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12c0005 Peridynamics for analysis

of failure in advanced

composite materials

A. Askari*, Y. Azdoud†, F. Han†, G. Lubineau†, S. Silling{
*Boeing Commercial Airplane, Everett, WA, USA, †King Abdullah University of Science
and Technology (KAUST), Thuwal, Saudi Arabia, {Sandia National Laboratories,
Albuquerque, NM, USA

s0010 12.1 Introduction

p0010 Many mathematical models and computational methods have been proposed and

developed to predict the evolution of degradation in composites (Soden et al.,

1998; Hinton et al., 2002; Lubineau and Ladevèze, 2008). However, predicting the

behavior up to failure of these materials using conventional continuum damage

mechanics or fracture mechanics remains challenging.

p0015 On the one hand, anisotropic damage mechanics has been adapted for composite

materials, and it has reached a level where it can describe every single classical mech-

anism in laminates (Lubineau and Ladevèze, 2008). For example, the damage meso-

model for laminates (Ladevèze and Le Dantec, 1992), coupled with micro- and

mesomechanics since the last decade (Ladevèze and Lubineau, 2001, 2003;

Ladevèze et al., 2006), can predict in an accurate manner the progressive evolution

of transverse cracking, diffuse damage (fiber/matrix debonding), interlaminar plastic-

ity, fiber breaking, as well as interlaminar delamination. Yet, handling the final local-

ization (which is key because it results in macroscopic cracks and failure) is somehow

challenging as specific techniques have to be used (Allix and Deu, 1997; Allix et al.,

2003) to ensure mesh objectivity, which remains not yet completely understood for

laminated composites. We also note that damage mechanics-based approaches do

not allow (at least in their raw formulation) for discontinuous solutions. Cracks are

smoothed out and globally represented by internal damage variables. This is relevant

to progressive and distributed degradation, but might be questioned as relevant to the

final failure that generally results from the severe localization of a macroscopic crack,

which shifts the failure to a regime in which homogenization may not be possible.

p0020 On the other hand, fracture mechanics mainly addresses the extension of preexisting

cracks and does not address the initiation problem that is quite complex, especially in

laminated composites. Even predicting crack extension is somewhat difficult whenmul-

tiple cracks with complex shapes and interactions have to be considered, as a remeshing

process is often needed if the finite element framework is used. Although remeshing

can be avoided with some special elements, such as cohesive elements, a priori

knowledgeof thecrackpath is required toplace theseelements (Kilicet al.,2009).Placing

the elements is generally possible for a limited number of configurations, such as the
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prediction of interlaminar delamination, inwhich cracks clearly appear and extend at the

interface between adjacent plies (Allix and Ladevèze, 1995). Nevertheless, location of

cracks is usually unknown a priori in complex structures. Similarly, prediction of crack

propagations also requires an additional growth criterion. This criterion is a priori based

on material properties and local loading conditions. However, it is extremely difficult

to identify such a criterion for cracks propagation from experimental data, especially

in composite materials.

p0025 To address these concerns, a recently developed theory of solid mechanics, known

as peridynamics and proposed by Silling (2000), redefines the problem by using inte-

gral equations rather than partial differential equations. In peridynamics, the equilib-

rium of a material point is assumed to be attained by an integral of internal forces

exerted by nonadjacent points across a finite distance. These internal forces are thus

nonlocal interactions in a continuous body. The interaction between pairs of points is

defined over the connection vector, called the bond, of these two points. A bond is

permitted to break irreversibly when it is stretched beyond a critical value. As a result,

two-dimensional surfaces crossing all broken bonds represent cracks in a three-

dimensional body. These definitions allow crack initiation and evolution simulta-

neously at multiple sites, with spontaneous paths inside a material and without formu-

lating a complex crack growth criterion (Kilic et al., 2009).

p0030 Peridynamics, however, comes with huge computational cost that pushes classical

engineering problems out of reach. Furthermore, peridynamics is characterized by

volume like boundary conditions that can make its application tedious for engineers

who are more used to traction like boundary conditions. Consequently, a reasonable

strategy is to reserve peridynamics for parts of the structure where key mechanisms,

such as damage or fracture, strongly impact the solution, and then to use continuum

mechanics for the rest of the structure for which the conventional continuum model

can satisfy solution accuracy and boundary conditions and can reduce consumption of

computational resources. Then, the challenge lies in how to couple the peridynamic

model and the conventional continuum model together efficiently. Recently, some

coupling schemes have been proposed, including the force-based coupling method

(Seleson et al., 2013), the Arlequin coupling method (Han and Lubineau, 2012)

and the morphing coupling method (Lubineau et al., 2012). The force-based coupling

method derives a coupled force equilibrium equation, which blends the peridynamic

and continuummodels in a transition region by using a weighting function. In contrast,

the Arlequin coupling method belongs to the energy-based coupling strategy in which

the coupling is performed at the energy level by using a partition of unity concept. The

morphing coupling method is inspired by the idea of homogenization. Using the

equivalent energy density of both models, it constructs a balance between local stiff-

ness and the weighted nonlocal modulus.

p0035 In the remainder of this chapter, Section 12.2 briefly introduces the fundamentals

of peridynamic theory. Special peridynamic material models for composites are

addressed in Section 12.3. As a very recent method to formalize continuummechanics

reference problems, peridynamics is still at its infancy when it comes to complex

material behaviors such as those observed in laminated composites. Even so, we pro-

vide a few examples based on our recent work and discuss needed developments and
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the potential of the approach. We then focus on the upscaling problem and on how to

handle the simulation of large structures by restricting the use of peridynamics to

localized areas. Because the morphing coupling method is simple and easy to use,

we present a brief introduction on this method and provide a benchmark example

for crack extension in Section 12.4.

s0015 12.2 Peridynamic theory

p0040 Peridynamic theory is a generalization of standard solid mechanics that is adapted to

certain applications in which the standard theory either fails to apply or requires exten-

sive modification. In particular, peridynamics applies to the modeling of defects, espe-

cially cracks, that form spontaneously and grow. To accomplish this, peridynamic

equations omit the partial derivatives of the deformation with respect to the spatial

coordinates, because these derivatives cannot be evaluated on points of discontinuity

in the deformation. Peridynamic equations are integro-differential equations rather

than partial differential equations. The resulting theory is strongly nonlocal in that

it allows direct interaction, through a material model, of material points that are sep-

arated by a finite distance. Introductions to peridynamic theory can be found in Silling

(2000); Silling and Lehoucq (2010) and Madenci and Oterkus (2014).

p0045 One way of deriving peridynamic equations is to consider the strain energy density

W(x) at a point x in a body ℬ. In the peridynamic model, the strain energy density is

determined by the deformation of all the material in a neighborhoodHx centered at x

with radius d > 0. The maximum interaction distance d is called the horizon of the

material and is treated like a material property. The neighborhood Hx is called the

family of x (Figure 12.1). The key distinction between this model and the standard

theory is that, in peridynamics, W(x) is determined by the collective deformation

of all the points in Hx, rather than the deformation gradient at x.
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Figure 12.1f0010 The strain energy density at a material point x is determined by the deformation of

its family.
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p0050 To represent the dependence of W on the deformation of Hx requires the use of

mathematical objects called states, which are simply mappings defined on Hx. The

deformation within Hx is represented by the deformation state Y½x� defined by

Y ½x�hq�xi¼ yðqÞ�yðxÞ, (12.1)

where q2Hx. The relative position vector q� x is called the bond from x to q, which
is henceforth noted as j. Thus, the deformation state maps any bond onto its image

under deformation y (Figure 12.2). Au1In an elastic peridynamic material, the dependence

of the strain energy density on the deformation of the family is represented by

WðxÞ¼ ŴðY ½x�Þ, (12.2)

where Ŵ is the material model. The key idea is thatW depends on the mapping ofHx

onto its deformed image, not just on the deformation of particular bonds.

p0055 The potential energy F corresponding to a deformation field y in a bounded elastic

body subjected to external body force density field b is given by

F¼
Z
ℬ
ðWðxÞ�bðxÞ � yðxÞÞ dVx, (12.3)

which is formally the same as in the standard theory. To obtain the equilibrium equa-

tion, the first variation of F is evaluated with respect to y. The Euler–Lagrange equa-

tion corresponding to stationary F is then found to be

Z
Hx

ðtðq,xÞ� tðx,qÞÞ dVq + bðxÞ¼ 0 (12.4)
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Figure 12.2f0015 Point x is connected to its neighbors q by bonds. The deformation state maps these

bonds into their images under deformation.

334 Numerical modelling of failure in advanced composite materials

B978-0-08-100332-9.00012-8, 00012

Camanho, 978-0-08-100332-9

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only
by the author(s), editor(s), reviewer(s), Elsevier and typesetter SPi. It is not allowed to publish this proof online or in print. This proof
copy is the copyright property of the publisher and is confidential until formal publication.



for all x2ℬ, where t(q,x) and t(x,q) are vectors called bond force densities. These
have dimensions of force/volume2. They are derived from the material model for

strain energy density by

tðq,xÞ¼ ŴY ðY½x�Þhq�xi, tðx,qÞ¼ ŴYðY½q�Þhx�qi, (12.5)

where the symbol WY denotes the Fréchet derivative of the strain energy density W
with respect to the deformation state. The Fréchet derivative has the property that

for a small change in the deformation state dY, the corresponding change in the strain

energy density at x is given by

ŴðY + dYÞ� ŴðYÞ¼ ŴY �dY (12.6)

plus higher-order terms, where the inner product of two states is defined by

A �B¼
Z
H
Ahji �Bhji dVj : (12.7)

p0060 Thus, ŴY is the work conjugate of Y. For elastic and inelastic materials, the bond

force vectors can be regarded as belonging to the force state T evaluated for particular

bonds, and we write

tðq,xÞ¼T ½x�hq�xi, tðx,qÞ¼T½q�hx�qi: (12.8)

p0065 The material model gives the force state as a function of the deformation state and

possibly other variables such as temperature y and rate of change of the deformation

state _Y :

T ¼ T̂ðY, _Y ,y,… Þ: (12.9)

p0070 For the special case of an elastic material, we write

T̂¼ ŴY: (12.10)

p0075 An example of a peridynamic material model is given by

ŴðY Þ¼ kv2

2
, v¼

3

Z
Hehji dVjZ
H
jjj dVj

, ehji¼ jYhjij� jjj, (12.11)

where k is the bulk modulus, v is the nonlocal dilatation, and e is the bond extension
state. The factor of three appears so that this expression for v gives the same value

as the conventional dilatation ui,i for deformations that are small and isotropic. For

any bond j, the value of ehji is the change in length of the bond due to deformation.
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The nonlocal dilatation v is computed from the mean length change in the family as it

deforms. The corresponding force state is found from the Fréchet derivative of Ŵ to be

T̂ hji¼ 3kvZ
H
jzj dVz

0
BB@

1
CCAMhji, Mhji¼ Yhji

jYhjij (12.12)

for any bond j 2H. In this expression, z is used as the dummy bond variable in the

volume integral. The stateM contains the deformed bond directions. For this material

model, which represents a linear elastic fluid, the bond forces are parallel to the

deformed bond vectors. Material models with this property are called ordinary mate-

rial models; all others are called nonordinary. Further discussion of this peridynamic

fluid material model may be found in Silling et al. (2007).

p0080 A special case of ordinary material models is called bond-based materials. These

have the property that the force in each bond is determined only by the deformation of

that particular bond, independently of what happens to the other bonds in the family.

An example of a bond-based material model is given by

T̂ hji¼CðjÞehjiMhji (12.13)

for all j 2H. In this material, each bond acts like a linear elastic spring whose spring

constant is the scalar-valued micromodulus function C. In isotropic bond-based

material models (in which C(j) is independent of the direction of j), only one elastic

modulus can be reproduced and, in three dimensions, the Poisson ratio is always 1/4.

This restriction is not true for the more general state-based material models, such as

the fluid material model discussed above, in which the Poisson ratio is 1/2. The key

distinction is that in the fluid model (12.12), the bond forces depend on the collective

deformation, embodied in v, of the entire family, whereas in Equation (12.13), each

bond’s force density depends only on its own deformation. We will see in the next

section that a suitable choice of C(j), especially through its dependence on bond

direction, results in a simple way to include anisotropy in a material model.

p0085 A useful example of a nonordinary material model is found in correspondence
materials. In these materials, a stress–strain relation from the standard theory is

adapted to the peridynamic setting. Suppose that we are given such a stress–strain rela-

tion in the form

sðxÞ¼ ŝðFðxÞÞ, FðxÞ¼ @y

@x
ðxÞ

for any x2ℬ, where s is the Piola stress. In the correspondence approach, a nonlocal
deformation gradient �FðYÞ is computed from

�F¼
Z
H
oðjjjÞYhji�j dVj

� �
K�1, K¼

Z
H
oðjjjÞj�j dVj , (12.14)

336 Numerical modelling of failure in advanced composite materials

B978-0-08-100332-9.00012-8, 00012

Camanho, 978-0-08-100332-9

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only
by the author(s), editor(s), reviewer(s), Elsevier and typesetter SPi. It is not allowed to publish this proof online or in print. This proof
copy is the copyright property of the publisher and is confidential until formal publication.



where o is a weighting function called the influence function. As discussed in Silling
et al. (2007), this nonlocal deformation gradient agrees with the conventional defor-

mation gradient F¼ @ y/@ xwhenever the deformation is uniform; that is, whenever F

is constant. The force state is then found from

T̂ hji¼oðjjjÞŝð�FÞK�1j (12.15)

for any bond j 2H. If ŝ is elastic, then the peridynamic correspondence material

model is also elastic, and the strain energy density function Ŵ agrees with the one

in the standard model whenever the deformation is uniform.

p0090 Correspondence models are useful because they allow material models in the stan-

dard theory to be “recycled” without deriving a peridynamic model from scratch.

However, they suffer from some practical limitations owing to the fact that in general

they are noninvertible. That is, for a given T, there are usually an infinite number of

choices of Y such that T¼ T̂ðYÞ if a correspondence model is used. This noninvert-

ibility has implications for material stability and, unless corrective terms are intro-

duced, results in troublesome zero-energy modes in particle type numerical

discretizations. These undesirable behaviors, along with innovative approaches to

controlling them, are discussed in Littlewood (2010), Tupek et al. (2013), Tupek

and Radovitzky (2014), and Breitenfeld et al. (2014).

p0095 Damage is modeled by including a dependence on the damage statef in the mate-

rial model:

T ¼ T̂ðY,fÞ: (12.16)

p0100 The damage state is a scalar-valued state that, for each bond, varies from 0 (undamaged)

to 1 (fully damaged). For each bond j, fhji is a nondecreasing function of time. Com-

monly, damage in a bond is treated as bond breakage in which fhji jumps discontin-

uously from 0 to 1 according to some criterion. A breakage criterion that is often used in

numerical simulations is critical bond strain. In this approach, each bond is assigned a
critical value s*hji. The damage in the bond jumps irreversibly from 0 to 1 when the

bond strain shji exceeds s*hji, where the bond strain is defined by

shji¼ ehji
jjj (12.17)

for any bond j 2H. In practice, if a peridynamic continuum is viewed as a complex

network of bonds going in every direction, the breakage of an individual bondmakes it

more likely that its neighbors will also break, because more load is shifted to these

neighbors. As more and more bonds break, a progressive process of failure occurs

in the continuum. This process may be either stable or unstable, depending on the

geometry and loading conditions. In three dimensions, the geometry of the failed

regions usually organizes into two-dimensional surfaces, possibly curved, that we

interpret as cracks. Thanks to the compatibility of the peridynamic field equations

with discontinuities, cracks form spontaneously and without restriction or
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supplemental kinetic relations that are needed in traditional fracture mechanics. In

particular, the concept of a stress intensity factor is not needed in peridynamics.

p0105 In a model of a brittle elastic solid, the critical bond strain can be calibrated to

match the critical energy release rate of the material (Silling and Askari, 2005).

We will see in the next section that allowing dependence of s*hji on the direction

of j provides a simple way to model anisotropy in material fracture and failure.

p0110 Peridynamic equations can be linearized under the assumption of small displace-

ment (not necessarily the small displacement gradient). The resulting equilibrium

equation has the following form:

Z
N x

Cðx,qÞðuðqÞ�uðxÞÞ dVq + bðxÞ¼ 0, (12.18)

where C is the tensor-valued micromodulus field, u(x)¼ y(x) �x is the displacement

field, andN x is a neighborhood of x. In general, the radius ofN x is 2d, where d is the
horizon of the underlying nonlinear material model that is being linearized (Silling,

2010). The linearized equilibrium equation is formally the same as in Kunin’s nonlo-

cal theory (Kunin, 1983).

s0020 12.3 Peridynamic material models for composites

p0115 Here we discuss some methods for treating unidirectional reinforced laminates with

peridynamics. Most published peridynamic models for composites are homogenized;

that is, they involve smoothed material property fields that do not explicitly include

heterogeneities. Because of its nonlocal nature, peridynamics offers opportunities for

studying aspects of composite mechanics that are not easily reproduced in standard

local theory. Due to their heterogeneous composition, nonlocal interactions appear

whenever composites are represented with smoothed displacement fields. This non-

locality occurs not because of physical interactions across finite distances, as in elec-

trostatics, but because of the tendency of the material phases to readjust individually

relative to each other when only their averaged value is specified. The resulting

exchange of forces between the phases occurs over finite distances that can be esti-

mated using, for example, a shear lag type of analysis. The length scale for these inter-

actions involves not only geometrical length scales (fiber diameter, ply thickness, etc.)

but also the relative material properties of the phases (Silling, 2014).

p0120 One way of modeling a unidirectionally reinforced lamina with peridynamics is to

use the correspondence approach discussed in the previous section. Any stress–strain

model for a lamina from standard lamination theory can be directly incorporated into a

peridynamic model using correspondence. The resulting peridynamic model has the

same characteristics as the standard model for reproducing the anisotropic elastic

properties of a lamina. All four independent elastic moduli can be reproduced

(Jones, 1999). The correspondence approach can also be applied to a three-

dimensional model of a laminate, introducing a fifth elastic modulus that can be
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specified independently, as in lamination theory. The correct A and D matrices are

predicted by the peridynamic correspondence model for any orientation of the plies

in an arbitrarily chosen layup.

p0125 Because the correspondence approach borrows a stress–strain relation from the

standard theory, it is suitable for the application of failure models, such as the Hashin

model, that are based on components of the stress tensor (Hashin, 1980). Such a failure

model can be represented as a surface in the stress space of the form

cðs,a1,a2,…,aNÞ<c0 (12.19)

for a nonfailed material, where s is the stress tensor and c0,a1,a2,…,aN are param-

eters for the failure model calibrated for a material. In the correspondence model, fail-

ure occurs when the condition

cðŝð�FÞ,a1,a2,…,aNÞ<c0 (12.20)

fails to hold, where �F is the nonlocal deformation gradient tensor discussed

previously.

p0130 When failure occurs according this condition, the next question is how to translate

this event into bond damage. Many ways are possible. One approach is to break the

“worst” bond, that is, the bond that should break first on the basis of physical intuition

or because of some condition derived from the failure model. For example, the peri-

dynamic bond damage model could break the bond within the family of a point x that

has the greatest tensile bond strain, assuming that the material is failing under tension.

For failure under compression, the model could break the bond with the greatest com-

pressive strain. The difficulty here is that in the Hashin model, there are an infinite

number of combinations of stress components that result in failure. These infinite

combinations therefore introduce an ad hoc character to the peridynamic model in try-

ing to identify the “worst” bond by introducing an extraneous bond failure criterion.

p0135 An alternative is to use the failure surface cmore directly to identify bond damage.

One way to do this is to evaluate the gradient of this surface, in the sense of Fréchet

derivatives, with respect to the deformation state. Using the chain rule leads to

cY ¼ @c
@s

� @ŝ
@F

� �FY: (12.21)

p0140 Here, the Fréchet derivative �FY is computed from Equations (12.6) and (12.14). The

term @ŝ=@F is the fourth-order elasticity tensor for an incremental deformation.

Under the assumption that bond damage occurs preferentially in those bonds that con-

tribute the most to cY , a possible bond damage model is then

_f hji¼ lcYhji (12.22)

for any bond j 2H, where l > 0 is independent of j. Continuum damage models can

be similarly adapted to peridynamics.
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p0145 Most of the published peridynamic lamina models are bond-based. Among these

are the models of Askari et al. (2006), Xu et al. (2007, 2008), Hu et al. (2011,

2012), Hu et al. (2014), and Liu and Jia (2012). In these models, anisotropy is intro-

duced by giving special properties to bonds that are parallel to the fiber direction in the

undeformed configuration. These bonds are called fiber bonds; all other bonds in the

laminamodel are calledmatrix bonds. Referring to the bond-based expression (12.13),
and using a coordinate system in which x1 is parallel to the fibers, the scalar micro-

modulus of a bond in the plane of the lamina may be written as

CðjÞ¼CmðjjjÞ +Cf ðjjjÞDðx2Þ, (12.23)

where D denotes the Dirac delta function. Applying this material model in the peri-

dynamic equilibrium equation (12.4) results in

Z
H
CmðjjjÞe hjiMhji dVj +

Z
L
Cf ðjjjÞehjiMhji d‘j + bðxÞ¼ 0, (12.24)

whereL is the line segment [�d,d] along the x1-axis and ‘j is the path length in the line
integral. The second integral sums up the forces in the fiber bonds. In this form, it is

easy to see the strength of the peridynamic formulation for composites: the fiber bonds

need not deform continuously with the matrix bonds, allowing the exploration of

deformations in which the fibers separate from the matrix.

p0150 Bond-based material models for composites are compatible with simple bond

breakage models that allow interesting damage progression phenomena to be repro-

duced. Using a critical bond strain breakage criterion, we can allow fiber bonds to

have a critical strain that is independent of the matrix bond critical strain. Laminas

can be anisotropic in damage formation as well as in elastic response. Compressive

failure in a lamina can be modeled using a critical bond strain criterion under com-

pression as well as under tension.

p0155 Bond-based lamina models can be assembled into laminate models with arbitrary

stacking sequences. Additional bonds, with their own elastic and failure properties,

connect points within the laminas. These interlayer bonds can extend only between

neighboring plies or over multiple plies, according to the modeling assumptions

one wishes to make. A critical bond strain failure criterion for interlayer bonds can

be calibrated to match the tensile and shear energy release rates,GIc orGIIc, for delam-

inations, but not both of these constants independently. More flexibility can be

obtained with alternative failure criteria for interlayer bonds. For example, interlayer

bonds can be considered to fail when the shear angle between neighboring plies

exceeds some critical angle (Oterkus, 2010; Oterkus et al., 2012). When applied

together with a critical tensile bond strain criterion, measured energy release rates

in both tensile and shear modes can be reproduced during delamination. Bond-based

models for composites, coupled with conventional finite element models, have been

successfully applied to the failure of large aerospace structures (Oterkus et al., 2012).

Later sections in this chapter discuss the coupling of peridynamics with finite element
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meshes. A bond-based mechanical model has also been coupled with a peridynamic

heat conduction model for composites (Oterkus and Madenci, 2014).

p0160 Bond-based laminate models with anisotropic critical bond strain breakage criteria

can reproduce a surprisingly large spectrum of damage phenomena in composites. An

example is shown in Figure 12.3, which shows the failure of laminates in simulated

large-notch tension (LNT) tests, along with a typical experimental result. Figure 12.4

shows delaminations predicted due to impact from a rigid projectile using the shear

bond approach. It also shows computed compressive failure in amodel of compression

after impact (CAI).

p0165 Unlike the correspondence models, bond-based material models for composites

cannot match all four independent elastic moduli in laminas. Because, in effect, Cm

and Cf act like independent parameters for purposes of calibrating the elastic proper-

ties of the model, only two elastic moduli can be reproduced by manipulating these

two parameters. A modification of the bond-based model described above that

includes a dependence of Cm on the bond angle as well as the length (that is,

Cm(j) instead of Cm(jjj)) allows three elastic moduli to be matched.

Comp. by: KKalaiselvi Stage: Proof Chapter No.: 12 Title Name: Camanho
Date:23/4/15 Time:13:18:59 Page Number: 341

Figure 12.3f0020 Left: Simulated damage patterns using a bond-based peridynamic model. Right:

The result of a typical test.
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Figure 12.4f0025 Left: Simulated delaminations caused by impact (viewed from impacted side).

Right: Compression after impact.

Peridynamics for analysis of failure in advanced composite materials 341

B978-0-08-100332-9.00012-8, 00012

Camanho, 978-0-08-100332-9

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only
by the author(s), editor(s), reviewer(s), Elsevier and typesetter SPi. It is not allowed to publish this proof online or in print. This proof
copy is the copyright property of the publisher and is confidential until formal publication.



Comp. by: KKalaiselvi Stage: Proof Chapter No.: 12 Title Name: Camanho
Date:23/4/15 Time:13:19:04 Page Number: 342

p0170 Kilic et al. (2009) introduced a nonhomogenized bond-based lamina representa-

tion. In their approach, structures representing fibers are explicitly included in the

lamina. These structures are discretized in detail in the numerical model. This

approach has the advantage of reproducing some features of composite responses that

are the outcome of the heterogeneity of the mesoscale. However, the price paid is the

introduction of features that have a much larger size than the actual fibers they

represent.

p0175 Another approach to peridynamic modeling of a lamina that allows all four elastic

moduli to be matched, yet provides many of the advantages of the bond-based model,

is to use an ordinary state-based model (Colavito et al., 2013; Barut et al., 2014).

Recall that in ordinary state-based models, the bond force density vector is always

parallel to the deformed bond, but the force density can depend on the deformation

of other bonds in the family. This allows a volume-dependent term to be included

in the lamina model, as well as an angle-dependent matrix bond micromodulus.

The resulting expression for bond force then typically takes the form

T̂ hji¼ ðCmðjÞ+Cf ðjjjÞDðx2Þðehji+ avÞ
� �

Mhji, (12.25)

where a is a constant and v is the two-dimensional dilatation,

v¼
2

Z
H
ehji dVjZ

H
jjj dVj :

(12.26)

Here, H refers to the family in the plane of the lamina.

s0025 12.4 Toward a novel treatment of localization

p0180 Peridynamic theory has provided promising results for simulating the failure of com-

posites. For any point in a body, however, peridynamic models must account for all

interactions exerted by other points in the neighborhood of this point. This results in a

huge computational cost. The morphing coupling method is able to constrain the peri-

dynamic model to small but critical domains, such as the damage nucleation or frac-

ture regions, while a conventional contact-force-based continuummechanics model is

employed over the rest of the structure. Based on the work presented in Lubineau et al.

(2012) and Azdoud et al. (2013, 2014), the morphing coupling method is stated as

follows.

p0185 For simplicity, we focus on a bond-based peridynamic model for linearized elastic

materials. The equilibrium equation of the peridynamic model has been shown in

Equation (12.4). A possible bond-based constitutive model is given by

tðq,xÞ¼Cðx, jjjÞ
2

fujðqÞ�ujðxÞggj , (12.27)
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where the bond j ¼ q �x is the relative position vector, C(x,jjj) denotes the micro-

modulus at point x, which is a function of the length of j, gj ¼ j/jjj is the direction of
bond j in the reference configuration, and uj(q) denotes the projection of the displace-
ment u(q) at point q to the bond j (i.e., uj(q) ¼ u(q) �gj) (Lubineau et al., 2012).

p0190 We consider a complete domain ℬ. This domain ℬ consists of three subdomains,

ℬ1, ℬ2, and ℬm, that is, ℬ¼ℬ1[ℬ2[ℬm, ℬ1\ℬ2 ¼Ø, ℬ1\ℬm ¼Ø, and

ℬ2\ℬm ¼Ø. For definiteness and without major restrictions, we assume that ℬ2

is totally embedded within ℬm and that ℬm is totally embedded within ℬ1, such that

@ℬ2\@ℬ1 ¼Ø and @ℬ� @ℬ1. Therefore, ℬm becomes a transition domain between

ℬ1 and ℬ2 (see Figure 12.5).

p0195 Let the subdomains ℬ1 and ℬ2 be treated by the conventional continuum model

and the peridynamic model, respectively. We mainly focus on the finite morphing

domain, ℬm, where both models coexist and work cooperatively. The displacement,

�u, is imposed on the part @ℬu of @ℬ, and the surface force �f is imposed on the com-

plementary part @ℬf of @ℬ. In addition, the whole domain ℬ is subjected to body

forces denoted by b.

p0200 The morphing technique is then defined as a simple evolution of the material prop-

erties characterizing each model. The morphing coupling method is proposed by the

following set of equations that represent a hybrid continuum/peridynamic model:

u0010 □ Kinematic admissibility and compatibility

eðxÞ¼ 1

2
ruðxÞ+ ðruÞTðxÞ

� �
8x2ℬnℬ2, (12.28)

�jðq,xÞ¼ ujðqÞ�ujðxÞ 8ðq,xÞ 2ℬnℬ1, (12.29)

uðxÞ¼ �uðxÞ 8x2 @ℬu: (12.30)
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Figure 12.5f0030 The whole domain ℬ consists of ℬ1, ℬ2, and ℬm.
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u0015 □ Static admissibility

�sðxÞ+
Z
Hx

ftðq,xÞ� tðx,qÞg dVq ¼�bðxÞ 8x2ℬ, (12.31)

sðxÞ � nðxÞ¼�f ðxÞ 8x2 @ℬf : (12.32)

u0020 □ Constitutive equations
sðxÞ¼KðxÞ : eðxÞ 8x2ℬnℬ2, (12.33)

tðq,xÞ¼Cðx, jjjÞ
2

�jðq,xÞgj 8x2ℬnℬ1: (12.34)

p0220 In Equation (12.33),K(x) is the stiffness tensor of the conventional continuum model

at the point x. In Equation (12.34), C(x,jjj) is the peridynamic micromodulus at point

x. C(x,jjj) is defined by using a priori morphing function, a, such that

Cðx, jjjÞ ¼ aðxÞc0ðjjjÞ: (12.35)

p0225 Based on Equation (12.31), we note that the parameters a(x) and K(x) determine the

particular type of this model, that is, the continuum, peridynamic, or hybrid model, at

any material point x in the whole region ℬ:

u0025 l For a point x2ℬ, if and only if

KðxÞ¼K0 and aðqÞ	 0, 8q2Hx, (12.36)

then this point x strictly belongs to the conventional continuum model. The strain energy

density at this point can be written as

WðxÞ¼ 1

2
eðxÞ :K0 : eðxÞ: (12.37)

u0030 l For a point x2ℬ, if and only if

KðxÞ¼ 0 and aðqÞ	 1, 8q2Hx, (12.38)

then this point x strictly belongs to the peridynamic model. The strain energy density at this

point can be written as (see Han and Lubineau, 2012)

WðxÞ¼
Z
Hx

c0ðjjjÞ�
2
jðq,xÞ
4

dVq: (12.39)

u0035 l For a point x2ℬ, if and only if

KðxÞ 6¼ 0 and 9q2Hx, such that 0< aðqÞ< 1, (12.40)

then we can say this point x belongs to the hybrid model. The strain energy density at this

point can be written as (see Lubineau et al., 2012)

WðxÞ¼ 1

2
eðxÞ :KðxÞ : eðxÞ+

Z
Hx

c0ðjjjÞaðxÞ + aðqÞ
2

�2jðq,xÞ
4

dVq: (12.41)
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p0245 If the material in ℬ is homogeneous and the body ℬ is under homogeneous deforma-

tion, the strain energy density should be independent of the morphing function a. It
means that the strain energy density is the same at some point x whatever the model.

Thus, Equation (12.37) is equal to Equation (12.39), that is,

1

2
eðxÞ :K0 : eðxÞ¼

Z
Hx

c0ðjjjÞ�
2
jðq,xÞ
4

dVq: (12.42)

p0250 Let us consider an infinitesimal homogeneous transformation over the small neighbor-

hood of point x such that

eðqÞ’ eðxÞ¼ e and �jðq,xÞ¼
j � e � j
jjj 8q2Hx: (12.43)

p0255 Based on Equation (12.43), Equation (12.42) yields

K0 ¼
Z
Hx

c0ðjjjÞj�j�j�j

2jjj2 dVq: (12.44)

Similarly, an equivalence exists between Equations (12.37) and (12.41), and consid-

ering Equations (12.43) and (12.44), we have

KðxÞ¼ ð1�aðxÞÞK0 +

Z
Hx

c0ðjjjÞaðxÞ�aðqÞ
2

j�j�j�j

2jjj2 dVq: (12.45)

p0260 The advantage of this method is that we do the coupling only at the level of the con-

stitutive equation. This makes it easy to define the morphing coupling and to conduct

it from an algorithmic point of view. That is, for a given function a over regionℬ, the

governing equations (12.28)–(12.34) can be directly solved based on the constitutive

relations (12.44) and (12.45).

p0265 The coupling qualities have been described by using a one-dimensional example in

Lubineau et al. (2012). Some two- or three-dimensional numerical examples in

Lubineau et al. (2012) and Azdoud et al. (2013) illustrate the accuracy of the morphing

coupling method. Figure 12.6 presents a fracture simulation (Azdoud et al., 2014) that

uses an adaptive morphing coupling method. The morphing function a automatically

updates itself following the crack propagation, which directly determines the scopes

of the peridynamic and continuum models. A simple fracture criterion based on the

critical stretch of the bond is used, which was addressed in Section 12.2 of this chapter.

Above this critical strain, the bond is broken in an irreversible manner. In the numer-

ical implementation, appropriate discretization schemes, such as the finite element

method (FEM) and the discontinuous Galerkin finite element method (DGFEM),

are employed with the conventional continuum model and the peridynamic model,

respectively. Compared with the application of DGFEM to conventional continuum

mechanics (Arnold et al., 2002), it is easier to apply DGFEM to peridynamics without

the flux constraint over the boundary of the elements (Chen and Gunzburger, 2011).
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Figure 12.6f0035 The evolution of morphing function a on the cross section perpendicular to the

y-axis ((a)–(c)) and the dissipated energy in a deformed body ((d)–(f)) under displacement

increments (1 increment in (a) and (d), 30 increments in (b) and (e), 50 increments in (c) and (f)).

We note that the evolution of the morphing function follows the propagation of the crack.

DGFEM, represented by the square element in (a)–(c), is embedded in the peridynamic zone

(red) of the cross sections.
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s0030 12.5 Summary

p0270 Peridynamic theory is a recent but powerful and promising solid mechanics frame-

work that can be used for failure analysis of composites materials. Peridynamic

models fall into the category of nonlocal mechanics, which allows direct interactions

between nonadjacent material points by using integral equations. The connection vec-

tor between two points is named a bond. Peridynamic damage is modeled by defining

a breakage criterion at each bond. The failure process in peridynamics is captured as

more and more bonds break in a continuum.

p0275 Here, we considered three peridynamic models for composites: the correspondence

model, the bond-based lamina model and the ordinary state-based lamina model. Both

the peridynamic correspondencemodel and the state-based laminamodel can reproduce

all four independent elastic moduli in lamina, whereas only two elastic moduli can be

matched by the bond-based lamina model. Furthermore, a modification of the bond-

based model can reproduce three moduli at the most. In addition, the peridynamic cor-

respondencemodels, which translate stress–strain models from standard lamination the-

ory into bond damage, can be employed for the simulation of failure in composites. The

bond-based laminate models with anisotropic bond breakage criteria have been applied

to simulate the failure of laminates under LNTs and under CAI. Compared with the

bond-based models, the ordinary state-based material model provides more advantages

including a volume-dependent term as well as an angle-dependent term.

p0280 An efficient coupling strategy, called the morphing method, is proposed to glue the

bond-based peridynamic model to the conventional continuum model. The morphing

method couples both models at the level of constitutive parameters in terms of the

conservation of strain energy. This capability makes it possible to apply the coupled

model to complex structures. And it is possible to extend this strategy to the state-

based peridynamic model. Some adaptive fracture simulations have been successfully

conducted so far. Future work is required to apply the morphing coupling to nonlinear

problems, such as damage or plasticity.

p0285 In sum, it is clear that peridynamics is currently in its infancy in describing the full

complexity of the degradation mechanisms that can initiate and develop in laminated

composites. Much progress is needed on how to control anisotropic failure and on how

to introduce plasticity and time-dependent behaviors that will be crucial in describing

impact-induced damage in composites. Yet, it seems clear that peridynamics will be

able to overcome some recurrent limitations of classical continuum mechanics,

because its raw mathematical formulation allows for the development of discontinu-

ities. Future work is needed to make this theoretical tool fully applicable.
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Non-Print Items

Abstract

Peridynamics has been recently introduced as a way to simulate the initiation and

propagation of multiple discontinuities (e.g., cracks). It is an alternative to classical

continuum damage mechanics and fracture mechanics and is based on a nonlocal

rewriting of the equilibrium equation. This new technique is particularly promising

in the case of composite materials, in which very complex mechanisms of degradation

must be described. We present here some fundamental aspects of peridynamics

models for composite materials, and especially laminates. We also propose an

approach to couple peridynamics domains with classical continuum mechanics

(which relies on the concept of contact forces) by the use of a recently introduced cou-

pling technique: the morphing technique, that appears to be a very versatile and pow-

erful tool for coupling local to nonlocal descriptions.

Keywords: Composites, Peridynamics, Coupling, Morphing technique.
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