.

In the test, four vehicles reached the surrounding goal and
spread out evenly along this partial perimeter (see Figure 12).
One vehicle entered the front gate. It took about one-half hour
to set up, transporting the vehicles and initializing the
differential station. It took another one-half hour to execute,
including drawing the paths, goals, and obstacles,
downloading the information to the robots, and executing the
mission.

Figure 12. Four RATLER™ vehicles surrounding the
backside of the facility.

VIII. CONCLUSION

In this paper, decentralized control theory is applied to the
control of multiple cooperative mobile robotic vehicles. We
mathematically described how to determine if a cooperative
system is input/output reachable, structurally controllable and
observable, and connectively stable. We illustrated the use of
these techniques on two simple problems, and we showed how
these simple examples are applicable to multi-robot formation
control, perimeter surveillance, and surround problems. The
stability analysis was used to determine limits on system
parameters such as the interaction gain between vehicles, on
the responsiveness of the vehicles, and on the sampling period
for communication and position feedback, and to see how
these limits vary as a function of the number of vehicles.

APPENDIX

In this appendix, we describe the control method used to
drive each RATLER vehicle to a desired position. The
RATLER vehicle is modeled as a skid-driven system since the
wheels on each side of the body are controlled with the same



inputs. The typical non-holonomic problem (controlling 3
degrees of freedom with only two control inputs) is
transformed into a holonomic problem by only controlling the
position of a point p in front of the middle of the vehicle and
leaving the orientation unconstrained (See Figure A.1).
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Figure A.1. Schematic of vehicle

The control law below is convergent to the goal position as
long as the estimate of the angle to the goal is within +90
degrees of the actual angle. This can be shown by considering
a linear perturbation of nonlinear dynamics of the vehicle.

x= ﬂx,u)=ﬂxa,uo)+%{xmua(x—xo)+%

(u—u,)
Koalhy

(A.1)
where xe R* is the (x,y) position of the point p on the

vehicle and orientation @, ue R* are the commanded right
and left linear wheel velocities, f{x,u) are the first order

vehicle dynamics, and x,and u, are linearized operating
points. This can be rewritten as

A;‘c:i Ax+i

. I (A.2)

xa'uu

Kool
where
Ax = flx,u)— fixg,u,)
Ax=x-x,
Au=u—u,.
The first order model of a skid-driven vehicle x = fix,u) is

i cosf—2sin@ cosf+—sin8
Xp R "
: )] [ a " a r
Yp |=7|sin6 +—cosé sin @ ——cos @ (A.3)
: 2 R i
e 1 =1 .
L R R ]

or

x=B(x)u
where R is one-half the wheel base, a is the distance between
the vehicle center and point p, and @ is the orientation of the
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vehicle. If u, =0, then % =0 and Au=u . Since

%L \ = B(x, ), then

o0

X,

a'u

0

Ax = B(x)Au (A4)

We choose the control to be a weighted inverse Jacobian,
which is a function of the estimated state X . Then,

Au=-[wB®)] Ap

1 00
W:
010
x
Yp
Ap:P_po

and p, is a linearized operating point.

(A.5)

where

The matrix W is
chosen to drive x,,y, to the desired reference position yet

leave @ unconstrained. Considering only the position of the
vehicle,

Ap = -WB(x, JWB(%)] " Ap (A.6)

or
{si +WB(x, JWBE)]™ JAp =0 (A7)

For Ap — 0, WB(x, )[I’II'B(i)]_1 must be positive definite

[41]. It can be shown that for the skid driven dynamics in
Equation (A.3), this occurs if and only if

-90° <8, -6<90°.
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